
Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes

NICO SCHERTLER, TU Dresden
DANIELE PANOZZO, New York University
STEFAN GUMHOLD, TU Dresden
MARCO TARINI, Università degli Studi di Milano and ISTI - CNR

(a) (b) (c) (d)

Fig. 1. Our method takes as input a semi-regular quad-dominant mesh (a – singularities marked with spheres) and produces a global parametrization. For that
purpose, we evaluate the effect of singularities on the mesh topology with the help of fenced regions (b). We use this information to calculate a Generalized
Motorcycle Graph (c), whose patches serve as rectangular domains for the parametrization (d). The parametrizations of adjacent patches are aligned to
each other on a majority of cuts (see close-up), which allows to make them invisible in texturing applications. The rectangular shape of patches in the 2D
parametric domain allows highly efficient packing of the texture.

We introduce a practical pipeline to create UV T-layouts for real-world
quad dominant semi-regular meshes. Our algorithm creates large rectan-
gular patches by relaxing the notion of motorcycle graphs and making it
insensitive to local irregularities in the mesh structure such as non-quad
elements, redundant irregular vertices, T-junctions, and others. Each surface
patch, which can contain multiple singularities and/or polygonal elements,
is mapped to an axis-aligned rectangle, leading to a simple and efficient
UV layout, which is ideal for texture mapping (allowing for mipmapping
and artifact-free bilinear interpolation). We demonstrate that our algorithm
is an ideal solution for both recent semi-regular, quad-dominant meshing
methods, and for the low-poly meshes typically used in games and movies.

Additional Key Words and Phrases: Texture Mapping, Motorcycle Graph,
Parametrization

ACM Reference format:
Nico Schertler, Daniele Panozzo, Stefan Gumhold, and Marco Tarini. 2018.
Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes. ACM
Trans. Graph. 37, 4, Article 155 (August 2018), 16 pages.
DOI: 10.1145/3197517.3201389

This work was partially supported by project 03ZZ0516A of the German Federal
Ministry of Education and Research (BMBF), NSF CAREER award 1652515, MIUR
project "DSURF" (PRIN 2015B8TRFM), a gift from Adobe Research, and a gift from
NTopology.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 ACM. 0730-0301/2018/8-ART155 $15.00
DOI: 10.1145/3197517.3201389

1 INTRODUCTION
Quad-dominant semi-structured meshes, i.e. meshes that are pre-
dominantly composed of quadrilateral faces and regular vertices, are
ubiquitous in computer graphics: they are the de-facto standard in
the visual effects and computer animation industry and are also of-
ten used in most interactive applications. However, clean structured
meshes are expensive to create. The number of irregular vertices is
often too large and most pipelines do not support common small
imperfections, requiring manual cleaning. This slows down existing
content creation pipelines and prevents the direct usage of scanned
models since reconstruction methods rarely create models adhering
to these strict guidelines, even after an automatic cleanup.

We propose a practical way to make imperfect polygonal meshes
more directly usable in downstream applications, by allowing the
computation of a valid UV-layout robust to redundant irregular
vertices as well as to quad mesh imperfections such as small holes,
non-quadrilateral faces, T-junctions, small handles and tunnels, and
non two-manifold configurations.
Our main contribution is the definition of a generalization of

Motorcycle Graphs (MCG) [Eppstein et al. 2008]: our construction
is identical on clean, highly regular quad meshes but gracefully
handles imperfections and redundant irregular vertices (Section 1.1),
always producing a valid segmentation into rectangular UV patches.
The key idea is to identify a set of regions on the mesh which are
to be considered equivalent to completely regular and clean grids
for the purpose of the MCG algorithm, in spite of imperfections.
Likewise, other regions will be treated as if containing one iso-
lated irregular vertex, again disregarding the more complex actual
configuration of the local meshing.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:2 • Schertler, N. et al.

The induced patch decomposition is used to define a global pa-
rametrization targeted for texture mapping applications. The UV
layouts are easy to pack, avoid interpolation (or MIP-mapping) arti-
facts at cuts, and are directly usable in real-time rendering pipelines
without any manual cleanup.

We applied our algorithm to hundreds of scanned and hand-made
models, demonstrating its robustness and practical applicability.

1.1 Motivations: Imperfect Quad-Dominant Meshes
Meshes that are purely quadrilateral, extremely regular, and
free from imperfections are ideal, since they are maximally mal-
leable to all kinds of processing. Unfortunately, they are also very
challenging to create – either manually (by modelling artists) or by
automatic approaches (e.g. remeshing range scanned data).

Amuchmore common case is that of semi-regular, quad dominant
meshes, often also coming with additional local imperfections. We
will refer to this class of meshes as imperfect (quad-dominant) meshes.
Specifically, these meshes feature one or more of:

Higher number of irregular vertices. In an ideal case, irregular
(non valence 4) vertices are justified by the geometric shape of the
surface, i.e., they are found in correspondence with high curvature
regions. Imperfect meshes, in contrast, feature many more irregu-
lar vertices serving many other purposes, for example to control
tessellation density or to orient edge along certain directions. Redun-
dant irregular vertices are also introduced by suboptimal automatic
quad-remeshing algorithms.

Non quadrilateral faces. Quad-dominant meshes present occa-
sional triangular or pentagonal elements (and at times other poly-
gons too). These elements are often introduced by re-meshing algo-
rithms and modelling artists alike.

Other meshing imperfections. Small holes (missing data), topolog-
ical noise (unwanted small handles/tunnels), jagged (rather than
straight) boundaries, T-junctions, or local lack of two-manifoldness
are common in range scanned surfaces, in procedural meshes, and
in many manually modeled meshes.

Imperfect meshes can be directly captured [Schertler et al. 2017],
produced by means of remeshing [Jakob et al. 2015], or directly mod-
eled (compare e.g. [Denning et al. 2011]). They are the majority of
the meshes available in online repositories (e.g. [TurboSquid 2018]).
They represent an intermediate case between perfectly structured
meshes, which are difficult to construct, and irregular structures,
such as irregular triangle meshes or range scans, which are diffi-
cult to process. Our algorithm exploits their regularity to provide a
high-quality output, but it reliably tolerates local imperfections.

1.2 Method Overview
Our method takes as input a semi-regular, but potentially imperfect,
quad meshM and produces a parametrization ofM over a set of 2D
rectangular patches, which are then packed tightly into one texture.

Objectives. Because we target texture mapping, we strive to limit
the number of patches and therefore the amount of texture cuts,
which are a source of rendering artifacts, memory overheads, and

(a) Original Motorcycle Graph (b) Generalized Motorcycle Graph

Fig. 2. The original Motorcycle Graph (left) results in a heavy over-
segmentation of the bouddha with 385 patches. Our Generalized formula-
tion can extract a T-layout with only 24 patches.

other complications in textures [Tarini et al. 2017]. In many scenar-
ios, it is also desirable to preserve the original mesh connectivity,
(e.g. to preserve geometry features, respect the modeller’s choice of
edge placement, etc.), although it is usually acceptable to refine a
small number of faces locally, introducing a few additional edges,
to represents cuts at these edges.

We partition the mesh into a small number of rectangular patches
and we parametrize each patch over an axis-aligned 2D rectangle.
In other words, we extract a coarse T-layout from the original mesh
(Section 3). Subsequently, we determine the parametric size of each
2D rectangle (Section 4), and construct a distortion-minimizing pa-
rametrization, i.e. a mapping from each patch into the corresponding
2D parametric rectangle. Finally, the 2D rectangles are packed into
one unified texture domain (Section 5).
The coarse quad-layout construction is the core part of our ap-

proach, which is a generalization of Motorcycle Graphs. On a highly
regular, imperfection-free, pure quad mesh, an MCG will automati-
cally and robustly produce good, coarse quad-layouts. Unfortunately,
MCGs are not applicable in the presence of imperfect or non pure
quad meshes, producing excessively fine-grained partitions if the
input is not highly regular everywhere. Our generalization (see
Section 3) bypasses these limitations (see Figure 2).

2 RELATED WORK
Surface parametrization is the task of constructing an injective map-
ping between a given input surface S and a (typically) flat parametric
domain D. Global surface parametrization is required when S is not
topologically equivalent to a disk. In this case, cuts are introduced
to split the surface into topological disks and to reduce distortion.
Global surface parametrization has been extensively studied in the
last three decades: we focus on the most closely related approaches,
and we refer to [Floater and Hormann 2005] for an overview.
The intended application of our global parametrizations is to

serve as UV-maps for texture mapping. This application imposes
specific objectives, which are subtly different from those commonly
considered for remeshing applications.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:3

2.1 Parametrizations for Texture Mapping
In texture mapping, cuts cause rendering artifacts known as texture
bleeding, which are due to bilinear interpolation and MIP-mapping.
These artifacts can be greatly reduced by replicating texels; this,
however, costs GPU memory and leaves residual artifacts due to
a mismatch in the texel grid, which are especially notable under
extreme magnification. Therefore, cuts can be tolerated but are
undesirable. Construction methods seek a good trade-off between
the amount of cuts and of distortion, either implicitly [Lévy et al.
2002; Smith and Schaefer 2015; Tarini 2016], or, in one recent case,
by minimizing an energy explicitly accounting for both [Poranne
et al. 2017]. Our approach offers a similar trade-off. In addition, our
cuts are always axis-aligned in parametric space, miminizing the
GPU memory overhead for texel replications. Optionally, most of
them can be made invisible, in the following sense.

