
Stitch Meshing

KUI WU, University of Utah
XIFENG GAO, New York University
ZACHARY FERGUSON, New York University
DANIELE PANOZZO, New York University
CEM YUKSEL, University of Utah

Fig. 1. Example yarn-level models generated from input 3D surfaces using our fully automatic pipeline.

We introduce the �rst fully automatic pipeline to convert arbitrary 3D shapes
into knit models. Our pipeline is based on a global parametrization remesh-
ing pipeline to produce an isotropic quad-dominant mesh aligned with a
2-RoSy �eld. �e kni�ing directions over the surface are determined using
a set of custom topological operations and a two-step global optimization
that minimizes the number of irregularities. �e resulting mesh is converted
into a valid stitch mesh that represents the knit model. �e yarn curves
are generated from the stitch mesh and the �nal yarn geometry is com-
puted using a yarn-level relaxation process. �us, we produce topologically
valid models that can be used with a yarn-level simulation. We validate
our algorithm by automatically generating knit models from complex 3D
shapes and processing over a hundred models with various shapes without
any user input or parameter tuning. We also demonstrate applications of
our approach for custom knit model generation using fabrication via 3D
printing.

CCS Concepts: •Computing methodologies → Mesh geometry mod-
els;

Additional Key Words and Phrases: Yarn-level cloth, yarn-level modeling

ACM Reference format:
Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel.
2018. Stitch Meshing. ACM Trans. Graph. 37, 4, Article 130 (August 2018),
14 pages.
DOI: 10.1145/3197517.3201360

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2018/8-ART130 $15.00
DOI: 10.1145/3197517.3201360

1 INTRODUCTION
Kni�ed garments are common in our daily lives, going from socks
and T-shirts to winter clothing and accessories, and are thus ubiqui-
tous in movies and games. �ere are two good reasons for favoring
kni�ing over its alternatives: kni�ed fabrics easily stretch and the
shaping techniques used in kni�ing allow producing complex 3D
surfaces without any seams.

However, designing kni�ing pa�ern for a given 3D surface is
still an open problem. Kni�ing pa�erns are currently designed
using a high level of expertise and numerous iterations of trial and
error to �gure out how one could knit a particular 3D shape. �at
is why most kni�ing pa�erns used today are merely derivations
of a limited number of well-known and well-understood shapes.
In computer graphics, stitch meshes [Yuksel et al. 2012] provide a
powerful interface for modeling knit garments. However, they still
require users to manually design the topology of the given (typically
low-resolution) input mesh. �is requires the user to know exactly
how to knit the desired shape and prepare an input mesh accordingly.
�erefore, it is extremely di�cult and time consuming to design
kni�ed models for complex and uncommon shapes, like the ones
shown in Fig. 1, each of which would require numerous design
iterations by a kni�ing expert.

In this paper, we introduce the �rst automatic pipeline to deal with
this challenging problem: our method takes a 3D surface as input and
the desired stitch size, and automatically produces a topologically-
valid yarn-level knit model. �e resulting yarn-level model can be
either directly used in computer graphics applications with yarn-
level simulation or realized in the real world using 3D printing. �e
challenge we are tackling is the design of a dense network of closed,

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

130:2 • Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel

intertwined yarn curves which are not self-intersecting and hold
together thanks to the interlocked curves formed by kni�ed stitches.
�e problem is inherently global, i.e. a change in one stitch can
a�ect not only its neighborhood, but the entire shape.

We use stitch meshes [Yuksel et al. 2012] as an intermediate step
in our pipeline. We begin by converting the input 3D shape into
an isotropic quad-dominant mesh with approximately uniform face
sizes using a two-fold rotational symmetry (2-RoSy) orientation
�eld. �is process provides a good starting point that minimizes the
distortions of the �nal knit structure. �en, we automatically deter-
mine the kni�ing directions over the entire model surface using a
two-step global optimization process along with custom topological
operations. Finally, we subdivide the resulting mesh to generate a
valid stitch mesh. A�er the stitch mesh is ready, we can use it to
create the �nal yarn curves. Since the yarn-curves are topologically
valid, we can use them with yarn-level cloth simulations. Also, fab-
ricating them using 3D printing produces interlocked curves that
form �exible surfaces.

We show the e�ectiveness of our approach by automatically pro-
ducing yarn-level knit models for complex 3D shapes (Fig. 1) and its
robustness by generating stitch meshes from a large number of com-
plex 3D models. We also present yarn-level models automatically
generated using our pipeline and fabricated via 3D printing.

�is paper does not address the problems of fabrication via knit-
ting and the models we generate are not guaranteed to be kni�able.
Also, we assume that each stitch has a roughly square shape, while
in reality the height and width of a kni�ed stitch is o�en di�erent.

2 BACKGROUND
Before we discuss the details of our method, we brie�y overview
of modeling fabrics and knit structures as well as the stitch mesh
structure [Yuksel et al. 2012] that we use in our pipeline for repre-
senting the �nal yarn-level model. We also provide an overview of
prior works on quad-dominant remeshing.

2.1 Cloth Modeling
Much of the work in computer graphics involving cloth has been
aimed towards simulating woven fabrics using sheet-based repre-
sentations [Bara� and Witkin 1998; Breen et al. 1994; Bridson et al.
2002; Goldenthal et al. 2007; Grinspun et al. 2003; Volino et al. 2009].
�e modeling approaches for sheet-based cloth mainly concentrate
on ��ing garment models on virtual characters [Berthouzoz et al.
2013; Carignan et al. 1992; Decaudin et al. 2006; Guan et al. 2012;
Robson et al. 2011; Turquin et al. 2004; Umetani et al. 2011; Wang
et al. 2003]. 3D modeling approaches have also been used in virtual
garment prototyping [Luo and Yuen 2005; Volino and Magnenat-
�almann 2005]. To produce more complex cloth models, Mori and
Igarashi [2007] proposed a method for designing 3D plush toys by
sketching 2D pa�erns. More recently, cloth capturing methods us-
ing multi-view systems [Bradley et al. 2008], single images [Daněřek
et al. 2017; Zhou et al. 2013], 3D scans [Chen et al. 2015], and motion
sequences [Pons-Moll et al. 2017] have been shown to successfully
produce virtual garment models.

Akleman et al. [2009] introduced a method for converting arbi-
trary quad-meshes into plain-woven structures using graph rotation
systems. While this approach is similar in spirit to our method,

the knit structures we produce have entirely di�erent construc-
tions and requirements than plain-woven structures. 3D printing
is o�en paired with computational fabrication techniques. Meth-
ods to design and fabricate various structures, such as �exible rod
meshes [Pérez et al. 2015], ornamental curve networks [Zehnder
et al. 2016], and wireframe meshes [Wu et al. 2016] have been ex-
plored in prior work. Our method �ts in this trend, allowing the
automatic design of 3D printable complex knit structures.

Knit structures are constructed by pulling yarn loops through
other yarn loops to form stitches. Shaping techniques, such as
increases that pull multiple yarn loops through one yarn loop or
decreases that pull a yarn loop through multiple yarn loops, allow
forming complex 3D shapes without introducing seams. Due to the
properties of this construction, knit fabrics have low resistance to
stretching even if the yarn itself is not stretchable.

�erefore, more complex representations than sheet-based mod-
els are favored for knits. Nocent et al. [2001] used a continuum model
for simulating kni�ed cloth. Kaldor et al. [2008; 2010] introduced
yarn-level simulation methods for animating kni�ed cloth models.
Cirio et al. [2014] presented a reduced-order model for handling
yarn interactions, which is extended to support knit cloth [Cirio
et al. 2015, 2017]. Jiang et al. [2017] used the material point method
for handling yarn-level interactions.

