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1 Introduction

The classical Schwarz method [31] is based on Dirichlet boundary conditions.
Overlapping subdomains are necessary to ensure convergence. As a result,
when overlap is small, typically one mesh size, convergence of the algorithm
is slow. A first possible remedy is the introduction of Neumann boundary
conditions in the coupling between the local solutions. This idea has lead to
the development of the Dirichlet-Neuman algorithm [10], Neumann-Neumann
method [3] and FETI methods [8]. These methods are widely used and have
been the subject of many works, improvements and extensions to various
scalar or systems of partial differential equations, see for instance the follow-
ing books [32], [27], [37] and [35] and references therein. A second cure to the
slowness of the original Schwarz method is to use more general interface con-
ditions, Robin conditions were proposed in [19] and pseudo-differential ones
in [17]. These methods are well-suited for indefinite problems [5] and as we
shall see to heterogeneous problems.

We first recall the basis for the optimized Schwarz methods in § 2 and
an application to the Helmholtz problem in § 2.2. Then, we consider equa-
tions with highly discontinuous coefficients in § 3. We present an optimized
Schwarz method that takes into account properly the discontinuities and make
comparisons with other domain decomposition methods.

2 Generalities on Optimized Schwarz methods

2.1 Optimal Interface Conditions

We show exhibit interface conditions which are optimal in terms of iteration
counts. The corresponding interface conditions are pseudo-differential and are
not practical. Nevertheless, this result is a guide for the choice of partial dif-
ferential interface conditions. Moreover, this result establishes a link between
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the optimal interface conditions and artificial boundary conditions. This is
also a help when dealing with the design of interface conditions since it gives
the possibility to use the numerous papers and books published on the subject
of artificial boundary conditions, see e.g. [6, 15].

We consider a general linear second order elliptic partial differential oper-
ator L and the problem:

Find u such that L(u) = f in a domain Ω and u = 0 on ∂Ω.
The domain Ω is decomposed into two subdomains Ω1 and Ω2. We suppose

that the problem is regular so that ui := u|Ωi
, i = 1, 2, is continuous and has

continuous normal derivatives across the interface Γi = ∂Ωi ∩ Ω̄j , i 6= j.

Fig. 1. A two-subdomain decomposition
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A generalized Schwarz type method is considered.
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(1)

where µ1 and µ2 are real-valued functions and B1 and B2 are operators acting
along the interfaces Γ1 and Γ2. For instance, µ1 = µ2 = 0 and B1 = B2 = Id
correspond to the original Schwarz method; µ1 = µ2 = 1 and Bi = α ∈ R,
i = 1, 2, has been proposed in [19] by P. L. Lions.

The question is:

Are there other possibilities in order to have convergence in a minimal
number of steps?

In order to answer this question, we introduce the DtN (Dirichlet to Neumann)
map (a.k.a. Steklov-Poincaré) of domain Ω2 \ Ω̄1: Let

u0 : Γ1 → R

DtN2(u0) := ∇v.n2|∂Ω1∩Ω̄2
,

(2)

where n2 is the outward normal to Ω2 \ Ω̄1, and v satisfies the following
boundary value problem:

L(v) = 0 in Ω2 \ Ω̄1

v = 0 on ∂Ω2 ∩ ∂Ω

v = u0 on ∂Ω1 ∩ Ω̄2.
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Similarly, we can define DtN1 the Dirichlet to Neumann map of domain Ω1 \
Ω̄2. The following optimality result is proved in [23]:

Result 1 The use of Bi = DtNj (i = 1, 2 and i 6= j) as interface conditions
in (1) is optimal: we have (exact) convergence in two iterations.

The two-domain case for an operator with constant coefficients has been first
treated in [17]. The multidomain case for a variable coefficient operator with
both positive results [25] and negative conjectures [26] has been considered as
well.

Remark 1. The main feature of this result is to be very general since it does
not depend on the exact form of the operator L and can be extended to
systems or to coupled systems of equations as well with a proper care of the
well posedness of the algorithm.