Cut Invisibility. For a special class of cuts, which we call invisible,
rendering artifacts are completely negated by texel replications.
This was first explicitly observed in [Ray et al. 2010], but was also
exploited in approaches like [Carr et al. 2006; Tarini et al. 2004]. In
[Liu et al. 2017] a wider generalization of invisible cuts is offered,
but this comes at the cost of limiting the assigned texel values.
Invisible cuts also avoid artifacts introduced by MIP-mapping up
to a prescribed level k . It is sufficient for the parametrization to be
computed for the resolution of MIP-map level k , and then up-scaled
to the highest resolution level 0.

Alternatives to Global Parametrizations. Although surface para-
metrizations are the standard approach to texture mapping, a long-
lasting trend is to try to bypass its construction altogether, for exam-
ple by endowing eachmesh element with its own parametric domain
[Burley and Lacewell 2008; Yuksel 2017]. Similarly, parametrizations
are sometimes computed and stored volumetrically, bypassing the
complications traditionally associated to cuts [Tarini 2016]. The
reader is referred to [Tarini et al. 2017] for a gallery of other alter-
native approaches to texture mapping. These techniques, however,
require changes of the standard real-time rendering pipeline, the
asset production pipeline, or both.

2.2 CoarseQuad Layouts
Our parametric domain D is defined as the union of 2D rectangles,
one for each patch. Global parametrizations in this class are enticing
because 2D rectangles can be efficiently packed in a global texture
sheet (in addition to the advantages given by axis-aligned patch
boundaries).
The problem of producing a coarse quadrilateral layout over a

surface has been extensively studied; we refer the reader to a survey
[Bommes et al. 2013, Section 3.2] and a tutorial [Campen 2017].

Existing works are motivated by different purposes, such as regu-
lar quad-remeshing (each patch is subdivided into a regular quad
grid e.g. [Campen et al. 2015]), construction of higher-order approx-
imations (each patch represents one element of a quad control mesh
for subdivision of parametric surfaces, e.g. [Panozzo et al. 2011]),
detecting isomorphisms between meshes (isomorphic meshes share
the same patch layout, e.g. [Eppstein et al. 2008]), or, like in our

case, surface parametrization (each patch serves as one parametri-
zation domain, e.g. [Bommes et al. 2009]). The objectives include
topological correctness, domain coarseness, good patch shape, and
alignment of patch boundaries to feature lines and/or curvature
directions.
Existing solutions include drastically different approaches, for

example based onMorse-Smale complexes [Ling et al. 2014], 3Dmor-
phing into piecewise axis-aligned surfaces [Fu et al. 2016], iterative
coarsening of an initially densely tessellated quad mesh [Panozzo
et al. 2011], following an internal skeleton [Usai et al. 2015], casting
the problem as a coarse remeshing [Bommes et al. 2013], or trac-
ing of boundary lines over the surface [Campen and Zorin 2017;
Razafindrazaka and Polthier 2017].
Our approach falls in the latter category but has the following

differences.

Input differences. Competing tracing-based approaches focusmainly
on two types of input surface representation:

Irregular triangular meshes with an accompanying cross field
[Campen et al. 2015; Pietroni et al. 2016; Ray and Sokolov 2014].
In this case, the challenge is to robustly trace straight lines over a
piecewise linear, irregularly sampled surface. This requires extreme
care during the implementation, often with sophisticated algorithms
devoted to the sub-problems. Also, an accompanying cross field is
required, which is not always available. E.g., manually editedmeshes
do not have one. Finally, the quality of the cross field is crucial:
in particular, the amount of singularities will heavily affect layout
coarseness. In [Campen and Kobbelt 2014], an initial parametrization
and user-drawn sketches mimic a cross field and act as a guidance
for tracing lines, sharing similar challenges.

Highly regular pure quad meshes. This class of meshes sim-
plifies processing; tracing becomes simply a straight traversal of
mesh edges across regular vertices, as exploited in [Eppstein et al.
2008; Tarini et al. 2011], allowing for simple, efficient, and robust
implementations. Unfortunately, this class of meshes is rare and
difficult to automatically generate. The methods are very sensitive
by construction to redundant irregular vertices and other potential
problems (Section 1.1). In contrast, our method has fewer assump-
tions on the input and is able to process imperfect input surfaces
(Sec. 1.1).

Output differences. Existing tracing-based approaches can be cat-
egorized into two groups according to the desired output:

Conforming quad layouts, i.e. layouts that are free from T-
junctions [Campen et al. 2012; Fu et al. 2016; Usai et al. 2015]. In
this case, 2D rectangles have side-to-side adjacency relationships,
which is challenging to achieve. The resulting layout tends to be
much less coarse [Daniels et al. 2008]. On the other hand, this
provides advantages for remeshing purposes [Bommes et al. 2013].
To simplify their computation, field alignment is often sacrificed in
exchange for this property [Bommes et al. 2011; Campen et al. 2012;
Razafindrazaka et al. 2015; Tarini et al. 2011].

T-layouts, i.e. layouts with T-junctions [Campen et al. 2015;
Campen and Zorin 2017; Eppstein et al. 2008; Myles et al. 2010;
Pietroni et al. 2016], where two rectangular domains may share
only a part of an edge. The ability to insert T-junctions enlarges the
solution space, allowing for coarser layouts with milder distortion.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:4 • Schertler, N. et al.

Our approach, being a generalization of [Eppstein et al. 2008], tar-
gets T-layouts. This choice is justified by our application context.
Other common applications for T-layouts include T-splines and T-
NURCCS [Campen and Zorin 2017; Myles et al. 2010; Pietroni et al.
2016].
T-layout with scaling. We further increase the flexibility of

our layout by allowing the transition functions (i.e. the functions
mapping the two sides of a cut to each other in parametric space)
to include small integer scaling factors ≥ 1 (Section 4). This change
dramatically increases the solution space, while not introducing
any downside for texture mapping (Section 2.1). Our formulation
for parametric sizes is thus analogous to [Campen and Zorin 2017],
but our context does not require to enforce loop conditions around
vertices. This allows for non-degenerate solutions even in otherwise
unsolvable configuration such as the one shown in [Campen and
Zorin 2017, Fig.6] or [Karciauskas et al. 2017, Fig.2].

2.3 Relationship to Field-Aligned Remeshing Approaches
A class of field-guided methods construct a semi-regular quad mesh
driven by two related but distinct fields defined on the surface, which
are often computed in cascading order [Jakob et al. 2015; Ray et al.
2006; Schertler et al. 2017]. In [Jakob et al. 2015], they are termed
RoSy and PoSy field. The RoSy field is a tangent vector field that
determines the local orientations of the edges, whereas the PoSy
field is a position field that determines the positions of elements in
parametric space. Each field comes with its own set of singularities:
a cross-field singularity will produce a single irregular vertex in
the final quad mesh. Conversely, a positional-field singularity will
be translated in either a small configuration of irregular vertices,
non quadrilateral elements, or a T-junction. Our approach can be
understood as a way to classify these cases solely analyzing the
final mesh. The latter cases will be embedded inside irregular fenced
regions, and the former in regular ones. It could be argued that
this observation implies that a better solution would be to base the
analysis on the fields that produced the input mesh. Our motivation
for relying solely on the final mesh instead is based on a better
generality and a wider applicability, also considering that imperfect
quad-dominant meshes have different origins (see Sec. 1.1).

2.4 Relationship to Mesh Optimization Approaches
Our method is reminiscent of mesh optimization approaches, which
change the connectivity of an input quad-mesh striving to reduce
the number of its irregular vertices (among other objectives). For
example, [Peng et al. 2011] presents a set of local connectivity oper-
ators to relocate configurations of irregular vertices, which can be
combined to bring closer and then cancel pairs of irregular vertices
of opposite valence excess, such as a valence 3 with a valence 5. In
[Verma and Suresh 2015, 2016], local patches containing irregular
vertices are identified and individually remeshed more regularly;
these patches resemble our proposed fenced region. With respect to
any approach in this category, important differences stem from our
targeted application: in our case, we do not to change the original
mesh but only define a parametrization with controlled resolution
jumps for it. Local changes of the connectivity of a quad mesh re-
quire to respect scrupulous conditions to limit domino effects, which
would otherwise propagate over the entire structure (see [Daniels

Fig. 3. A Motorcycle Graph is calculated by spawning motorcycles at edges
of singularities (left) and tracing them (middle) until they all collide (right).

et al. 2008]), whereas we can afford to be more aggressive. For exam-
ple, our algorithm will consider one of our fenced region containing
a single 3-5 pair of irregular vertices as regular, which does not
complexify the T-layout, whereas any quad-mesh optimization ap-
proach cannot simplify this configuration in isolation. Informally
speaking, our valence cancellation effect is, therefore, more similar
to the singular-point cancellation experienced when smoothing a
cross-field (e.g. [Jakob et al. 2015]).