On the other hand, designing yarn-level models for knits has been
a challenging problem. Meißner and Eberhardt [1998] introduced a
system to simulate the knit construction process with a simpli�ed
yarn-level model. Peng et al. [2004] introduced a texture-based
method to add yarn-level details to surface appearance. Igarashi
et al. [2008a] introduced a semi-automatic method for generating
knit models from an input 3D shape, which is manually segmented
into multiple patches of disks or disks with holes. �ey also pre-
sented a sketch-based modeling system for designing kni�ed plush
toys [Igarashi et al. 2008b]. McCann et al. [2016] recently proposed
a method to generate machine kni�ing instructions for kni�ing
3D models designed by their custom interface, which is limited to
simple primitives, such as tubes and sheets. Yuksel et al. [2012]
introduced the stitch mesh modeling framework. Stitch meshes
provide a mesh-based representation of the yarn-level knit geom-
etry and allow e�ciently designing complex 3D knit models with
correct yarn-level topology, such that they can be used with yarn-
level simulations. However, the stitch mesh modeling framework
heavily relies on the topology of the given input mesh, which must
be manually constructed, such that the edges align with the kni�ing
directions. �e pipeline we introduce in this paper is based on the
stitch mesh representation, so we provide a more detailed overview
below.

2.2 Stitch Meshes
�e stitch mesh structure [Yuksel et al. 2012] is an abstraction of the
yarn-level geometry that provides a powerful interface for modeling
knit structures. Each stitch-mesh face corresponds to a stitch of
the knit structure, shown in Fig. 2a. �ese faces are placed side-
by-side along the course kni�ing direction, forming rows (Fig. 2b).
Consecutive rows are connected along the wale kni�ing direction
(Fig. 2c). Each stitch-mesh face has two wale edges that are aligned
with the wale kni�ing direction. Most stitch mesh faces are quads

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

Stitch Meshing • 130:3

top course edge

bottom course edge

w
al

e
ed

ge

w
al

e
ed

ge
course direction

w
al

e
di

re
ct

io
n

course direction

w
al

e
di

re
ct

io
n

(a) stitch mesh face (b) faces on a row (c) multiple rows

Fig. 2. Stitch mesh representation: (a) a typical stitch mesh face
and the corresponding yarn-level model, (b) stitch mesh faces on a row,
(c) multiple rows of stitch mesh faces representing interlocked stitches
on consecutive rows.

with two wale edges and two course edges that are aligned with the
course kni�ing direction and separate the wale edges. �e yarn
used for kni�ing the stitch represented by a face enters the face
from one of the wale edges, forms the stitch, and then exists the
face from the other wale edge (green yarn curves in Fig. 2a). �e top
part of a yarn loop formed by the stitch in the previous row enters
and exits the face from the bo�om course edge (green yarn curves
in Fig. 2a). Similarly, the loop forming the stitch of a face exits and
enters the face from the top course edge, connecting it to the next
row.

Stitch mesh faces can have more than four edges. Faces with
multiple top course edges are called increases, as they increase the
number of stitches on the next row. Similarly, faces with multiple
bo�om course edges are called decreases. �e stitch mesh structure
also permits faces with no bo�om course edges or no top course
edges, but such faces must be placed with caution, since they do
not form stable stitches and placing them side-by-side may cause
the yarn-level model to unravel. �at is why we entirely avoid
such faces in our framework. Yet, this limitation has no practical
consequence, since the yarn-level models including such faces can
be represented di�erently. For example, a triangular face next to a
quad face can also be represented by a face with �ve edges.

2.3 Structured Meshing
�e generation of quadrilateral or quadrilateral-dominant meshes
has received a lot of a�ention in the last two decades. We restrict our
survey to the most recent works in global and local parametrization,
and we refer an interested reader to [Bommes et al. 2013] for a
complete survey.
Global parametrization methods [Alliez et al. 2002; Gu et al.

2002; Khodakovsky et al. 2003; Marinov and Kobbelt 2006] �a�en
the surface a�er cu�ing it into a topological disk, generate a regular
la�ice on the plane, and then li� it back to the original surface, pro-
ducing a structured mesh. To control edge alignment, it is possible
to solve an optimization that strive to align the parametrization
gradients to a guiding �eld [Bommes et al. 2009; Ebke et al. 2014;

Kälberer et al. 2007; Nieser et al. 2012]. Designing the guiding �eld
is a di�cult problem on its own [Crane et al. 2010; Hertzmann and
Zorin 2000; Jiang et al. 2015; Knöppel et al. 2013, 2015; Lai et al. 2010;
Palacios and Zhang 2007; Panozzo et al. 2014; Ray et al. 2008], and
we refer an interested reader to the recent state-of-the-art report
of Vaxman et al. [2016]. �ese methods �x the singularities of the
quadrilateral mesh during the orientation �eld design, and they
thus inevitably introduce distortion in the parametrization (since
the orientation �eld is not integrable [Diamanti et al. 2014]), which
results in quads of varying size. While this is not problematic for
most remeshing applications, it is not acceptable for stitch meshes,
since the size of stitch has to be uniform.

Local parameterization methods [Gao et al. 2017; Jakob et al.
2015; Ray et al. 2006; Sokolov et al. 2016] provide a radically di�erent
approach, where a perfectly isometric parametrization is computed
locally for every vertex/triangle of a surface. Local inconsistencies
between neighboring parametrizations, which are unavoidable since
exact isometry is enforced, lead to the introduction of non-quad
elements or T-junctions, producing hybrid meshes composed of a
majority of isotropic quadrilateral elements. �ese meshes are ideal
for our purposes, since they contain minimal distortions and they
produce approximately uniform face sizes.

Our remeshing algorithm is heavily based on the Robust Instant
Meshing (RIM) quad-dominant meshing pipeline of Gao et al. [2017].
In RIM, the orientation �eld is encoded as a unit vector a�ached to
every vertex, which is unique up to an integer rotation. �e position
�eld encodes a local isometric parametrization whose gradient is
aligned with the orientation �eld, i.e. it encodes a regular grid in
the tangent space. It is called position �eld, since the only available
degree of freedom is the origin of the grid (up to an integer trans-
lation), which is represented as a 3D point. �e position �eld can
be visualized as a new set of 3D coordinates for the vertices of the
input triangle mesh, that are mapping each vertex to the position of
the closest vertex of the output quadrilateral mesh. RIM extracts the
�nal quad mesh by collapsing the edges of the input mesh, using
the position �eld to identify which edges should be preserved as
�nal edges of the quad-dominant mesh, which edges are diagonals,
and which edges should be collapsed.

3 OVERVIEW
Our pipeline begins with an input model. Unlike the stitch mesh
modeling framework, however, we do not rely on the topology
of this input model. Instead we begin with remeshing the model
to produce a quad-dominant mesh. �en, we perform a series of
optimizations and topological operations to generate the kni�ing di-
rections over the mesh. Finally, we perform a subdivision operation
that produces a valid stitch mesh, and the �nal yarn-level model
can be easily created from this stitch mesh. Fig. 3 demonstrates the
individual steps of our pipeline that are listed below:

• Remeshing: Starting with a given input model, We gen-
erate an isotropic quad-dominant mesh that only contains
triangles and quads (Section 4).

• Labeling: We formulate a Mixed-Integer Programming
(MIP) problem and perform custom topological operations
to label each edge as a wale or course edge (Section 5).

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

130:4 • Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel

(a) Input Model (b) �ad-dominant Mesh (c) Labeled Edges

Remeshing Labeling
K. Direction
Assignment

(d) Mesh with Kni�ing Directions (e) Stitch Mesh (f) Final Yarn-Level Model

Stitch Mesh
Generation

Relaxation &
Yarn Generation

Fig. 3. The overview of our pipeline: (a) an arbitrary input 3D model is converted into (b) an isotropic quad-dominant mesh with only quads
and triangles via remeshing. �en, (c) the edges of the mesh are labeled, and (d) kni�ing directions over the surface are determined (arrows showing
the wale kni�ing direction on each face). Finally, (e) a stitch mesh is generated and (f) the �nal yarn-level model is produced from the stitch mesh
via relaxation and yarn generation operations.

• Knitting Direction Assignment: We determine the knit-
ting (wale) direction based on the edge labels by solving
another optimization problem (Section 6).

• Stitch Mesh Generation: �e stitch mesh is formed via a
subdivision operation that considers the kni�ing directions
and edge labels (Section 7).

• Relaxation and Yarn Generation: We perform mesh-
based relaxation and then generate the yarn-curves from
the stitch mesh (Section 8). �e �nal yarn-level model is
produced via yarn-level relaxation.

