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1 OPTIMIZATION OF MOTORCYCLE SPAWNING
In this section, we explain how to optimize for the starting positions
and exit paths for spawning motorcycles from irregular fenced
regions.

At this point, potential paths have been traced that connect pos-
sible exit points with the interior vertices of the fenced region. The
goal is to select a subset of v paths (v being the fenced region’s
valence) from these candidates that represent the final exit paths.
For this, we prefer paths that are straight and where the starting
point is centered inside the fenced region.
We evaluate the quality of a starting point q and the final exit

paths P = (p1,p2, ...pv ), where the pi are sequences of edges that
lead from the starting point to the fenced region’s border, with the
following energy:

E(q, P) = ωsEs (P) + ωdEd (P) + ωcEc (r ), (1)

where Es (P) measures the total straightness of all paths, Ed (P) mea-
sures how uniformly the paths are distributed around the starting
point, and Ec (q) measures how centered the representative is in
the fenced region. The weights ωs , ωd , and ωc balance between the
energies. In our experiments, we used ωs = 1, ωd = 1, ωc = 0.2v .
The straightness energy is the summed straightness deviation

(measured as an angle in the tangent plane at every vertex) of all
paths:

Es (P) =
∑
p∈P

|p |∑
i=1
^nvert(p,i+1) (p[i],p[i + 1]), (2)

where vert(i,p) is the i-th vertex of path p, nv is the normal corre-
sponding to vertex v , and p[i] is the i-th edge of path p.
The distribution energy measures the deviation from the angle

between two successive paths at the starting point from 90° (mea-
sured in 3D space) because the respective corner will be mapped to
a right angle in parameter space:

Ed (P) =
v∑
i=1

(
^(pi ,pi+1) −

π

2

)2
(3)

Finally, the centeredness energy measures the distance of the
starting point from the fence, which we calculate with a BFS:

Ec (q) = −distanceFromFence(q) (4)

We evaluate the best exit paths for every vertex in the fenced
region separately and choose the best vertex as the motorcycle
starting point. Then, the task is to find the best subset from a set of
path candidates pci (the initially traced paths). Calculating the best
subset for a single vertex can be done efficiently with a Dynamic
Program, observing that Ec is constant, the inner terms of Es are
unary energy terms, and the inner terms of Ed are pair-wise energy
terms. We will abbreviate:

Esi :=
|pci |∑
j=1
^nvert(pci , j+1)

(pci [j],pci [j + 1]) (5)

Ed(i, j ) :=
(
^(pci ,pc j ) −

π

2

)2
(6)

Then, we define the partial cost functionC(o, l , f ), which returns
the best possible energy for exit paths for orientations 0 through
o having first path pcf and last path pcl . The cost of the best exit
paths for the examined vertex is then argminl,f C(v − 1, l , f ). The
partial cost function C can be initialized from all path candidates
corresponding to edges of orientation zero with:

C(0, i, i) := Esi ∀ i : orientation(pci ) = 0 (7)

The cost function can then be propagated in a DP-way with the
following update:

C(o, i, f ) = ∞ ∀ i : orientation(pci ) , o (8)

C(o, i, f ) = Esi +min
j ∈V

C(o − 1, j, f ) + Ed(j,i )

+

{
Ed(i, f ) o = v − 1
0 else

(9)

The set of valid predecessors V to check are those whose entry
points lie between those of the first and the i-th path candidate in
counter-clockwise direction and that do not intersect with the i-th
path candidate. This propagation can be done efficiently by sorting
the path candidates by their entry points and grouping them by the
orientation of the respective edge.

After the entire function has been calculated, the best paths can
be derived by back-propagation.

2 PATCH SPLITTING
In this section, we present howwe optimize for distortion-minimizing
cuts to split non-rectangular patches like the one shown in Figure 1,
allowing an integer scale multiplier at the resulting cut. Our splitting
procedure can be applied to each dimension independently. In the
following, we will only consider a single dimension (the left-right
direction with top-down cuts). At this point, parallel motorcycles
that have been used to determine target parametric arc lengths are
available. We use them both for determining the thickness of a patch
as a discrete sampling (reflected by the length of a motorcycle) and
as possible cut candidates.

2.1 Problem Formulation
In order to evaluate isometric distortion, we introduce a variable
height hi for every segment of the patch (between two successive
cut candidates, see Figure 1). At the same time, we can measure the
lengths li of all motorcycles, either in a topological or a geometric
sense. The isometric distortion is then the deviation of the segment
height with respect to both incident motorcycle lengths:

D(h) =
n∑
i=1

(hi − li )
2 + (hi − li+1)

2, (10)

where n is the number of segments.
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Fig. 1. We split strongly non-rectangular patches like this example patch by
considering straight motorcycles between two opposite sides of the patch
having lengths li as cut candidates. We minimize isometric distortion by
allowing power-of-2multipliers between the segment heights hi . A possible
split is shown as colored segments.

To incorporate the integer constraint for every cut multiplier,
we express the heights of all segments as a multiple of the first
segment’s height: hi = mi · h1, where the mi ∈

{ 1
2 , 1, 2

}
are the

respective multipliers.

D(h1,m) = (h1−l1)
2+ (h1−l2)

2+
n∑
i=2

(mi ·h1−li )
2+ (mi ·h1−li+1)

2

(11)
We optimize the multipliers to minimize the above distortion mea-
sure and extract connected components of equal multipliers. Finally,
we realize the cuts represented by motorcycles between these con-
nected components. If no cuts are necessary, all resulting multipliers
will be 1.

To improve robustness of this approach, we perform Laplacian
smoothing on the motorcycle length li and filter out small connected
components with fewer than four segments.

2.2 Solution
DerivingD with respect to one of the multipliers gives the following
partial derivative:

∂D(h1,m)

∂mi
= 2h1 (2mih1 − li − li+1) , (12)

yielding the following stationary point:

mi =
li + li+1
2h1

(13)

Intuitively, this means that the multipliers give enough freedom to
the objective function such that they could be optimized indepen-
dently in a continuous setting.

To incorporate the integer constraints, we use an iterative round-
ing strategy. That means that we solve the optimization problem in a
continuous setting and iteratively round one multiplier to one of the
valid multipliers. We choose the multiplier whose rounding results
in the least energy increase. To evaluate the energy increase, it is
also necessary to calculate the optimal h1. Given the partitioning of
the multipliers in fixed multipliers F (those that have been rounded
before and stay fixed) and unfixed U , the partial derivative with

respect to the first segment’s height is:

∂D(h1,m)

∂h1
= 4h1 ·

(
1 +

∑
i ∈F

m2
i

)
− 2

(
l1 + l2 +

∑
i ∈F

mi · (li + li+1)

)
,

(14)
yielding the stationary point

h1 =
l1 + l2 +

∑
i ∈F mi · (li + li+1)

2h1 ·
(
1 +

∑
i ∈F m

2
i

) (15)

This optimal height can be calculated incrementally as more mul-
tipliers are fixed. This allows to evaluate the change in energy for
every possible rounded value of unfixed multipliers. Following the
iterative rounding strategy will therefore efficiently result in a local
minimizer of the distortion energy.