3 GENERALIZED MOTORCYCLE GRAPHS
For completeness, we first recap the original Motorcycle Graph
(MCG) algorithm, first proposed in [Eppstein et al. 2008]. MCG is
originally motivated by the task of providing a canonical partition-
ing of quad meshes with shared connectivity, toward the goal of
finding an isomorphisms between them. However, we will be using
it to construct a parametrization intended for texture mapping.

3.1 The Original Motorcycle Graph (MCG)
The idea of Motorcycle Graphs is to trace particles (called motorcy-
cles) along the edges of a two-manifold, pure-quad mesh until they
collide with another motorcycle or the trail thereof (see Figure 3). A
motorcycle is spawned at each edge around each irregular vertex
(i.e. non valence 4 internal vertex) going outward, and traced across
edges, going straight in a topological sense (i.e., it always proceeds
to the opposite edge). Motorcycles are traced in parallel, interleaving
advancement steps of each motorcycle over an edge, while mark-
ing traversed edges and vertices. A motorcycle terminates as soon
as it reaches a vertex already traversed by any motorcycle. When
all motorcycles are terminated, the set of all traversed edges parti-
tions the mesh into regions (or patches) which are guaranteed to be
topologically rectangular and to be fully regular internally.
There are two kinds of collisions: head-on collisions (which are

rare) between twomotorcycles coming from (topologically) opposite
directions; and lateral collisions, where one motorcycle hits the trail
of a second motorcycle traveling in an (topologically) orthogonal
direction. In head-on collisions, both motorcycles are terminated;
in lateral collisions, only the first motorcycle is terminated, and a
T-junction is formed in the final layout.

In a variation of this algorithm, also introduced in [Eppstein et al.
2008], fewer than v motorbikes are spawned around an irregular
vertex of valence v , as long as at least one is spawned at each two
consecutive edges around that vertex. Therefore, only two motorcy-
cles may be emanated from a valence-3 vertex, and only three from
a valence-5 or valence-6 vertex. In Figure 3, the motorcycles which
are prevented by this variation are indicated by blue marks. This

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:5

Fig. 4. The intuition behind our generalization. Left, first row: several examples of imperfect connectivities that are commonly encountered in semi-regular
quad-dominant meshes: a triangular element, a pentagonal element, a hole (note also the non-two-manifold vertex in the middle), a T-junction, a pair of
irregular vertices (valences 3 and 5), a configuration of four irregular vertices (with valences 3,3,5, and 5). Left, second row: concealing the imperfections
visually reveals how none of the the imperfections affect the overall regularity of the mesh away from them. For the purpose of our algorithm, these areas will
be considered regular to all effects. Right, first row: a similar situation arises when a irregular valence 3 vertex, which changes the flow of a surrounding
areas (left), is accompanied by a few connectivity defects, such as a T-junction (middle) or a triangular element. Right, second row: concealing the zones
shows how the three configurations have indistinguishable effects on the edge directions away from them. For the purposes of our algorithm, the three cases
will be treated identically. The concealed parts represent the fenced regions.

results in fewer patches being produced (i.e., in a coarser layout),
while maintaining the guarantees on the rectangular shape and in-
ternal regularity of the patches. This variation is directly applicable
also to our generalization of MCG, so we adopt it.

The algorithm is easily extensible to open meshes. We adopt this
formulation, which is equivalent to the original one: a boundary
vertex is considered irregular when its edge-valence is not equal to
3; we allow only motorbikes spawned on boundary edges to travel
over boundary vertices; other motorbikes are terminated just before
reaching any boundary vertex. This will cause the entire boundary
of the mesh to be eventually traced by motorbikes.

Benefits. In spite of its simplicity, the original Motorcycle Graph
algorithm has many desirable properties when applied to clean
meshes: it is fully automatic and reliable; it produces coarse quad
layouts, which are useful in many contexts, such as serving as a
parametrization domain for low-distortion, artifact-free, efficiently
packed texture mapping. In other words, an MCG is a straightfor-
ward way to exploit the high regularity of a pure quad mesh. It
exemplifies the ease of parametrization of such meshes, which is
among the main motivations making these kind of meshes sought
after.

Limited Applicability. In spite of all its benefits, the concept of
Motorcycle Graphs will not work well, or at all, when applied to the
commonly encountered quad-dominant semi-structuredmeshes (see
Section 1.1), even when they present few and sparse imperfections.
There are several reasons for this.

First, a large number of irregular vertices results in an explosion
of the number of patches.

Second, MCG only targets pure-quad meshes and breaks in pres-
ence of even a single pentagonal or triangular element. This problem
can be addressed by one iteration of topological Catmull-Clark sub-
division, which turns every polygonal mesh into a pure quad mesh.
However, this introduces many additional irregular vertices, exac-
erbating the former problem, and increases the complexity of the
model by an average factor of four.

Lastly, MCG does not allow for other imperfections either. MCG
will treat small holes as legitimate mesh boundaries (rather than
just incomplete data), causing additional irregular vertices, again
exacerbating the first problem. Similarly, small handles/tunnels are
considered as legitimate surface features (instead of meshing arti-
facts), resulting in a large number of irregular vertices. An open
mesh with jagged (rather than straight) boundaries will also be
treated as having a large number of irregular vertices. The presence
of T-junctions or of non two-manifold vertices are not dealt with
by MCG.
The effect of these problems propagates across the mesh. This

means that the final quad layout, even if it can be constructed, will
lack coarseness also in the clean parts.

3.2 Generalizing MCG: Main Intuition
The basic idea of MCG is to spawnmotorcycles at irregular areas and
propagate them across regular areas. This concept can be applied in
spite of the above listed local defects of the quad mesh connectivity.

For the purpose of the algorithm, an area can be considered regu-
lar as soon as it is assimilable to a regular grid, that is, if it does not
disrupt the regular 2D grid pattern away from it. This can be the
case even if the area is not tessellated as a completely regular grid.
See Figure 4 (left) for examples. No motorcycle needs be spawned
in such areas, and other motorcycles will traverse this area as if it
was regular.

The only potential effect outside an area of this kind is a change of
grid density around it. Many applications, such as texture mapping,
are fairly tolerant to the small variations of densities, which result
in only moderate parametrization distortions. The combined effect
of multiple such cases can either cancel out or accumulate beyond
the final application tolerance. We deal with the latter case in a
subsequent phase by splitting the final rectangular regions (trading
distortion for a marginal decrease of the coarseness of the layout).

Similarly, the locations which spawn off motorcycles are not iden-
tified by the immediate 1-star around a vertex but by regions that

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:6 • Schertler, N. et al.

have a large-scale effect on the edge orientations of their surround-
ings. See Figure 4 (right) for examples.

We turn this intuition into an algorithm by introducing the con-
cept of fenced regions.

3.3 Fenced Regions
Metaphorically, we fence-in any problematic configuration breaking
mesh regularity and cleanness, such as irregular vertices, holes, T-
junctions, et cetera. A fenced region is defined as a contiguous
region of a mesh (a collection of faces) that hosts one or multiple
such configurations but is nonetheless to be treated either as entirely
regular (regular fenced regions) or as containing a single irregular
vertex (irregular fenced regions).

Classification of Fenced Regions. The fence, i.e. the boundary of a
fenced region, is a collection of mesh edges and vertices. A fenced
region is valid if all the vertices on the fence are regular; we will
be only using valid fenced regions. A valid fenced region can be
classified as regular or irregular solely according to its boundary,
regardless of its interior, as follows.

Each vertex on a fence can be classified according to the number of
its outward edges (edges that are outside the fenced region): convex
vertices have two, straight vertices have one, and concave have
none. We then define the valence v of the fenced region as the sum
of turns over all boundary vertices, i.e. +1 for convex vertices, ±0
for straight vertices, and −1 for concave vertices. Equivalently, the
valence of a fenced region is given by

v = ne − nv ,

where ne is the total count of outward edges and nv is the number
of vertices on the fence, but not on the mesh boundary. Analogously
to mesh vertices, a fenced region is regular if v = 4, and irregular
otherwise.
We also define degenerate fenced regions, having no faces, zero

area, and consisting of a single irregular vertex. A degenerate fenced
region is always valid, and its valence is defined as the one of that
vertex.