�is process allows us to produce a yarn-level knit model starting
with an arbitrary 3D shape. No user interaction is required at any
step. We describe each one of these steps in detail in the following
sections.

4 REMESHING
�e requirements for producing valid stitch meshes are di�erent
from traditional FEM applications. Stitch meshes are quad-dominant
meshes that must satisfy two requirements:

(1) Topology Requirement: It must be possible to separate
the faces into groups of rows, such that the kni�ing direc-
tions are aligned along edges (Fig. 2c),

(2) Geometry Requirement: All faces must have approxi-
mately the same size.

�e �rst requirement ensures the existence of a valid set of kni�ing
pa�erns for the faces, while the second models the physical con-

straint that the stitch size is constant and thus the stitch mesh faces
need to have a homogeneous size.

Stitch meshes contain two primary directions (course and wale)
that are roughly perpendicular to each other over the entire mesh.
�erefore, a 2-RoSy �eld, which produces a 2-colorable mesh [Lei
et al. 2017], provides a suitable topological construction for gener-
ating stitch meshes, where one of the primary directions is later
aligned with the �eld. A more typical 4-RoSy �eld, on the other
hand, leads to directional misalignments that require additional
topological operations to resolve them. However, 2-RoSy �elds are
rarely used in other applications, since their singularities induce
large geometric distortions: a low-order 2-RoSy �eld singularity can
be approximated by 2 quads, which necessarily have �at angles, and
introduce large distortions in the neighboring regions. Fortunately,
this is not a problem for stitch meshes, since stitches near singulari-
ties naturally deform, making modern �eld-guided, quad-dominant
pipelines ideal for our purpose.

We extend the RIM [Gao et al. 2017] quad-dominant meshing
pipeline to produce meshes that satisfy (in a so� sense) the require-
ments of stitch meshes. Our method for orientation and position
�eld generation is identical to RIM, with the exception of using a
2-RoSy symmetry instead of a 4-RoSy symmetry, which is a trivial
modi�cation. RIM automatically adds T-junctions and triangles to
ensure a uniform mesh element size, which satis�es our geometry
requirement. �e mesh extraction part is modi�ed to restrict the
non-quad elements to be either pentagons (using T-junctions) or

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

Stitch Meshing • 130:5

triangles. We implemented this as a postprocessing step, which is
applied a�er the extraction procedure of RIM, using:

(1) For each triangle, we pick the edge whose opposite angle
is closer to 90 degrees (excluding the edges corresponding
to sharp features, identi�ed by a negative dot product be-
tween the normal of the two incident faces) and mark it as
a diagonal, encouraging the extraction algorithm to merge
it with the neighboring elements, if possible.

(2) We split each polygon with more than 5 sides by adding
the edge that is most aligned with the orientation �eld. �e
spli�ing is done recursively until all subpolygons have less
than 5 sides.

�ese operations are interleaved with the extraction algorithm in
RIM, until no changes to the �nal mesh are made in one iteration.
To complete the pipeline, each pentagon (T-junction) is split into 3
triangles, connecting the T-junction with the two vertices on the
opposite side. As a result, at the end of our remeshing step we get
a quad-dominant mesh that contains a relatively small number of
triangles.

5 LABELING
Labeling helps us determine the kni�ing directions over the mesh
surface. Similar to stitch mesh modeling, our goal is to label each
edge as a wale edge or a course edge.

Our labeling process begins with representing each edge as two
half-edges, each belonging to one of the two faces sharing the edge.
Obviously, border edges that are used by a single face would only
have a single half-edge. We label each half-edge, following certain
rules that will allow us to de�ne valid kni�ing directions over the
surface (Section 5.1). �is process involves solving an optimization
problem that would minimize the number of edges with con�ict-
ing half-edge labels. �us, we �nd a valid half-edge labeling that
maximizes the number of edges with consistent half-edge labels.
�en, we assign the edge labels by resolving the half-edge label-
ing con�icts using simple topological modi�cations (Section 5.2).
Finally, we perform post-processing operations to ensure that we
have desirable �nal edge labels and mesh topology (Section 5.3).

5.1 Labeling Half-Edges
Our half-edge labeling must follow certain rules, so that the resulting
labels de�ne valid kni�ing directions over the surface. �us, we can
only permit a limited number of con�gurations for labeling.

Each quad face must have two wale edges and two course edges.
Also, wale edges must be separated by course edges. �erefore, the
only acceptable combination of labeling for quad faces is the one
shown in Fig. 4a.

Our �nal stitch meshes do not contain triangles, but we do have
triangles at this intermediate step. When labeling triangles, we
cannot permit all edges of a triangle to be labeled as course edges,
because this would prevent building stitches within the triangle,
e�ectively turning the triangle into a hole. Similarly, we cannot
permit labeling all edges of a triangle as wale edges either, since this
would also prevent building stitches within the triangle. �erefore,
the only two labeling alternatives we can permit for triangles include
either one wale edge or one course edge, as shown in Fig. 4b-c.

(a) (b) (c)
Fig. 4. Valid half-edge con�gurations for quad and triangle faces.
Course half-edges are colored as red and wale half-edges are colored
as green.

Following these labeling rules for quads and triangles shown in
Fig. 4 as hard constraints, we label each half-edge in a way that
would minimize the number of edges with inconsistent half-edge la-
bels. We achieve this by representing the half-edge labeling problem
as a mixed integer programming problem.

Let `ei0 and `ei1 represent the labels of the two half-edges for the
edge ei with index i . We assign them integer values 0 or 1 to indicate
labels wale or course, respectively. �ese labels can also be accessed
using face indices, such that `fj0 , `fj1 , `fj2 , and `fj3 are the four half-
edge labels of a quad face fj with index j . �us, if ei is the �rst edge
of fj and fj is the �rst face of ei , we can write `ei0 = `

fj
0 . Using this

notation, our optimization problem can be wri�en as

minimize
n−1∑
i=0
(`ei0 − `

ei
1)

2

subject to

for each quad face fj , `
fj
0 = `

fj
2 , `

fj
1 = `

fj
3 , `

fj
0 , `

fj
1

`
f j
k ∈ {0, 1}, k = 0, 1, 2, 3

and for each triangle face fj , 1 ≤ `fj0 + `
fj
1 + `

fj
2 ≤ 2

`
fj
k ∈ {0, 1}, k = 0, 1, 2

where n is the number of non-border edges. Note that since `fj0
and `fj1 can only be 0 or 1, `fj0 , `

fj
1 is modeled as `fj0 + `

fj
1 = 1.

�e constraints ensure that quad and triangle faces use one of the
valid half-edge con�gurations. We solve this optimization problem
using branch-and-bound that returns a solution with the minimum
number of edges that contain con�icting half-edge labels.

In most cases the resulting labeling would contain edges with
inconsistent half-edge labels, such that `ei0 , `

ei
1 for some edges ei .

In fact, around certain types of singularities, we are guaranteed to
have inconsistent half-edge labels. In particular, vertices with odd
valance that are surrounded by quad faces, such as the example
in Fig. 5, would have at least one edge with inconsistent half-edge
labels. �erefore, before we solve the optimization problem, we
triangulate the faces surrounding singularities containing vertices
with odd valence. �is provides additional �exibility in assigning
half-edge labels around such singularities and makes it possible to
label the half-edges around them consistently. At the end of the
labeling process, we can recover some of these triangulated quads
via our post-processing operations (Section 5.3).

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

130:6 • Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel

(a) (b)

(c) (d) (e)

Fig. 5. Triangulation near singularities: (a) singularities con-
taining vertices with odd valance lead to (b) inconsistently labeled
half-edges; therefore, (c) we �rst triangulate the quads near such sin-
gularities to provide more �exibility during half-edge labeling, and
then (d) such triangles can be merged at the end of the labeling process.

5.2 Labeling Edges
A�er we label the half-edges, we can label all edges with consistent
half-edge labels. Edges with inconsistent half-edge label, however,
require topological modi�cations to the mesh. �ere are three al-
ternatives that are handled di�erently: an edge with inconsistent
half-edge labels might be between two quads, a quad and a triangle,
or two triangles.