As an application, we take Ω = R2 and Ω1 = ] − ∞, 0 [×R. Using the
Fourier transform along the interface (the dual variable is denoted by k), it is
possible to give the explicit form of the DtN operator for a constant coefficient
operator. If L = η −∆, the DtN map is a pseudo-differential operator whose
symbol is

Bi,opt(k) =
√

η + k2,

i.e., Bi,opt(u)(0, y) =
∫
R

Bi,opt(k)û(0, k)eIky dk.
The symbol is not polynomial in the Fourier variable k so that the oper-

ators and hence the optimal interface conditions are not a partial differential
operator. They correspond to exact absorbing conditions. These conditions
are used on the artificial boundary resulting from the truncation of a compu-
tational domain. On this boundary, boundary conditions have to be imposed.
The solution on the truncated domain depends on the choice of this artificial
condition. We say that it is an exact absorbing boundary condition if the
solution computed on the truncated domain is the restriction of the solution
of the original problem. Surprisingly enough, the notions of exact absorbing
conditions for domain truncation and that of optimal interface conditions in
domain decomposition methods coincide.

2.2 Optimized Interface Conditions for the Helmholtz equation

As the above example shows, the optimal interface conditions are pseudodif-
ferential. Therefore they are difficult to implement. Moreover, in the general
case of a variable coefficient operator and/or a curved boundary, the exact
form of these operators is not known, although they can be approximated by
partial differential operators which are easier to implement. The approxima-
tion of the DtN has been addressed by many authors since the seminal paper
[6] by Engquist and Majda on this question. A first natural idea is to use
these works in domain decomposition methods. As we shall see, it is better to
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design approximations that are optimized with respect to the domain decom-
position method. We seek approximations to the Dirichlet to Neumann map
by a partial differential operator

DtN ' αopt −
∂

∂τ
(γopt

∂

∂τ
)

where ∂τ is the derivative along the interface. The parameters are chosen in
order to minimize the convergence rate of the algorithm. These interface con-
ditions are called optimized of order 2 conditions (opt2). If we take γ = 0, the
optimization is performed only w.r.t. α, they are called optimized of order 0
(opt0). The idea was first raised in [34]. But the link with the optimal inter-
face conditions was not done and made the optimization too complex.

As an example, we present here the case of the Helmholtz equation that
was considered in [12]. We want to solve by a domain decomposition method:

L(u) = (−ω2 −∆)(u) = f

In order to find the optimized interface conditions, we first consider a very
simple geometry for which the optimization is tractable and then apply these
results to an industrial case. As a first step, the domain Ω = R2 is decomposed
into two non overlapping subdomains Ω1 = (−∞, 0)×R and Ω2 = (0,∞)×R.
The algorithm is defined by (1) with µ1 = µ2 = 1 and B1 = B2 = α− ∂

∂τ (γ ∂
∂τ ).

A direct computation yields the convergence rate of the iterative method in
the Fourier space:

ρ(k;α, γ) ≡



∣∣∣∣∣I
√

ω2 − k2 − (α + γk2)
I
√

ω2 − k2 + (α + γk2)

∣∣∣∣∣ if |k| < ω (I2 = −1)

∣∣∣∣∣
√

k2 − ω2 − (α + γk2)√
k2 − ω2 + (α + γk2)

∣∣∣∣∣ if ω < |k|

The convergence rate in the physical space is the maximum over k of ρ(k;α, γ).
Actually, it is sufficient to consider Fourier modes that can be represented on
the mesh used in the discretization of the operator. It imposes a truncation
in the frequencey domain of the type |k| < π/h where h is the mesh size. We
have then to minimize the convergence rate in the physical space with respect
to the parameters α and γ. We are thus led to the following min-max problem:

min
α,γ

max
|k|<π/h

ρ(k;α, γ).

Under additional simplifications, we get analytic formulas for the optimized
parameters α and γ depending on ω and h, see [12].
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For an arbitrary domain decomposition for instance obtained by an au-
tomatic mesh partitioner as the one shown on figure 2, we proceed in the
following manner. At each node on the interface, we use the local value of
the mesh size to compute the optimized parameters using the formula es-
tablished in the simple case of the plane R2 divided into two half-planes. In
table 1, we give iteration counts for various interface conditions: ABC0 means
that the interface conditions are ∂n + Iω (i.e. α = Iω and γ = 0, see [2]),
ABC2 corresponds to absorbing conditions of order 2 that are currently used
for truncation of domains see [6] but were not designed with domain decom-
position methods in mind. Notice that since the interfaces are not straight
lines and the subdomains have an irregular shape, we are very far from the
ideal case considered above. Nevertheless, the optimized interface conditions
perform quite well.