3.4 Generalizing MCG: Overall Algorithm
Our generalized algorithm produces a patch layout as follows.
First, we determine all the fenced regions (Sec. 3.6). Then, we

perform the analogue of the standard MCG algorithm:
(1) spawn motorcycles at irregular fenced regions (Sec. 3.7);
(2) trace the motorcycles in parallel across the mesh (including

across regular and irregular fenced regions), until each is
terminated by a collision (Sec. 3.8);

(3) extract patches of the resulting graph (Sec. 3.9).
Finally, we post-process patches by splitting a few in order to al-
leviate excessive distortion. To ensure global consistency (i.e. to
produce a pure rectangular layout) we need to enforce topological
consistency conditions within steps 1 and 2 as described below. One
merit of our approach is that these sub-problems are local and the
size of their instances is limited, allowing for easy solutions.

Before the algorithm is run, we pre-process the input mesh (Sec-
tion 3.5). This simplifies the formulation (and implementation) by
reducing the number of cases which must be accounted for.

3.5 Preprocessing
Virtual refinement. We consider any T-junction as one extra cor-

ner of a polygon (e.g. a quad with a T-junction as a pentagon), and
we perform one global iteration of topological Catmull-Clark sub-
division. This subdivision is only temporary: edges introduced by
the subdivision are tagged as “CC”, and dissolved after the T-layout
has been extracted, except the few ones that have been traversed by
motorcycles. All subsequent phases of the algorithm strive to avoid
routing motorcycles across CC edges, therefore the subdivision is
almost completely reverted in practical cases; (in our experiments,
the final mesh has an increased edge count by less than 1% in aver-
age). While not strictly necessary, this step offers practical benefits:
it turns non-quadrilateral polygons and non conforming vertices
into irregular vertices, reducing the number of cases which need
to be dealt with, thus simplifying the implementation; it increases
the number of regular vertices so that more valid fenced regions
can be identified; and it provides more edges for the navigation of
motorcycles (although they are used only as a last resort). Unless the
input mesh is already conforming (T-junction free) and pure-quad,
we always performed this step in our examples.

Virtual boundary expansion. According to our def-
inition, an irregular boundary vertex cannot be part
of any valid fenced region (except degenerate ones)
because only regular vertices are allowed on the
fences. Instead of modifying the definition to include
boundary cases, we virtually pad the boundary with
one layer of faces (dotted lines in the inset) by adding an outward
edge to each vertex on the boundary (thick line). The new boundary
is completely regular and original boundary irregular vertices are
pushed into the interior. This padding is kept entirely implicit and
the mesh is not actually modified. See Fig. 5 for an example of the
effect of this on the overall algorithm.

3.6 Identification of Fenced Regions
In this step, we identify fenced regions that encapsulate all irregular
points and defects while ensuring that each area is smaller than
a maximal size Tmax . Tmax is the only parameter of our method
and has an intuitive interpretation: it represents the area size of the
largest feature which is to be ignored by the layout; higher values
trade layout coarseness for parametric distortions. We always used
Tmax = 20 times the average face area.

Within these requirements, we would ideally like the number of
irregular fenced regions to be minimized as this results in coarser
layouts (see Figure 4). We design a heuristic to seek this objective,
which we describe below. Crucially, this always produces a valid
solution (at worst, the initialization). Figure 7 shows an example of
the output.

Initialization. Initially, we encapsulate all irregular vertices in a
minimal set of non-degenerate fenced regions (and, if necessary, a
few degenerate ones). To do so, we initialize a fenced region for each
irregular vertexvi from its one-ring. Figure 6 (a) shows this starting
point for a single irregular vertex. If another irregular vertex vj lies
on its boundary, then the fenced region is invalid. In this case, we
expand the region by including the one-ring of vj . This is repeated

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:7

Fig. 5. Above: with the original MCG algorithm, many small patches are
in presence of a jugged boundary, as in this example. Below: an example
of the application of the Generalized MCG for the same input mesh. The
boundary is first (virtually) expanded (left); five fenced regions (four regular,
plus one degenerate of valence 3) are identified (middle), and a single patch
with an open boundary is created covering the boundary (right). CC edges
are not shown.

(a) (b) (c) (d)

Fig. 6. Four steps in the iterative fenced region identification process. (a) an
invalid fenced region is seeded from the one-ring of the marked irregular
vertex; (b) the fenced region is expanded until it becomes valid; (c-d) two
valid irregular fenced regions are merged into a single regular one.

until either the fenced region is valid or its area exceeds Tmax . In
the latter case, we dissolve the entire region and create a degenerate
fenced region around each irregular vertex inside it. The result of
this iterative expansion is shown in Figure 6 (b).

Merging by expansion. Next, we try to merge irregular fenced
regions into fewer, regular ones. This procedure consists in progres-
sively expanding irregular fenced regions in parallel and merging
the ones which come into contact with each other (if possible). More
specifically, we perform a sequence of atomic growing operations,
each consisting in the expansion of one irregular, (non-degenerate)
fenced region over one neighboring face, such that the new area
does not exceed Tmax . At every iteration, we pick the available op-
eration where the face is geometrically closest to the starting point
of fenced region. If the selected face already belongs to a different
fenced region, then, instead of expanding the area, we test if the two
areas can be merged. The merge is only performed if the summed
area does not exceed Tmax . Note that the merged region can then
be regular and, if so, it is never expanded again. Faces surrounding
degenerate fenced regions are never considered for expansion. Once
there are no available operations left, this phase is over. Figure 6 (d)
shows the result of merging the two fenced regions from Figure 6 (c).

Fig. 7. One example of the results of fenced region identification phase. All
singularities (left) are covered by fenced regions. Green overlays correspond
to regular fenced regions, orange ones to fenced regions with valence < 4,
and blue ones to fenced regions with valence > 4 (CC edges are not shown).

Shrinking back. Finally, we undo all the expansions that did not
result into merging of fenced regions. Each fenced region is shrunk
by iteratively testing and removing faces adjacent to the boundary. A
removal is rejected if it causes loss of validity (that is, if an irregular
vertex lies on the new border) or if it changes the disk-topology of
the region.

3.7 Spawning Motorcycles
For every irregular fenced region of valence v , we spawn v motor-
cycles and immediately trace each of them to an exit position on
the boundary of the containing fenced region (in reality, a subset of
motorcycles are omitted, so as to coarsen the resulting layout, see
Section 3; for exposition purposes, we ignore this detail here).
For a degenerate fenced region consisting of a single irregular

vertex, this is done trivially: a motorcycle is spawned along each of
the v edges stemming out of that vertex.

For non-degenerate fenced regions, we need to pick one common
internal starting position, exit positions for each motorcycle, and
routes from the former to the latter.
To do so in a valid way, we first partition the fence edges ac-

cording to their topological orientation, which is an index from 0 to
v −1. We pick an arbitrary edge and assign its orientation to 0. Then
we navigate counter-clockwise around the fence, accumulating the
turns (modulo v), and assigning to each traversed edges the accu-
mulated orientation (see Figure 8 for an example). This algorithm is
well-defined because vertices on a fence are always regular.

Consistency Conditions. One consistency requirement is that each
motorcycle leaves the fenced region traversing an edge with a differ-
ent orientation. This condition is not sufficient (cf. Figure 8-left): an
additional requirement is that the motorcycles are spawned around
the starting position in the same counter-clockwise order as their
exit orientation (see Figure 8-right).

Searching for a solution. We now need to pick the starting and exit
position in accordance to the above constraints. Because the fenced
region is small, we can quickly consider all the possibilities, as fol-
lows. We trace paths backward, from every potential exit position
towards the inside (when an irregular internal vertex is reached, the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:8 • Schertler, N. et al.

0
1
2

Fig. 8. A valence 3 fenced region with two alternative initializations for mo-
torcycles. Fence edges are colored according to their topological orientation
(from 0 to 2). Left: breaking the ordering requirement results in an invalid,
non quadrilateral layout. Right: an initialization respecting it.

0
1
2

0 turns

valid exit

(a) (b)

Fig. 9. Determination of valid exit points for a motorcycle entering a fenced
region according to our consistency conditions. (a) The motorcycle can leave
the fenced region if the path between entry and exit along the fence has
a total of zero turns. (b) The motorcycle entering through an edge with
orientation 0 can collide with a motorcycle that entered through an edge
with orientation 1.

path tracing direction is not determined and all alternatives are ex-
plored). In this way, we quickly identify internal vertices capable of
reaching a valid set of exit positions. Among the available solutions,
we choose the one maximizing an ad hoc geometric fitness, defined
as a measure combining straightness of paths; see the supplemental
material for details.

Fallback strategy. In rare cases, no valid initialization exists (e.g.
this happens with fenced regions with extreme valences lacking an
internal vertex with sufficiently high valence or for fenced regions
with many missing internal elements). If this happens, we simply
dissolve the fenced region and create a degenerate fenced region
for each contained singularity (which are valid unconditionally).

3.8 Tracing Motorcycles
A motorcycle travels straight until a collision occurs. A collision is
detected when a motorcycle reaches a vertex that has been traversed
by any motorcycle before. Outside fenced regions, traversed vertices
are always regular, and motorcycles are routed normally (as in
original MCG).