Fig. 6. Triangulation of quad faces: (top) the two valid con�gu-
rations for labeling half-edges of triangles can be used for representing
(bo�om) all possible con�gurations for labeling half-edges of quads.

Fig. 7. Spli�ing quad faces: (le�) if an edge with inconsistent half-
edge labels is between two quad faces, (right) the face with the wale
half-edge label is split into two triangles.

If an edge with inconsistent half-edge labels is between two quads,
we label the edge as a course edge, then split the quad with the
wale half-edge label into two triangles. �e alternative of labeling
the edge as a wale edge and spli�ing the other quad is also an
acceptable solution, but this would split the row on one side of the
edge (since neighboring quad faces sharing wale edges form rows),
so we prefer the other alternative. A quad can be split into two
triangles in two di�erent ways along either one of its diagonals.
�ey produce similar results, so we randomly pick one diagonal.
Once we split a quad into two triangles, any possible half-edge

labeling con�guration can be represented by combinations of the
two triangle labeling con�gurations we permit, as shown in Fig. 6.
�erefore, while assigning the half-edge labels for these two new
triangles, we make sure that they do not contain other edges with
inconsistent half-edge labels. �us, we simply use the half-edge
labels on the other sides of their edges. An example of this operation
is shown in Fig. 7, where one of the quad faces sharing an edge
with inconsistent half-edge labels is split into two triangles and
the half-edge labels of the new triangles are assigned such that the
triangles do not contain edges with inconsistent labels.

If an edge with inconsistent half-edge labels is between a quad
and a triangles, we split the quad face. Again, we can use either
one of the diagonals for spli�ing the quad face. Similarly, we make
sure that the two new triangles do not contain other edges with
inconsistent half-edge labels.

Fig. 8. Rotating edges between triangle pairs: (le�) if an edge
with inconsistent half-edge labels is between two triangles, (right) the
edge is rotated.

If an edge with inconsistent half-edge labels is between two tri-
angles, we rotate the edge, as shown in Fig. 8, and we label the
rotated edge as a course edge. Note that labeling the rotated edge
as a course edge is guaranteed to form two valid triangle con�gu-
rations on either side of the edge. �is is because the shared edge
between two triangles can have inconsistent half-edge labels only
when the other half-edges of one triangle are labeled as course and
other half-edges of the other triangle are labeled as wale. Otherwise,
the optimization process for assigning the half-edge labels would
have resolved the inconsistency in half-edge labeling.

Note that none of these topological operations lead to new incon-
sistencies in half-edge labeling. �erefore, all edges can be labeled
in a single pass without the need for multiple iterations.

5.3 Post-Processing
Our post-processing operations involve pairs of neighboring tri-
angles. If the edge labels of a pair of neighboring triangles are
such that merging them into a quad by removing the common edge
between them would lead to a quad with an acceptable labeling
con�guration (as in Fig. 4a), we merge the two triangles into a quad.
An example of this operation is shown in Fig. 9. �is operation
reduces the number of triangles and unnecessary complexity in
the �nal knit structure. Such pairs of triangles commonly appear

Fig. 9. Merging triangles: (le�) if removing an edge between two
triangles would lead to a quad with valid labeling, (right) we merge
the two triangles.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

Stitch Meshing • 130:7

around singularities containing a vertex with an odd valence, since
we triangulate the quad faces around such singularities before la-
beling the half-edges. �us, this operation can recover some of the
quad faces around those singularities. Yet, such pairs of triangle
can appear on other parts of the model as well. In particular, the
triangulation process used for labeling edges can also produce such
triangle pairs, which are converted to quads in this step.

Fig. 10. Merging triangles a�er flipping the label of a course
edge: (le�) two pairs of triangles separated by a course edge are labeled
such that (middle) �ipping the label of the course edge allows (right)
merging the triangles into quad faces.

In some cases �ipping the label of a course edge between two
triangles can allow merging these triangles with other neighboring
triangles, as shown in Fig. 10. �erefore, we scan course edges
between pairs of triangles with at least one of them connected to
another triangle and check if �ipping the edge label would allow
merging the nearby triangle into quads. If so, we �ip the edge label
and merge the triangles.

Finally, we consider pairs of neighboring triangles sharing an
edge labeled as a wale edge. If both triangles of such an edge have
other edges labeled as wale edges and that merging them would
not lead to a quad face with a valid con�guration, we �ip the label
of the shaded edge to a course edge. �e reason for this operation
becomes more clear a�er discussing the subdivision operation that
generates the �nal stitch mesh (Section 7). �is is because if the
common edge label for this particular pair of triangles is kept as
a wale edge, the resulting stitch mesh would contain triangular
stitch-mesh faces that cannot always be safely eliminated, which
may result in unstable stitches that would unravel during yarn-level
simulation.

6 KNITTING DIRECTION ASSIGNMENT
A�er labeling the edges, we must determine the kni�ing directions
over the model surface. On each face the course and wale kni�ing
directions are aligned with the course and wale edges, respectively.
We can arbitrarily pick either one of the two possible course direc-
tions (i.e. le�-to-right or right-to-le�), since a stitch can be formed
using either direction. �e choice for the wale directions, however,
is not arbitrary, since it determines which course edges of a face are
the bo�om course edges and which ones are the top course edges.

We would like the wale direction to be uniform over the entire
model. �is means that if an edge is treated as a bo�om course edge
for one face, the other face sharing the edge should treat it as a top
course edge. �is aligns the wale kni�ing directions for the two
faces. However, we cannot enforce this as a hard constraint, because
some shapes would require having mismatched wale directions
in certain places, depending on how the knit structure form the
surface. �erefore, we perform another optimization that provides
a solution with the minimum number of course edges that are along
mismatched wale directions.

L
L

0
1

20

3

1
8

9
2

4

5

L
L

0
1

L
L

0
1

L
L

0
1

L
L

0
1

Fig. 11. An example meta-graph: (le�) mesh with separate rows
colored di�erently, and (right) its meta-graph.

Note that in our labeling each quad face is assigned exactly two
wale edge and each triangle can have one or two wale edges. �ere-
fore, a group of edges connected with wale edges form a string of
faces that we call a row. Each row can either form a closed loop or it
can begin and end with two triangle faces, each with a single wale
edge. Each face belongs to a single row and neighboring rows are
separated by course edges.

One hard constraint for this optimization is that the wale direc-
tions of two neighboring faces sharing a wale edge must be aligned.
Otherwise, the resulting wale directions would not form a valid
stitch mesh. �is means that the wale direction along each row
must be consistent. �erefore, instead of formulating the optimiza-
tion problem for determining the wale directions per face, we can
reduce the dimensionality of the problem by formulating it per row
of faces. We achieve this by building a meta-graph of the mesh, such
that each row of the mesh corresponds to a node of the meta-graph.
An example meta-graph generated from a mesh is shown in Fig. 11.
Two nodes of the meta-graph are connected to each other via undi-
rected weighted edges, if the rows that correspond to these nodes
have common course edges. �e number of common course edges
determine the weight of the edge. Each node of the meta-graph
contains two halves: one half corresponds to the group of course
edges on one side of the row and the other half corresponds to the
group of course edges on the other side. �us, the edges between
nodes connect one half of a node to one half of another node.

We formulate a similar mixed integer programming problem
on the meta-graph. �e two halves of each meta-graph node are
labeled as either top or bo�om, indicating that the course edges
corresponding to those halves are either top course edges or bo�om
course edges. Let LMr

0 and LMr
1 represent the labels of the two

halves of a meta-graph node Mr with index r . We assign them
integer values 0 and 1 to indicate top or bo�om labels, respectively.
�e same indices can also be accessed using the edges of the meta-
graph, such that LEs0 and LEs1 are the labels of the two meta-graph
node halves that are connected by the meta-graph edge Es with
index s . Using this notation, we can write the optimization problem
that minimizes the number of course edges with mismatched wale
directions as

minimize
N−1∑
s=0

Ws
(
1 − (LEs0 − L

Es
1)

2)
subject to For meta-graph node Mr ,L

Mr
0 + LMr

1 = 1

LMr
k ∈ {0, 1}, k = 0, 1,

where N is the number of meta-graph edges andWs is the weight
of the edge Es (i.e. the number of course edges between the two

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

130:8 • Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel

rows). �e constraint LMr
0 + LMr

1 = 1 ensures that the two halves
of the node Mr are assigned di�erent labels. We solve this problem
using branch-and-bound. Since the meta-graph contains a relatively
small number of nodes (as compared to the number of faces), this
optimization can be solved e�ciently.