Inside fenced regions, the path can visit irregular vertices, making
routing non-unique. Our solution is to consider all potential paths
from the entry point, and pick an admissible one. As soon as a
motorcycle steps inside a fenced region, it is routed until it either
traverses across the fenced region and exits it again, or it collides
somewhere inside it. Consistency conditions are defined differently
for these two cases, as follows.

Consistency conditions for traversals. Conceptually, in this case
the path must travel topologically straight across the patch. If the
motorcycle enters the fenced region at vertex va and exits it at
vertex vb , then the route starting at va , traveling along the fence,
and finally leaving at vb , must have a total turn count of 0 (see
Fig. 9 (a)). For regular fenced regions, both possible routes (either
clockwise or counter-clockwise) leading to valid exit positions will
have the same turn count. For irregular fenced regions, we pick the
route along the fence that does not intersect with any of the exit
positions of the initial motorcycles (see Section 3.7). This condition
is well defined because vertices on the fences are always regular by
construction.

Conditions for collisions. Inside any fenced region, collisions must
fulfill the following consistency requirement: a motorcycle entering
through an edge with orientation i can only collide with a motor-
cycle that entered through an edge with orientation i + 1 or i − 1
(modulo the valence v of the fenced region, see Fig. 9 (b)). Note that
collisions of this kind are always considered lateral (terminating
only the motorcycle being moved). Head-on collisions can never
happen in the interior of fenced regions.

Enumerating and selecting potential paths. Inside fenced regions,
a path is followed straight (in the topological sense) when passing
through regular vertices, and forks among all possibilities otherwise.
A path reaching a boundary edge inside a fenced region proceeds
over all possible vertices along the boundary of that hole. We use
Dijkstra’s algorithm to trace a path from the entering position to
any admissible end (collision or exit). The per-edge cost function
penalizes traversal of CC edges, which are usually entirely avoided.
Secondarily, it favors a geometric measure of path straightness.

Fallback Strategies. In rare cases, no consistent path can be found.
When this happens, we attempt a number of fallback strategies in
cascade. The first is to cancel the offending motorcycle completely,
remaking the arbitrary choice of which motorcycle to spawn around
its spawning vertex. This cannot be done if it would cause the re-
spawning of amotorcycle that was already canceled before. A second
strategy consists in spawning two new stopping motorcycles at the
entry point, going in the two directions orthogonal to the original
motorcycle such that the latter immediately collides and never en-
ters the fenced region (see Figure 10). It is necessary, however, that
the two stopping motorcycles have a valid route until their eventual
termination. 10 If non of the above strategies are possible, we dis-
solve the entire fenced region as a last infallible strategy. Doing so,
we substitute it with one degenerate fenced region for each irregular
vertex and restart construction of the graph. This is necessary only
very rarely for highly irregular meshes.

3.9 Patch Extraction from the Motorcyle Graph
To extract the quadrilateral patches of the Motorcycle Graph, we
trace the contour of each quadrilateral patch traversing all half-
edges bounding each patch. Then we partition the mesh-faces into
patches by a simultaneous flood-fill of all mesh faces, seeded at the
bounding half-edges.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:9

No valid route. Stopping by a pair of new motorcy-
cles (green)

Fig. 10. One fallback strategy for a motorcycle that cannot be routed across
a fenced region: We prevent its entry by spawning orthogonal stopping
motorcycles.

Fig. 11. After the T-layout is extracted, the Catmull-Clark subdivision per-
formed as a prepossessing (see Sec. 3.5) is almost completely reverted by
redissolving the introduced CC edges (not shown in this wireframe). CC
edges which are part of patch boundaries (see zoom-in) cannot be removed
but are rare by design.

This algorithm also deals correctly with rare cases
in which a small bridge or tunnel connects two dis-
tinct quadrilateral patches (see inset). This can hap-
pen when a motorcycle traversed a fenced region
featuring internal topological noise, which was pur-
posely considered equivalent to a regular region. In
our experimentation, this occurred with one dataset
(the David head), out of several hundreds we tested.

3.10 Subdivision Reversal
After extracting the patches, we can revert the initial
Catmull-Clark subdivision in all places by simply dissolving CC
edges that are not traversed by any motorcycle. Because our algo-
rithm avoids traversal of CC whenever possible, most CC edges can
be dissolved.
Figure 11 shows the result for an example mesh, where almost

the entire subdivision can be reverted.

4 CHOOSING PARAMETRIC SIZES
Once the layout is constructed, the next task is to determine the
sizes of each rectangle in parametric space.

Fig. 12. An example of a T-layout. Letters from a to w: variables assigned to
half-arc lengths.

In the original MCG for clean pure-quad meshes, this step simply
consists in counting the number of edges on the boundary of the
rectangular regions (relying on the assumptions that edges approxi-
mately share the same length). By construction, the opposite sides
of each rectangle will amount to the same edge count.
In our setup, this is not the case as regular fenced regions can

affect the tessellation density inside a the patch (e.g. via T-junctions
or configurations of irregular vertices). We determine the parametric
lengths as follows.

4.1 Problem Formulation
We consider a graph where nodes are vertices of the final layout,
including T-junctions. Each side of each rectangle is made up of one
or multiple consecutive arcs of this graph (see Fig. 12).

Similarly to [Campen and Zorin 2017], we formulate the problem
by assigning one strictly positive length variable to each half-arc
and solving for them by optimizing an objective function that mea-
sures isometry under consistency conditions that ensure rectangular
patches in parameter domain as well as invisible cuts along patch
boundaries. In our case, the variables are lengths expressed in num-
ber of texels and must thus be integer.

Arc Length Estimation. In a first step, we estimate the actual size
of each side of the rectangular patches in 3D. This is simply done by
summing the edge lengths across all edges. For a more accurate esti-
mation, we trace additional internal paths parallel to the measured
side inside the half-arc’s patch (as described in Section 3.8) and
average their estimated lengths. As a result, the target length of a
half-arc is the average height or width of the according patch. When
the lengths of the sides or the internal motorcycles are drastically
different, we trigger a horizontal or vertical split of the patch in
order to reduce distortions (see 4.5). A target length estimation is
assigned to each arc by distributing the estimated length of each
side proportionally to the extent of the arc.

Objective Function. Our objective function is simply a measure of
isometry, i.e. the preservation of lengths along the arcs. We compute
a target length for each half-arc (see above) and we enforce the
actual parametric length to match it in the least square sense. Target
lengths are multiplied by a global scaling factor given by

√
NT /A,

whereA is the total area of the inputmesh andNT is the approximate

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:10 • Schertler, N. et al.

Fig. 13. A toy example illustrating an invisible seam construction in our
framework. Top left: a rectangular domain 3×2 and one 6×2; the parametric
lengths of the two matching sides (dotted lines) were made to match with
an integer factor of ×2. Bottom left: the two domains are sampled by texels
over a regular grid of 4 and 7 × 3 respectively (sizes are increased by one,
to account for the borders), and then packed side to side in one texture,
with no additional space necessary in between. Right: the distribution of
texels in 3D space is consistent with bilinear interpolation, preventing any
visual discontinuity artifact to appear along the cut. In this example, values
of texels (A,E), (B,G), (C, I) and (D,K) are made to match, while values
of texels F , H, J are set as the average of (E,G), (G, I), (I, J) respectively;
in total, there are four distinct, fully unconstrained texel values along the
border, on a total of 11 stored texels. No other texel is required in order to
avoid bleeding or discontinuity artifact. See Figure 20 for an example of an
actual rendering.

requested number of texels (e.g. 1.6 · 107 for a full resolution 4k × 4k
texture).

4.2 Consistency Constraints
For Rectangles. As the patches should be rectangles in parametric

space, the sum of assigned half-arc lengths on the opposite sides of
each rectangle must be equal. For example, for the top rectangle in
Figure 12, we impose b = д + i and d = e .

For Arcs. If the lengths of all pairs of matching half-arcs (for exam-
ple, a = b, c = d etc. in Figure 12) are equal, the parametrization is
seamless in the classical sense of [Bommes et al. 2009].With the repli-
cation of a few texel values, interpolation artifacts can be avoided
completely, making cuts invisible (see Figure 20). Unfortunately, as
observed in [Campen and Zorin 2017], enforcing equal lengths of
matching half-arcs together with rectangle constraints can result in
a global system which admits only very few and heavily distorted
solutions or even none at all (for strictly positive variables). In our
scenario, we can relax these constrains in two different ways as
described below.

4.3 Relaxing the System
Invisible Cuts. We borrow from [Ray et al. 2010] the observation

that if a transition function at a cut includes an integer scaling, then
the cut is still invisible (see Fig. 13). In practice, we found that we
can limit the integer multiplier to ×1 and ×2. In other words, we
allow an occasional ×2 resolution jump across a cut, so to relax the
global system. Such jumps are necessary only for a tiny minority of
the cuts.

Visible Cuts. Allowing for integer jumps already increases the
degrees of freedom drastically. We noticed that disregarding only a
few arc consistency constraints allows the system to reach a lower
distortion everywhere (and thus a smaller energy). This trade-off
is convenient, because interpolation artifacts at cuts are minor and
local. Inmost scenarios, a few visible seams can be tolerated, whereas
the gain in reduced distortion is global (in the industry standard,
cuts are very rarely invisible, see Sec. 2.1).

4.4 Solving the System
We need to solve for half-arc lengths, integer multipliers, and dis-
abled arc constraints. This makes for a mixed integer non-linear
problem, which, however, can be solved using a simple heuristic.

Multipliers. The patch graph comprises two types of cuts: Those
that are generated during patch splitting and those that are gener-
ated from the Generalized Motorcycle Graph. We observed that the
latter kind is almost never required to have multipliers other than 1
because they usually trigger a patch split otherwise. Therefore, we
set those multipliers to one and derive the remaining multipliers
from the patch splitting phase (see next section).

Arc Lengths. Given the pre-determined multipliers, the aforemen-
tioned objective function becomes a linearly constrained quadratic
function, which we solve with a commercial IQP solver [Gurobi Op-
timization 2016]. When the solver determines the model to be infea-
sible, we use its feasibility relaxation to remove the arc consistency
constraints with minimal total length that make the system feasible.
Similarly, if a solution produces an unfavorable ratio of half-arc
length and its target length (we use a threshold of 2), we remove all
consistency constraints for the arcs on the same side in the respec-
tive patch. This relaxes the system more, allowing solutions with
less distortion.

4.5 Patch Splitting
Whenever the ratio between the internal paths that are used for
patch size determination are too extreme, we split the corresponding
patch. For this, we consider each of these internal paths as cut
candidates and choose the subset that results in the least distortion as
actual cuts. During this procedure, we maintain integer multipliers
on the cuts to make it invisible. We optimize for the distortion-
minimizing cuts with an incremental rounding approach of the
respective multipliers. For details, refer to the supplemental material.

5 PARAMETRIZATION AND PACKING
In the final step, we compute the mapping from each patch on
the mesh to the corresponding axis-aligned quadrilateral domain
in texture space. This is constructed in the standard form of a UV
assignment to each mesh vertex (replicating vertices at patch bound-
aries). Any patch distortion minimization parametrization method
could be used for this purpose. We adopt Scaffold Map [Jiang et al.
2017] (initialized from a harmonic map), because it provides a good
balance between area and angle preservation, while dealing well
with open boundaries by avoiding global overlaps. The latter prop-
erty is needed for patches which include open edges. For patches

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:11

Fig. 14. Left: due to the combined effect of five regular fenced regions
(green, left), a topologically rectangular patch ends up having fairly different
geodesic length on east and west sides, resulting in a heavily distorted map
(middle, note the anisotropic quad shapes). Right: by splitting the patch
vertically, two less distorted patches can be obtained, connected by an
invisible cut associated to a resolution multiplier of 2 (cf. Figure 13).

that cannot be embedded without overlap (e.g. due to small han-
dles or non-manifold configurations), we employ a least-squares
conformal map [Lévy et al. 2002].

Boundary conditions are set as follows: (1) vertices in the interior
of patches are unconstrained, and (2) vertices mapped on a side of a
rectangle are constrained to never leave that side, but are allowed to
slide along it. This is trivially achieved by constraining either their
u or v coordinate to a constant value (the four corners, belonging
to two sides, always have both coordinates fixed).
Over all sides that are invisible cuts (see 4.2), the two copies are

constrained to slide in sync with respect of each other by enforcing
the two vertices to have the same barycentric position (in [0,1])
over the segment (a linear constraint in the texture coordinates).
The same constraint is applied to T -nodes, effectively fixing both
coordinates of the respective vertex. At this point, the system could
be solved globally. However, this requires the optimization of two
energy types at the same time (scaffold map and LSCM). We exper-
imentally observed that the global solution can be approximated
well by a simpler, local approximation. We fix both coordinates of
boundary vertices, decoupling the optimization between patches
and solving smaller systems. To overcome the inevitable distortion
introduced by fixing the positions on the boundary, we evaluate the
parametrization’s energy and make the longest patch side a visible
cut if it exceeds a user-definable threshold. Figure 15 shows how
increasing this threshold leads to less visible seams with marginally
higher parametrization distortion.

Finally, we pack all rectangular patches into a unified texture. For
each patch of sizem × n, we allocate (m + 1 × n + 1) texels (because
texels are sampled at the boundary of the rectangles – cf. Fig 13).
Therefore, no empty texels need to be left unused between the
patches. For packing, we employ the maximal rectangles algorithm
[Jylänki 2010] (patches with open boundary are represented by
their axis aligned bounding rectangle). For the typical sizes of the
problem, this is very efficient, producing extremely tight packings
(< 5% wasted space) within tenths of milliseconds. This is one of
the benefits of a rectangular based domain.

To allow MIP-mapping up to a user-specified MIP-map level l , we
perform all previous steps for the given level. I.e., the arcs’ target

Fig. 15. Dependency of the amount of visible seams (w.r.t. the total amount
of seams) and the distortion of the parametrization (measured by the av-
erage MIPS energy per triangle; the minimum MIPS energy is 2.0) on the
user-definable parametrization energy threshold. The presented data are
medians over all models from the [Jakob et al. 2015] data set (see Table 1).
Increasing the threshold reduces the amount of visible seams and introduces
slightly more distortion. The latter series exhibits some outliers due to the
discrete nature of the underlying optimization problem.

lengths are scaled by an additional factor of 2−l . The final parame-
trization is found by scaling texture coordinates back to the finest
level using a factor of 2l . Note that this will introduce small gaps
between patches on finer levels. We share this inherent cost with
any other standard texture-mapping technique. In our setup, the
issue of MIP-mapping is alleviated, simplified, but not bypassed, by
the axis-alignment of cuts.
The resulting UV-mapped mesh can be saved and used in any

standard downstream application.

6 RESULTS
An important feature of our algorithm is that it always produces
a valid T-layout while producing a good (coarse) layout when the
input regularity can be exploited.

We verified this by successfully testing on models from six differ-
ent sources (see Table 1) without encountering a single failure case
out of more than one hundred cases. We produced the first dataset
by feeding the triangular meshes used by [Myles et al. 2014] into
the Instant Meshes algorithm [Jakob et al. 2015]. The resulting quad-
dominant meshes are characterized by a large number of irregular
vertices and occasionally holes. Other four datasets are provided
by the authors of the respective papers. The “handmade” dataset
consists of semi-regular quad-dominant meshes hand-modeled by
professional artists, downloaded from the repository [TurboSquid
2018]. Each dataset presents a different degree of regularity and
different types of problems. Figure 16 shows one sample from each
of datasets and more are shown in Figure 22.

We compared the performance of our method with existing solu-
tions on a challenging case (Figure 17). Compared to the UV layout
produced by a commercial software (Autodesk Maya), the Gener-
alized Motorcycle Graph layout is more GPU memory efficient,
because of the superior packing efficiency, and secondarily because

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:12 • Schertler, N. et al.

Data Set Models |S |/|V | s. red. vis. s. Rv 10 Rv 90 Mv Ri 10 Ri 90 Mi
[Jakob et al. 2015] 115 1.8% 95.2% 12.0% 0.69 1.37 2.00 0.65 1.47 2.12
[Ebke et al. 2016] 4 7.1% 70.8% 21.8% 0.38 1.96 2.04 0.42 1.98 2.73
[Marinov and Kobbelt 2006] 4 7.5% 83.1% 31.4% 0.39 1.62 2.09 0.42 1.54 2.33
[Bommes et al. 2009] 7 1.4% 42.9% 7.1% 0.58 1.47 2.06 0.49 1.48 2.22
[Ray et al. 2006] 4 5.8% 61.7% 18.0% 0.68 1.65 2.04 0.64 1.84 2.16
Hand-made 10 2.7% 61.1% 19.6% 0.46 2.11 2.11 0.45 2.24 3.10

Table 1. Result statistics for models of different types. We report the number of models in the dataset, the number of singularities |S | w.r.t. the number of
mesh vertices |V |, and the relative singularity reduction due to fenced regions. Parametrization statistics are reported by the percentage of visible cuts (w.r.t.
the length of all cuts), area ratios R of the parametrization with respect to the model surface as a distortion measure , and the average MIPS energy M . We
report the distortion measures for visible seam parametrization (Rv , Mv) and invisible seam parametrization (Ri , Mi). We present the area ratios as the 10-th
and 90-th percentile as robust substitutions for minimum and maximum. All values are medians over all models in the data set. Inivisible seam parametrization
is performed with a medium parametrization energy threshold (50, cf. Fig. 15)

[Jakob et al. 2015] [Ebke et al. 2016] [Marinov and Kobbelt 2006] [Bommes et al. 2009] [Ray et al. 2006] Hand-made

Fig. 16. Examples from the data sets presented in Table 1. Visible cuts are marked with red lines.

fewer domains with straighter boundaries require fewer texel repli-
cation. Compared to the plain motorcycle graph, our method pro-
duces a layout with about 1

20 of the patches (Figure 2).
Our reference implementation and selected data sets are available

at https://github.com/NSchertler/GeneralizedMotorcycleGraph.