7 STITCH MESH GENERATION
�e resulting mesh a�er assigning the kni�ing directions can be
directly used as a stitch mesh. However, it contains triangle faces,
which are undesirable. In particular, each triangle face with a single
wale edge, marking the beginning or ending of a row, would lead
to a knot in the yarn-level model. To avoid this, we perform a
subdivision operation, similar to Catmull-Clark subdivision [Yuksel
et al. 2012], which converts each quad face into four quads and each
triangle face into three quads.

(a) (b) (c)
Fig. 12. Subdivision rules for (a) quad faces, (b) triangle faces with
two wale edges, and (c) triangle faces with two course edges.

�ere are three cases to consider for labeling the new edges gen-
erated by the subdivision operation, as shown in Fig. 12. �ad faces
form four regular quads. Triangle faces, however, form two regular
quads and one special quad with a di�erent labeling con�guration,
where wale edges are not separated by course edges. We handle
these quad faces with di�erent labeling con�guration di�erently.

Triangles with two course edges form a special quad with one
bo�om course edge and one top course edge. Such quads mark the
beginnings and endings of stitch mesh rows. �erefore, they are
handled di�erently than other stitch mesh faces when generating
the yarn curves, as explained in Section 8.

Triangles with two wale edges, however, form a special quad
with either two bo�om course edges or two top course edges. Such
quads do not correspond to a valid stitch; therefore, we eliminate
them. We begin with triangulating these quads by spli�ing them
with a diagonal wale edge that forms two triangles, each with a
single course edge. Finally, we merge these two triangles with the
quad faces on either side, forming pentagons that represent either
increase or decrease type stitches. Note that our post-processing
a�er labeling edges (Section 5.3) ensures that there is always a quad
face next to these triangles, since we do not permit having two
triangles with two wale edges side-by-side, sharing a wale edge.

Fig. 13 shows an example row that is subdivided into a stitch
mesh. Special quad faces appear on either ends of the row as well
as the top center of the row, which are handled di�erently. Note
that a�er the subdivision operation, all rows of the resulting stitch
mesh form closed loops with no end points.

8 RELAXATION AND YARN GENERATION
Before we generate the yarn curves from the stitch mesh, we per-
form mesh-based relaxation [Yuksel et al. 2012] . While the initial
remeshing step provides a good starting point that results in faces

(a) (b)

(c) (d)
Fig. 13. Stitch mesh generation: (a) the faces on each row are
(b) subdivided into quad faces; (c) the face at the center with two
bo�om course edges is triangulated; and �nally (d) the triangles are
merged with the neighboring quad faces.

with approximately the same size over the entire model, due to the
topological operations we perform during labeling and stitch mesh
generation, an optional mesh-based relaxation step can provide
some minor improvement in unifying the edge lengths and mini-
mizing the deformation of quad faces. Fig. 14 demonstrates zoom in
view of “fertility” model before and a�er mesh-based relaxation.

(a) Before Relaxation (b) A�er Relaxation
Fig. 14. Mesh-based relaxation: (a) stitch mesh before mesh-based
relaxation, and (b) stitch mesh a�er mesh-based relaxation.

(a) (b) (c) (d)
Fig. 15. Stitch types: (a) regular quads, (b) increases, (c) decreases,
and (d) special quads.

�e stitch mesh models we generate have four di�erent types
of faces: (1) regular quad faces, (2) pentagon faces representing
increases, (3) pentagon faces representing decreases, and (4) special
quad faces marking row ends. For regular quad faces, we generate
yarn curves of a knit stitch (k), shown in Fig. 15a. Pentagon faces
representing increases use a knit followed by a purl that are pulled
through the same loop (kp), as shown in Fig. 15b. Pentagon faces
representing decreases use a knit stitch that is pulled through two
loops (d12k), as shown in Fig. 15c. Finally, special quads that mark
the end of the rows simply connect the yarn of the course edges
together and the wale edges together, as in Fig. 15d. Note that the
stitch mesh representation allows replacing these stitches with other
stitch types, if desired. However, this would require manual stitch

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

Stitch Meshing • 130:9

STD 0.77 STD 0.36 STD 0.22 STD 0.13 STD 0.06

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

Fig. 16. Yarn-level knit structures generated from the “bunny” model with three di�erent resolutions: 1.3K, 4K, 7K, 16K, and 48K stitches.

Fig. 17. Yarn-level knit structure for the Armadillo model with high-
curvature areas around the ears, the tail, the �ngers, and the toes.

mesh editing, so we simply use the corresponding stitch type in
Fig. 15 for all faces.

9 RESULTS
Fig. 1 shows complex 3D models that are automatically converted
to yarn-level knit structures using our pipeline. Notice that the re-
sulting yarn-level models have uniform stitch sizes over the model
surfaces. Our pipeline supports high genus surfaces, as demon-
strated in Fig. 3f. We can also handle models with high-curvature
areas, such as the example in Fig. 17.

�e surface details preserved in the �nal yarn-level model de-
pends on the resolution of the generated stitch mesh. Fig. 16 shows
the “bunny” model with �ve di�erent resolutions. While all �ve re-
sults are valid stitch meshes with uniform stitch sizes, only the one
with the highest resolution captures the small-scale details of the in-
put surface. Notice that representing small-scale surface details also
introduce additional singularities that are needed for shaping the
kni�ed model. On the other hand, using low-resolution remeshing
loses surface details during the remeshing step.

Yet, if the input model does not have small-scale features, a low-
resolution model generated using our framework can produce ac-
ceptable results. An example low-resolution model with a reason-
ably complex shape is shown Fig. 18.

Even CAD models with sharp features can be processed by out
pipeline (Fig. 19): the sharp features of the input model are partially
smoothed due to the relatively low resolution of the yarn-level

(a) (b) (c) (d)
Fig. 18. Low-resolution stitch mesh and the yarn-level model gener-
ated using the “sculpt” model: (a) the input shape, (b) the stitch mesh,
and (c-d) two views of yarn-level knit model.

model, but the overall shape is preserved. Notice that when using
an intrinsic orientation �eld (Fig. 19a), the kni�ing directions are
not aligned with the surface details [Huang and Ju 2016; Jakob et al.
2015]. Using an extrinsic orientation �eld instead (Fig. 19b) makes
the kni�ing directions of the �nal model follow the surface details
be�er, but it also introduces additional singularities to align the
orientation �eld with the model features. �erefore, the yarn-level
models in Figures 1, 3, 17, and 16 are generated using an intrinsic
orientation �eld.

Our pipeline can also be used with custom orientation �elds, to
provide additional control over the �nal kni�ing directions. Fig. 20
shows the stitch meshes and the �nal yarn-level model generated
from the same input shape using both the intrinsic orientation �eld
and a custom orientation �eld, generated with a small set of user-
de�ned strokes. �e stroke compete with the �eld smoothness,
leading to a small increase in the number of irregularities in the
kni�ing pa�ern.

Edge Lengths. We present the distribution of the stitch mesh edge
lengths a�er mesh-based relaxation as histograms in Fig. 16, 19,
and 20. �e standard deviation (STD) of edge lengths mainly de-

(a) (b)

STD 0.23 STD 0.21

0.5 1 1.5 0.5 1 1.5

Fig. 19. Yarn-level “rocker arm”model generated using (a) an intrinsic
orientation �eld and (b) an extrinsic orientation �eld.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

130:10 • Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel

(a) intrinsic orientation �eld (b) custom orientation �eld

STD 0.10 STD 0.09

0.5 1 1.5 0.5 1 1.5

Fig. 20. Stitch meshes and yarn-level knit models generated using
(a) the default orientation �eld, and (b) user-de�ned orientation �eld
with orientation constraints interactively drawn on the model surface.

pends on the mesh resolution a�er remeshing, rather than the type
of orientation orientation �led used. �e variations on edge lengths
are mostly introduced due to singularities and stitch size variations
around singularities. Note that such variations on stitch sizes near
singularities also appear in real-world kni�ing.