6.1 Applications
3D Scanning. In Figure 18, we show how Generalized Motorcycle

Graphs can close the last gap of the Online Surface Reconstruction
scanning pipeline proposed by [Schertler et al. 2017], which uses a
specialized surface format based on Mesh Colors [Yuksel et al. 2010]
to store surface information. Consequently, the model cannot be
used directly in standard applications. By rendering the colors into
a rectangular texture, which has been laid out with a Generalized
Motorcycle Graph, we can make the data available to all applications
that support textured meshes.
Figure 18 also shows that Generalized Motorcycle Graphs are

insensitive against small imperfections in the input data. The high-
lighted area on the mesh shows a non-manifold configuration in
combination with holes. While other T-layout generation methods
cannot handle these cases, Generalized Motorcycle Graphs robustly
integrate these imperfections within a large texture patch. The non-
manifold configuration prohibits the existence of an overlap-free
embedding. Since a bijective parametrization does not exist, the pa-
rametrization produced by Generalized Motorcycle Graphs includes

a small area of overlap in the problematic region and leaves the
other parts of the texture unaffected.

Other kinds of surface information can be stored in textures laid
out by Generalized Motorcycle Graphs as well. Figure 19 shows
an application to light baking, where the ambient occlusion term
calculated by a preprocess has been baked into a texture and applied
to a low-resolution model.

Cuts Invisibility. An additional benefit is the ability to make most
cuts invisible (see Section 4.2). Figure 20 shows a rendering example.

Texture Reduction. Thanks to its packing efficiency, Motorcycle
Graphs can also be beneficial to reduce the size of textures used
in video games or movies. After asset creation, textures can be
automatically resampled into a tighter texture, saving GPU memory
while reducing the occurrences of seam artifacts (Figure 21).

Remeshing. Our approach is tailored for texture mapping appli-
cations, but under certain circumstances it can be employed for
remeshing as well: we can resample each produced domain with a
regular grid (an example is shown in Figure 23). This, however, im-
plies a resampling of the vertices, which can potentially introduce er-
rors at sharp features. Furthermore, T-junctions are produced along
any cut for which the parametric lengths do not match (Sec. 4.2);
for scenarios where T-junctions can be tolerated (e.g. in hidden
parts), this application can be seen as a convenient way to sweep
out different sources of irregularity scattered across the mesh and
concentrate them at the cuts in form of T-junctions. The resulting

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:13

Input

Patches:
Texture Occupancy:

15,843 1,314
55.8%

704
97.6%

Original Motor-
cycle Graph

Generalized Motor-
cycle Graph

Maya 2017

Fig. 17. Comparison of UV-atlases automatically generated for a complex model. From left to right: input quad-dominant mesh, with 138, 290 vertices and
10, 919 singularities; partition produced by the original Motorcycle Graph (after one step of Catmull-Clark); atlas parametrization produced by Autodesk
Maya’s automatic UV-mapping tool (optimized for the number of patches); and the result of our own approach. Below: the UV-layouts of the latter two
models. Our method results in almost half the patches, and a drastically superior texture packing efficiency, with only 2.4% unused texels.

remeshings are typically much more regular, which greatly helps
for example compression (see [Sander et al. 2003]).

7 LIMITATIONS AND CONCLUDING REMARKS
Our work allows automatic and high-quality UV mapping of a class
of meshes in between fully structured and unstructured meshes,
which, we argue, has high practical importance, both in manu-
ally modeled and automatically remeshed models. Fully automatic
pipelines that produce semi-regular meshes from captured data can

benefit from Generalized Motorcycle Graphs since it extends the
automatic workflow to texturing. Manually modeled semi-regular
meshes can also take advantage of the ability to automatically con-
struct GPU memory-efficient, artifact free, high-quality UV maps.

Limitations. The main limitations of our method stem directly
from our starting choices: we target T-layouts only; our parame-
trization is not globally seamless (in the sense of [Bommes et al.
2009]), nor globally conformal (in the sense of [Campen and Zorin

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:14 • Schertler, N. et al.

OSR GMCG

Fig. 18. Parametrization by Generalized Motorcycle Graphs close the gap between meshing approaches like Online Surface Reconstruction (OSR) and many
applications that use standard textured meshes as input. OSR takes several point clouds as input (left) and produces a semi-regular mesh in a specialized
format (middle). Natural Motorcycle Graphs can generate a standard textured mesh (right) from this format. To support this application, it is imperative that
Natural Motorcycle Graphs handle imperfections in the input data (highlighted areas) and produce a practically usable texture map.

Fig. 19. Generalized Motorcycle Graphs can be used to store various surface
attributes in a texture. In this example, the ambient occlusion term of a
high-resolution surface was baked into a texture (right) for use with a
low-resolution model (left).

2017]); we need to allow for integer jumps. Also, outside the tar-
geted class of meshes, our method is either superfluous (for very
regular inputs, where the original MCG can be directly employed)
or out-performed by standard global parametrization methods (for
very irregular inputs); targeting full automatism, our method is
not designed to be steerable by the user (although it could be ex-
panded in this direction). These choices are, however, justified by
our objectives.

Reliability. Reliability is one of the main motivations behind this
work and our major strength: our approach will always produce a
valid and usable UV mapping despite the imperfections of a given
semi-structured mesh, allowing its usage in a graphics pipeline

Fig. 20. Left: without per-arc consistency constraints, bilinear texture inter-
polation produces artifacts, which are visible under extreme magnification
and reveal the presence of the texture cut. Right: enforcing per-arc consis-
tency constraints (4.2), no artifacts appear regardless of the zoom factor.

Fig. 21. Generalized Motorcycle Graphs can be used to resample and repack
textures of a hand-made model (left) to a denser texture (right). In this
example, texture occupancy increased from 64.3% to 97.9%.

without a manual cleanup. This is achieved by enforcing (local)
consistency constraints and employing infallible (local) fall-back
strategies. The assumptions on the input, i.e. quad-dominance and

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

Generalized Motorcycle Graphs for Imperfect Quad-Dominant Meshes • 155:15

Fig. 22. The first 56 models produced by [Jakob et al. 2015] used to empirically validate our method.

preponderant regularity, are exploited whenever they are fulfilled;
conversely, when they are broken, the output just gracefully down-
grades its quality (in terms of layout coarseness and distortions).
This observation also holds at both extremes of the regularity spec-
trum: for a completely clean, pure-quad, and regular mesh, our
approach is equivalent to the original motorcycle graph (hence, it is
a proper generalization of it); for a generic irregular triangle mesh
the output will still be a valid (though very dense) quad partitioning
of the mesh. At the worst, our algorithm will produce a PTex-styled
parametrization [Burley and Lacewell 2008] over a Catmull-Clark

subdivision of the input mesh. The strength of our method lies
in-between these two extrema.

ACKNOWLEDGMENTS
We thank Xifeng Gao for his help in preparing our test data sets
and Zhongshi Jiang for adapting his scaffold map code to our needs.

REFERENCES
David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.

2013. Integer-grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4, Article
98 (July 2013), 12 pages. DOI:https://doi.org/10.1145/2461912.2462014

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

155:16 • Schertler, N. et al.

Fig. 23. A remeshing with a Generalized Motorcycle Graph. In this example,
the number of singularities (depicted as spheres) is reduced from 351 (left)
to just 32 in the output (right).

David Bommes, Timm Lempfer, and Leif Kobbelt. 2011. Global Structure Optimization
of Quadrilateral Meshes. Computer Graphics Forum 30 (2011), 375–384. Issue 2. DOI:
https://doi.org/10.1111/j.1467-8659.2011.01868.x

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,
and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. In Com-
puter Graphics Forum, Vol. 32. Wiley Online Library, 51–76. Issue 6.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation.
ACM Trans. Graph. 28, 3 (2009), 77.

Brent Burley and Dylan Lacewell. 2008. Ptex: Per-Face Texture Mapping for Production
Rendering. In Eurographics Symposium on Rendering 2008. 1155–1164.

Marcel Campen. 2017. Partitioning Surfaces into Quad Patches. In EG 2017 - Tutorials,
Adrien Bousseau and Diego Gutierrez (Eds.). The Eurographics Association. DOI:
https://doi.org/10.2312/egt.20171033

Marcel Campen, David Bommes, and Leif Kobbelt. 2012. Dual loops meshing: quality
quad layouts on manifolds. ACM Trans. Graph. 31, 4 (2012), 110.