Performance. �e performance results of our pipeline for gener-
ating various yarn-level models that are presented in this paper are
shown in Table 1. Notice that most of the steps in our pipeline can
be computed within several seconds to a few minutes, depending
on the size and complexity of the input model and the resolution
of the output model. However, a�er we generate the yarn curves,
the yarn-level relaxation step that produces the �nal yarn curve
shapes can take hours. Aside from the relaxation operations, the

0

5

10

15

0 4K 8K 12K 16K 20K

bunny

fertility

quad-dominant mesh face count

ha
lf-

ed
ge

 la
be

lin
g

tim
e

pe
r

fa
ce

 (m
s)

Fig. 21. Half-edge labeling time per face for di�erent quad-dominant
mesh resolutions. �e �nal stitch meshes for the lowest and highest
resolution examples in the graph are shown on the right.

most expensive component of our pipeline is the optimization we
use for labeling the half-edges. Fig. 21 shows half-edge labeling time
per face for di�erent quad-dominant mesh resolutions, indicating
that computation time per face increases with mesh resolution and
it depends on the topological complexity of the mesh.

�e two-step optimization for labeling and direction assignment
(Sections 5 and 6) is the key to the e�ciency of our algorithm.
We experimented with an integrated optimization tackling jointly
both problems, and observed that the larger solution space of the
combined optimization dramatically increases the computational
requirements. On the 16K “bunny” model (Fig. 16), the combined
optimization �nished the 16GB of available memory a�er 40 minutes
of computation and started thrashing. In comparison, our two-
step solution takes 24 seconds for half-edge labeling and less than
a second for kni�ing direction assignment. While it is possible
that the combined optimization could produce results with fewer
mismatched kni�ing directions, our two-step optimization provides
superior computational performance and lower memory usage.

Table 1. The computation performance measurements for the steps of our pipeline.

Input # Mesh # Stitch Remesh Labeling K. Direction Stitch Mesh Mesh-based Yarn Yarn-level
Faces Faces Faces Assignment Gen. Relaxation Gen. Relaxation

Rocker Arm (Fig.19a) 62K 2,018 7,880 2 s 8 s 99 ms 593 ms 12 s 18 ms 2 hr
Rocker Arm (Fig.19b) 62K 2,037 7,790 2 s 4 s 127 ms 583 ms 9 s 22 ms 2 hr
Chinese Lion (Fig.1) 100K 3,495 13,606 4 s 19 s 198 ms 1,049 ms 18 s 39 ms 2 hr*
Ki�en (Fig.1) 100K 3,690 14,460 4 s 16 s 124 ms 1,083 ms 16 s 37 ms 3 hr
Dragon (Fig.1) 104K 4,218 16,458 4 s 26 s 370 ms 1,234 ms 53 s 35 ms 4 hr*
Horse (Fig.20a) 134K 4,640 18,172 6 s 17 s 159 ms 1,297 ms 25 s 55 ms 2 hr
Horse (Fig.20b) 134K 4,655 18,160 6 s 18 s 306 ms 1,311 ms 45 s 52 ms 2 hr
Elephant (Fig.1) 299K 4,791 18,686 13 s 26 s 237 ms 1,421 ms 28 s 51 ms 2 hr
Fertility (Fig.3) 167K 4,979 19,490 8 s 32 s 192 ms 1,495 ms 46 s 54 ms 1 hr*
Armadillo (Fig.17) 280K 6,591 25,734 13 s 58 s 567 ms 1,963 ms 88 s 77 ms 2 hr*
Bunny (1.3K) (Fig.16) 111K 353 1392 4 s 2 s 45 ms 119 ms 6 s 4 ms ¡1 hr
Bunny (4K) (Fig.16) 111K 1059 4124 4 s 2 s 66 ms 315 ms 8 s 12 ms ¡1 hr
Bunny (7K) (Fig.16) 111K 1,821 7,090 4 s 2 s 131 ms 550 ms 10 s 19 ms 1 hr*
Bunny (16K) (Fig.16) 111K 4,003 15,704 5 s 16 s 147 ms 1101 ms 12 s 45 ms 2 hr
Bunny (48K) (Fig.16) 406K 12,195 48,096 37 s 84 s 399 ms 3526 ms 130 s 159 ms 3 hr*

�e computation times are generated using a computer with Intel Core i7 6700HQ CPU @ 2.60 GHz with 16 GB RAM.
* Yarn-level relaxation timings are generated using a computer with Intel Core i7 3930K CPU @ 3.20 GHz with 32 GB RAM.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

Stitch Meshing • 130:11

Fig. 22. Stitch meshes generated by our fully automatic pipeline using an extrinsic orientation �eld.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

130:12 • Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel

(a) [Gao et al. 2017]
115 inconsistencies

(b) 4-rosy
130 inconsistencies

(c) 2-rosy
52 inconsistencies

(d) 2-rosy with triangulation
22 inconsistencies

Fig. 23. Comparison of di�erent methods for orientation �eld generation: and the number of inconsistent edge labels they produce a�er
half-edge labeling, showing (a) [Gao et al. 2017], (b) our method with a 4-RoSy �eld, (c) our method with a 2-RoSy �eld, and (d) our method with a
2-RoSy and triangulated singularities. Note that di�erent methods create inconsistencies on the di�erent parts of the model surface as highlighted,
but the 2-RoSy �eld leads to fewer inconsistencies, especially when combined with triangulated singularities.

Fig. 24. Example frames from a yarn-level simulation of a bunny
model deforming under gravity.

Robustness. We demonstrate the robustness of our pipeline by
automatically processing a collection of 104 models (Fig. 22). �e
set includes models with high genus, sharp features, and thin parts,
and our algorithm generated a valid stitch mesh model with roughly
uniform face sizes for all of them models.

Remeshing and Labeling. We compare di�erent methods for gener-
ating quad-dominant meshes in Fig. 23, measuring the quality using
the number of inconsistencies produced a�er labeling half-edges,
which correspond to irregularities in the stitch-mesh. Directly using
RIM [Gao et al. 2017] or our modi�ed method with a 4-RoSy �eld,
we get a large number of inconsistent edge labels. Switching to a
2-RoSy �eld greatly improves the quality, but still struggles due to
the topology of the mesh near some singularities. Triangulating
the neighborhood of singularities before labeling the half-edges,
enlarges the solution space and allows our optimization to substan-
tially reduce the number inconsistent edge labels. We used the
parallel Gurobi solver [Gurobi Optimization 2016] (with 8 threads)
to solve the MIP problems for labeling and direction alignment .

Simulation. We produce valid stitch meshes and, therefore, yarn-
level models with topologically correct kni�ed structures. All our
models can be directly used for yarn-level simulation. Fig. 24 shows

Fig. 25. An octopus wearing a kni�ed sweater: (le�) simulated model
and (right) fabricated via 3D printing.

example frames from an animation of a bunny model deforming
under gravity computed using a yarn-level simulation. Notice that
all stitches remain intact during the simulation.

Fabrication via 3D printing. We show a 3D printed yarn models in
Fig. 25: the sweater is made of black nylon, and it has been printed
in nylon using Fused Deposition Modeling and a water-soluble
supporting material (Polyvinyl Alcohol). A clip documenting the
fabrication procedure using the “Ultimaker 3” [Ultimaker 2018]
printer is a�ached in the additional material. Since nylon is a sti�
material, the sweater is only mildly �exible and it does not collapse
under its weight. �is fabrication method is a�ordable, enabling
the production of interesting decoration and lightweight physical
realizations of 3D shapes using commodity 3D printers.

We also prototyped a design pipeline for tailored gloves, com-
bining this fabrication method with a 3D scanning pipeline (David
3D Scanner [DAVID 2018]), shown in Fig. 26. First, the user’s hand
is scanned; then, a desired part is manually selected and enlarged;
�nally, the model is automatically transformed into a yarn model
by our method and printed, leading to wearable nylon glove. �e
comfort and �exibility of the �nal model depends on the material
used for printing.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

Stitch Meshing • 130:13

(a) (b) (c)
Fig. 26. Our method used for designing a custom ��ed glove: (a) the
hand model acquired using a structured light 3D scanner, (b) the
simulated model, and (c) 3D printed glove.

Finally, we present a knit bunny model printed using selective
laser sintering (Fig. 27). �e fabricated model is �exible and robust,
as shown in the supplementary video.

10 CONCLUSION AND FUTURE DIRECTIONS
We have introduced a fully automatic method for converting arbi-
trary 3D shapes into knit structures, starting with quad-dominant
mesh generation, followed by a two-step optimization process and
topological operations that generate a valid stitch mesh. We have
demonstrated the e�ectiveness of our approach with complex knit
models generated using our pipeline and the robustness of our
method by processing a large number of di�erent 3D models. �e
yarn-level models we produce are guaranteed to have valid knit
topologies and they are ready to be used with yarn-level simulations.
To our knowledge, this is the �rst fully automatic method that can
produce yarn-level knit model for arbitrary 3D shapes.

One important limitation of our approach is that �ne-scale details
of the input surface may not be properly represented in the �nal knit
model, unless a high-enough resolution stitch mesh is generated.
Since we rely on stitch meshes, we share the limitations of the stitch
mesh representation. In particular, we cannot produce multi-layer
knit structures that are used for colored kni�ing pa�erns.

Even though we generate valid yarn-level models, they are not
ready to be fabricated via typical kni�ing operations. Extending
our approach to automatically produce kni�able structures would
be an interesting direction for future work. In addition, Generating
machine kni�ing instructions for fabricating such models using
industrial kni�ing machines could greatly expand the potential
applications of our approach [McCann et al. 2016], but this may
require additional considerations to incorporate possible limitations
of kni�ing machines into our optimizations.

Our current remeshing method can generate isotropic quad-
dominant meshes by assuming each quad-shaped stitch face would
ideally be square. However, in reality the ratio between the width
and height of stitches can vary depending on the yarn type, the
needle size, and the details of the kni�ing operations. It would be an
interesting future direction to investigate variations of our pipeline
that generate rectangular stitch mesh faces with a user-speci�ed
aspect ratio.

�ough our method allows custom orientation �elds to be used
to provide additional control over the �nal kni�ing direction, au-
tomatically generating an optimal orientation �eld for minimizing
singularities or providing a be�er representation of the input shape

Fig. 27. A kni�ed “bunny” model generated with our pipeline and
printed using selective laser sintering.

would be an interesting direction for future work. Our implemen-
tation does not support non-orientable surfaces, such as a Mobius
strip, but our approach can be easily extended to handle them.

ACKNOWLEDGMENTS
We thank nTopology for fabricating the bunny model, Nghia Truong
for his help with rendering the results, Jonathan M. Kaldor for the
yarn-level simulation code, Manuel Vargas for the volume gener-
ation code. All results are rendered using MITSUBA. �is work
was supported in part by NSF grant #1538593, NSF CAREER award
IIS-1652515, and a gi� from Adobe. �is work was also supported
in part by the NYU IT High Performance Computing resources,
services, and sta� expertise.

REFERENCES
Ergun Akleman, Jianer Chen, Qing Xing, and Jonathan L. Gross. 2009. Cyclic Plain-

weaving on Polygonal Mesh Surfaces with Graph Rotation Systems. ACM Trans.
Graph. 28, 3, Article 78 (July 2009), 8 pages.

Pierre Alliez, Mark Meyer, and Mathieu Desbrun. 2002. Interactive Geometry Remesh-
ing. ACM Trans. Graph. 21, 3 (2002).

David Bara� and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’98). ACM, New York, NY, USA, 43–54.

Floraine Berthouzoz, Akash Garg, Danny M. Kaufman, Eitan Grinspun, and Maneesh
Agrawala. 2013. Parsing Sewing Pa�erns into 3D Garments. ACM Trans. Graph. 32,
4, Article 85 (July 2013), 12 pages.

D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. 2013.
�ad-Mesh Generation and Processing: A Survey. Comp. Graphics Forum 32 (2013).

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer �adrangulation.
ACM Trans. Graph. 28, 3 (2009).

Derek Bradley, Tiberiu Popa, Alla She�er, Wolfgang Heidrich, and Tamy Boubekeur.
2008. Markerless Garment Capture. ACM Trans. Graph. 27, 3, Article 99 (Aug. 2008).

David E. Breen, Donald H. House, and Michael J. Wozny. 1994. Predicting the Drape of
Woven Cloth Using Interacting Particles. In Proceedings of the 21st Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’94). 365–372.

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of Col-
lisions, Contact and Friction for Cloth Animation. ACM Trans. Graph. 21, 3 (July
2002), 594–603.

Michel Carignan, Ying Yang, Nadia Magnenat �almann, and Daniel �almann. 1992.
Dressing Animated Synthetic Actors with Complex Deformable Clothes. SIGGRAPH
Comput. Graph. 26, 2 (July 1992), 99–104.

Xiaowu Chen, Bin Zhou, Feixiang Lu, Lin Wang, Lang Bi, and Ping Tan. 2015. Garment
Modeling with a Depth Camera. ACM Trans. Graph. 34, 6, Article 203 (Oct. 2015).

Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A. Otaduy. 2014. Yarn-
level Simulation of Woven Cloth. ACM Trans. Graph. 33, 6, Article 207 (Nov. 2014),

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

https://www.ntopology.com/
http://www.mitsuba-renderer.org/

130:14 • Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel

207:1–207:11 pages.
Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A. Otaduy. 2015. E�cient Simula-

tion of Kni�ed Cloth Using Persistent Contacts. In Proceedings of the 14th ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’15). 55–61.

G. Cirio, J. Lopez-Moreno, and M. A. Otaduy. 2017. Yarn-Level Cloth Simulation
with Sliding Persistent Contacts. IEEE Transactions on Visualization and Computer
Graphics 23, 2 (Feb 2017), 1152–1162.

Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial Connections on
Discrete Surfaces. Computer Graphics Forum 29, 5 (2010).

R. Daněřek, E. Dibra, C. Öztireli, R. Ziegler, and M. Gross. 2017. DeepGarment : 3D
Garment Shape Estimation from a Single Image. Computer Graphics Forum 36, 2
(2017), 269–280.

DAVID. 2018. DAVID 3D Scanner. (2018). h�p://www.david-3d.com/.
Philippe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla She�er, and

Marie-Paule Cani. 2006. Virtual Garments: A Fully Geometric Approach for Clothing
Design. Computer Graphics Forum (2006).

Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2014.
Designing N -PolyVector Fields with Complex Polynomials. Computer Graphics
Forum 33, 5 (2014).

Hans-Christian Ebke, Marcel Campen, David Bommes, and Leif Kobbelt. 2014. Level-
of-detail �ad Meshing. ACM Trans. Graph. 33, 6, Article 184 (2014).

Xifeng Gao, Wenzel Jakob, Marco Tarini, and Daniele Panozzo. 2017. Robust Hex-
dominant Mesh Generation Using Field-guided Polyhedral Agglomeration. ACM
Trans. Graph. 36, 4, Article 114 (July 2017), 13 pages.

Rony Goldenthal, David Harmon, Raanan Fa�al, Michel Bercovier, and Eitan Grinspun.
2007. E�cient Simulation of Inextensible Cloth. ACM Trans. Graph. 26, 3, Article 49
(July 2007).

Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete
Shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (SCA ’03). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 62–67.

Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. 2002. Geometry Images. ACM
Trans. Graph. 21, 3 (2002).

Peng Guan, Lore�a Reiss, David A. Hirshberg, Alexander Weiss, and Michael J. Black.
2012. DRAPE: DRessing Any PErson. ACM Trans. Graph. 31, 4, Article 35 (July
2012), 10 pages.

Inc. Gurobi Optimization. 2016. Gurobi Optimizer Reference Manual. (2016). h�p:
//www.gurobi.com

Aaron Hertzmann and Denis Zorin. 2000. Illustrating Smooth Surfaces. In Proceedings
of ACM SIGGRAPH. ACM Press/Addison-Wesley Publishing Co., 517–526.