Marcel Campen, David Bommes, and Leif Kobbelt. 2015. Quantized Global Param-
etrization. ACM Trans. Graph. 34, 6, Article 192 (Oct. 2015), 12 pages. DOI:
https://doi.org/10.1145/2816795.2818140

M. Campen and L. Kobbelt. 2014. Quad Layout Embedding via Aligned Parameterization.
Computer Graphics Forum 33, 8 (2014), 69–81. DOI:https://doi.org/10.1111/cgf.12401

Marcel Campen and Denis Zorin. 2017. Similarity Maps and Field-Guided T-Splines: a
Perfect Couple. ACM Trans. Graph 36, 4 (2017).

Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. 2006. Rectangular
multi-chart geometry images. In Proc. of the 4th Eurographics symp. on Geom. proc.

Joel Daniels, Cláudio T. Silva, Jason Shepherd, and Elaine Cohen. 2008. Quadrilateral
Mesh Simplification. In ACM SIGGRAPH Asia 2008 Papers (SIGGRAPH Asia ’08).
Article 148, 9 pages. DOI:https://doi.org/10.1145/1457515.1409101

Jonathan D. Denning, William B. Kerr, and Fabio Pellacini. 2011. MeshFlow: Interactive
Visualization of Mesh Construction Sequences. ACM Trans. Graph. 30, 4, Article 66
(July 2011), 8 pages. DOI:https://doi.org/10.1145/2010324.1964961

Hans-Christian Ebke, Patrick Schmidt, Marcel Campen, and Leif Kobbelt. 2016. Interac-
tively Controlled Quad Remeshing of High Resolution 3DModels. ACMTrans. Graph.
35, 6, Article 218 (Nov. 2016), 13 pages. DOI:https://doi.org/10.1145/2980179.2982413

David Eppstein, Michael T Goodrich, Ethan Kim, and Rasmus Tamstorf. 2008. Motorcy-
cle graphs: canonical quad mesh partitioning. In Computer Graphics Forum, Vol. 27.
Wiley Online Library, 1477–1486. Issue 5.

Michael S. Floater and Kai Hormann. 2005. Surface Parameterization: a Tutorial and
Survey. In Advances in Multiresolution for Geometric Modelling, Neil A. Dodgson,
Michael S. Floater, and Malcolm A. Sabin (Eds.). Springer, 157–186.

Xiao-Ming Fu, Chong-Yang Bai, and Yang Liu. 2016. Efficient Volumetric PolyCube-Map
Construction. Computer Graphics Forum 35, 7 (2016), 97–106.

Inc. Gurobi Optimization. 2016. Gurobi Optimizer Reference Manual. (2016). http:
//www.gurobi.com

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
field-aligned meshes. ACM Trans. Graph. 34, 6 (2015), 189.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial complex aug-
mentation framework for bijective maps. ACM Trans. Graph. 36, 6 (2017), 186.

Jukka Jylänki. 2010. A thousand ways to pack the bin-a practical approach
to two-dimensional rectangle bin packing. retrived from http://clb. demon.
fi/files/RectangleBinPack. pdf (2010).

Kestutis Karciauskas, Daniele Panozzo, and Jörg Peters. 2017. T-junctions in spline
surfaces. ACM Trans. Graph. 36, 5 (2017).

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3
(July 2002), 362–371. DOI:https://doi.org/10.1145/566654.566590

Ruotian Ling, Jin Huang, Bert Jüttler, Feng Sun, Hujun Bao, and Wenping Wang. 2014.
Spectral Quadrangulation with Feature Curve Alignment and Element Size Control.
ACM Trans. Graph. 34, 1, Article 11 (Dec. 2014), 11 pages.

Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam Gingold. 2017. Seamless:
Seam erasure and seam-aware decoupling of shape from mesh resolution. ACM
Trans. Graph. 36, 6, Article 216 (Nov. 2017), 15 pages.

Martin Marinov and Leif Kobbelt. 2006. A Robust Two-Step Procedure for Quad-
Dominant Remeshing. In Computer Graphics Forum, Vol. 25. Wiley Online Library,
537–546. Issue 3.

Ashish Myles, Nico Pietroni, Denis Kovacs, and Denis Zorin. 2010. Feature-aligned
T-meshes. ACM Trans. Graph. 29, 4, Article 117 (July 2010), 11 pages. DOI:https:
//doi.org/10.1145/1778765.1778854

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global param-
etrization. ACM Transactions on Graphics (TOG) 33, 4 (2014), 135.

D. Panozzo, E. Puppo, M. Tarini, N. Pietroni, and P. Cignoni. 2011. Automatic Con-
struction of Quad-Based Subdivision Surfaces Using Fitmaps. IEEE Transactions on
Visualization and Computer Graphics 17, 10 (Oct 2011), 1510–1520.

Chi-Han Peng, Eugene Zhang, Yoshihiro Kobayashi, and Peter Wonka. 2011. Connec-
tivity Editing for Quadrilateral Meshes. ACM Trans. Graph. 30, 6, Article 141 (Dec.
2011), 12 pages. DOI:https://doi.org/10.1145/2070781.2024175

Nico Pietroni, Enrico Puppo, Giorgio Marcias, Roberto Roberto, and Paolo Cignoni.
2016. Tracing Field-Coherent Quad Layouts. In Comp. Graph. F., Vol. 35. Wiley
Online Library, 485–496. Issue 7.

Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung.
2017. Autocuts: simultaneous distortion and cut optimization for UV mapping. ACM
Trans. Graph. 36, 6 (2017), 215.

Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic
Global Parameterization. ACM Trans. Graph. 25 (Oct. 2006), 1460–1485. Issue 4. DOI:
https://doi.org/10.1145/1183287.1183297

Nicolas Ray, Vincent Nivoliers, Sylvain Lefebvre, and Bruno Levy. 2010. Invisible Seams.
Computer Graphics Forum 29 (2010). Issue 4. DOI:https://doi.org/10.1111/j.1467-8659.
2010.01746.x

Nicolas Ray and Dmitry Sokolov. 2014. Robust Polylines Tracing for N-Symmetry
Direction Field on Triangulated Surfaces. ACM Trans. Graph. 33, 3, Article 30 (June
2014), 11 pages. DOI:https://doi.org/10.1145/2602145

Faniry H. Razafindrazaka and Konrad Polthier. 2017. Optimal base complexes for
quadrilateral meshes. Computer Aided Geometric Design 52-53 (2017), 63 – 74. DOI:
https://doi.org/10.1016/j.cagd.2017.02.012 Proc. GMP.

Faniry H Razafindrazaka, Ulrich Reitebuch, and Konrad Polthier. 2015. Perfect matching
quad layouts formanifoldmeshes. InComputer Graphics Forum, Vol. 34.WileyOnline
Library, 219–228. Issue 5.

P. V. Sander, Z. J.Wood, S. J. Gortler, J. Snyder, andH. Hoppe. 2003. Multi-chart Geometry
Images. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing (SGP ’03). Eurographics Association, 146–155.

Nico Schertler, Marco Tarini, Wenzel Jakob, Misha Kazhdan, Stefan Gumhold, and
Daniele Panozzo. 2017. Field-aligned online surface reconstruction. ACM Trans.
Graph. 36, 4 (2017), 77.

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.
ACM Trans. Graph. 34, 4, Article 70 (July 2015), 9 pages.

Marco Tarini. 2016. Volume-encoded UV-maps. ACM Trans. Graph. 35, 4, Article 107
(July 2016), 13 pages. DOI:https://doi.org/10.1145/2897824.2925898

Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. 2004. PolyCube-
Maps. ACM Trans. Graph. 23, 3 (Aug. 2004), 853–860. DOI:https://doi.org/10.1145/
1015706.1015810

Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. 2011.
Simple Quad Domains for Field Aligned Mesh Parametrization. ACM Trans. Graph.
30, 6, Article 142 (Dec. 2011), 12 pages. DOI:https://doi.org/10.1145/2070781.2024176

Marco Tarini, Cem Yuksel, and Sylvain Lefebvre. 2017. Rethinking Texture Mapping.
In ACM SIGGRAPH 2017 Courses (SIGGRAPH ’17). Article 11, 139 pages.

TurboSquid. 2018. 3D Models for professionals. (2018). https://www.turbosquid.com
[Online; accessed 23-January-2018].

Francesco Usai, Marco Livesu, Enrico Puppo, Marco Tarini, and Riccardo Scateni. 2015.
Extraction of the quad layout of a triangle mesh guided by its curve skeleton. ACM
Trans. Graph. 35, 1 (2015), 6.

Chaman Singh Verma and Krishnan Suresh. 2015. A robust combinatorial approach
to reduce singularities in quadrilateral meshes. Procedia Engineering 124 (2015),
252–264.

Chaman Singh Verma and Krishnan Suresh. 2016. αMST: A Robust Unified Algorithm
for Quadrilateral Mesh Adaptation. Procedia Engineering 163 (2016), 238 – 250. 25th
International Meshing Roundtable.

Cem Yuksel. 2017. Mesh Color Textures. In High-Performance Graphics (HPG 2017). 11.
Cem Yuksel, John Keyser, and Donald H House. 2010. Mesh colors. ACM Trans. Graph.

29, 2 (2010), 15.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 155. Publication date: August 2018.