Zhiyang Huang and Tao Ju. 2016. Extrinsically Smooth Direction Fields. Comput.
Graph. 58, C (Aug. 2016), 109–117.

Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008a. Kni�ing a 3D Model.
Computer Graphics Forum 27, 7 (2008), 1737–1743.

Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008b. Kni�y: 3D Modeling of
Kni�ed Animals with a Production Assistant Interface. In Eurographics 2008 - Short
Papers, Katerina Mania and Eric Reinhard (Eds.). �e Eurographics Association.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
Field-aligned Meshes. ACM Trans. Graph. 34, 6, Article 189 (Oct. 2015), 15 pages.

Chenfanfu Jiang, �eodore Gast, and Joseph Teran. 2017. Anisotropic Elastoplasticity
for Cloth, Knit and Hair Frictional Contact. ACM Trans. Graph. 36, 4, Article 152
(July 2017), 14 pages.

Tengfei Jiang, Xianzhong Fang, Jin Huang, Hujun Bao, Yiying Tong, and Mathieu
Desbrun. 2015. Frame Field Generation through Metric Customization. ACM Trans.
Graph. 34, 4 (2015).

Felix Kälberer, Ma�hias Nieser, and Konrad Polthier. 2007. �adCover – Surface
Parameterization using Branched Coverings. Computer Graphics Forum 26, 3 (2007).

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating Kni�ed
Cloth at the Yarn Level. ACM Trans. Graph. 27, 3, Article 65 (Aug. 2008), 9 pages.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. E�cient Yarn-based
Cloth with Adaptive Contact Linearization. ACM Trans. Graph. 29, 4, Article 105
(July 2010), 10 pages.

Andrei Khodakovsky, Nathan Litke, and Peter Schröder. 2003. Globally Smooth Param-
eterizations with Low Distortion. ACM Trans. Graph. 22, 3 (2003).

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal
direction �elds. ACM Trans. Graph. (2013).

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe Pa�erns
on Surfaces. ACM Trans. Graph. 34, 4, Article 39 (July 2015), 11 pages.

Yu-Kun Lai, Miao Jin, Xuexiang Xie, Ying He, J. Palacios, E. Zhang, Shi-Min Hu, and
Xianfeng Gu. 2010. Metric-Driven RoSy Field Design and Remeshing. IEEE TVCG
16, 1 (2010).

Na Lei, Xiaopeng Zheng, Hang Si, Zhongxuan Luo, and Xianfeng Gu. 2017. General-
ized Regular �adrilateral Mesh Generation based on Surface Foliation. Procedia
Engineering 203 (2017), 336 – 348.

Ze Gang Luo and M. M. F. Yuen. 2005. Reactive 2D/3D Garment Pa�ern Design
Modi�cation. Comput. Aided Des. 37, 6 (May 2005), 623–630.

Martin Marinov and Leif Kobbelt. 2006. A Robust Two-Step Procedure for �ad-
Dominant Remeshing. Computer Graphics Forum (2006).

James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer
Manko�, and Jessica Hodgins. 2016. A Compiler for 3D Machine Kni�ing. ACM
Trans. Graph. 35, 4, Article 49 (July 2016), 11 pages.

Michael Meißner and Bernd Eberhardt. 1998. �e art of kni�ed fabrics, realistic &
physically based modelling of kni�ed pa�erns. In Computer Graphics Forum, Vol. 17.
355–362.

Yuki Mori and Takeo Igarashi. 2007. Plushie: An Interactive Design System for Plush
Toys. ACM Trans. Graph. 26, 3, Article 45 (July 2007).

M. Nieser, J. Palacios, K. Polthier, and E. Zhang. 2012. Hexagonal Global Parameter-
ization of Arbitrary Surfaces. IEEE Transactions on Visualization and Computer
Graphics 18, 6 (2012).

Olivier Nocent, Jean-Michel Nourrit, and Yannick Remion. 2001. Towards mechanical
level of detail for knitwear simulation. In WSCG. 252–259.

Jonathan Palacios and Eugene Zhang. 2007. Rotational symmetry �eld design on
surfaces. ACM Trans. Graph. 26, 3, Article 55 (2007).

Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame
Fields: Anisotropic and Non-Orthogonal Cross Fields. ACM Trans. Graph. 33, 4
(2014).

Jianbo Peng, Daniel Kristjansson, and Denis Zorin. 2004. Interactive Modeling of
Topologically Complex Geometric Detail. ACM Trans. Graph. 23, 3 (Aug. 2004),
635–643.

Jesús Pérez, Bernhard �omaszewski, Stelian Coros, Bernd Bickel, José A. Canabal,
Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod
Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages.

Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J. Black. 2017. ClothCap:
Seamless 4D Clothing Capture and Retargeting. ACM Trans. Graph. 36, 4, Article 73
(July 2017), 15 pages.

Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla She�er, and Pierre Alliez. 2006. Periodic
global parameterization. ACM Trans. Graph. (2006).

Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. 2008. N-symmetry Direction
Field Design. ACM Trans. Graph. 27, 2 (2008).

Cody Robson, Ron Maharik, Alla She�er, and Nathan Carr. 2011. Context-aware
Garment Modeling from Sketches. Comput. Graph. 35, 3 (June 2011), 604–613.

Dmitry Sokolov, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. 2016. Hexahedral-
Dominant Meshing. ACM Trans. Graph. 35, 5, Article 157 (June 2016), 23 pages.

Emmanuel Turquin, Marie-Paule Cani, and John F. Hughes. 2004. Sketching Garments
for Virtual Characters. In Proceedings of the First Eurographics Conference on Sketch-
Based Interfaces and Modeling (SBM’04). Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 175–182.

Ultimaker. 2018. Ultimaker 3. (2018). h�ps://ultimaker.com/en/products/ultimaker-3.
Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun. 2011.

Sensitive Couture for Interactive Garment Modeling and Editing. ACM Trans. Graph.
30, 4, Article 90 (July 2011), 12 pages.

Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus
Hildebrandt, and Mirela Ben-Chen. 2016. Directional Field Synthesis, Design, and
Processing. Computer Graphics Forum (2016).

Pascal Volino and Nadia Magnenat-�almann. 2005. Accurate Garment Prototyping
and Simulation. Computer-Aided Design and Applications 2, 5 (2005), 645–654.

Pascal Volino, Nadia Magnenat-�almann, and Francois Faure. 2009. A Simple Approach
to Nonlinear Tensile Sti�ness for Accurate Cloth Simulation. ACM Trans. Graph. 28,
4, Article 105 (Sept. 2009), 16 pages.

Charlie C.L. Wang, Yu Wang, and Ma�hew M.F. Yuen. 2003. Feature based 3D garment
design through 2D sketches. Computer-Aided Design 35, 7 (2003), 659 – 672.

Rundong Wu, Huaishu Peng, François Guimbretière, and Steve Marschner. 2016. Print-
ing Arbitrary Meshes with a 5DOF Wireframe Printer. ACM Trans. Graph. 35, 4,
Article 101 (July 2016), 9 pages.

Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch
Meshes for Modeling Kni�ed Clothing with Yarn-level Detail. ACM Trans. Graph.
31, 3, Article 37 (2012), 12 pages.

Jonas Zehnder, Stelian Coros, and Bernhard �omaszewski. 2016. Designing
Structurally-sound Ornamental Curve Networks. ACM Trans. Graph. 35, 4, Ar-
ticle 99 (July 2016), 10 pages.

Bin Zhou, Xiaowu Chen, Qiang Fu, Kan Guo, and Ping Tan. 2013. Garment Modeling
from a Single Image. Computer Graphics Forum 32, 7 (2013), 85–91.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 130. Publication date: August 2018.

http://www.gurobi.com
http://www.gurobi.com

	Abstract
	1 Introduction
	2 Background
	2.1 Cloth Modeling
	2.2 Stitch Meshes
	2.3 Structured Meshing

	3 Overview
	4 Remeshing
	5 Labeling
	5.1 Labeling Half-Edges
	5.2 Labeling Edges
	5.3 Post-Processing

	6 Knitting Direction Assignment
	7 Stitch Mesh Generation
	8 Relaxation and Yarn Generation
	9 Results
	10 Conclusion and Future Directions
	Acknowledgments
	References