Fig. 2. Domain decomposition of the cabin car
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Table 1. Iteration Counts for various interface conditions and numbers of subdo-
mains Ns

Ns ABC 0 ABC 2 Optimized

2 16 it 16 it 9 it
4 50 it 52 it 15 it
8 83 it 93 it 25 it

16 105 it 133 it 34 it

3 Optimized Schwarz Method for Highly Discontinuous
Coefficients

We consider now a symmetric positive definite problem but with highy dis-
continuous coefficients. The model equation is
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ηu− div(κ∇u) = f in Ω

It contains some of the difficulties typical of porous media flow simulations.
Indeed, the coefficients η and κ have jumps which are typically of four orders
of magnitude. The tensor κ is anisotropic with large anisotropy ratios: 10−4 ≤
κx/κy ≤ 104. In the situation we consider, the domain Ω is divided into two
subdomains Ω1 and Ω2 corresponding to two different geological blocks. Each
subdomain is layered so that the coefficients are discontinuous both across
and along the interface, see for instance figure 3. These kinds of problems
lead to very ill-conditioned linear systems so that there are plateaus in the
convergence of Krylov methods even with otherwise “good” preconditioners.

Fig. 3. Lithology
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In order to design optimized interface conditions, we first define more
precisely the model problem we consider.

3.1 Setting of the semi-discrete problem

We consider a model problem set in an infinite tube Ω = R × ω where ω is
some bounded open set of Rp for some p ≥ 1. The domain is decomposed into
two non overlapping half tubes Ω1 = (−∞, 0) × ω and Ω2 = (0,∞) × ω. A
point in Ω will be denoted by (x,y). Let for i = 1, 2

Li := − ∂

∂x
ci(y)

∂

∂x
+ Ci(y) (3)

where ci is a positive real valued function and Ci is a symmetric positive
definite operator independent of the variable x. For instance, if p = 2 one
might think of

Ci := ηi(y, z)−
(

∂

∂y
κi,y(y, z)

∂

∂y
+

∂

∂z
κi,z(y, z)

∂

∂z

)
(4)

with homogeneous Dirichlet boundary conditions and ηi ≥ 0, ci, κi,y, κi,z > 0
are given real-valued functions and (y, z) ∈ ω.
We want to solve by a domain decomposition method the following problem
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Li(ui) = f in Ω
u = 0 on ∂Ω

with
C1

∂u1

∂x
= C2

∂u2

∂x
on Γ

and
u2 = u1 on Γ

The problem can be considered at the continuous level and then discretized
(see e.g. [12], [11], [24] ), or at the discrete level (see e.g. [20], [28] or [13]).
We choose here a semi-discrete approach where only the tangential directions
to the interface x = 0 are discretized whereas the normal direction x is kept
continuous.
We therefore consider a discretization in the tangential directions which leads
to

Li,h := − ∂

∂x
Ci

∂

∂x
+ Bi (5)

where Bi and Ci are symmetric positive matrices of order n where n is the
number of discretization points of the open set ω ⊂ Rp. For instance if we
take Ci to be defined as in (4), Bi may be obtained via a finite volume or finite
element discretization of (4) on a given mesh or triangulation of ω ⊂ R2.

We consider a domain decomposition method based on arbitrary interface
conditions D1 and D2. The corresponding Optimized Schwarz method (OSM)
reads:

L1,h(un+1
1 ) = f in Ω1

D1(un+1
1 ) = D1(un

2 ) on Γ

L2,h(un+1
2 ) = f in Ω2

D2(un+1
2 ) = D2(un

1 ) on Γ
(6)

where Γ is the interface x = 0. It is possible to both increase the robustness of
the method and its convergence speed by replacing the above fixed point iter-
ative solver by a Krylov type method. This is made possible by substructuring
the algorithm in terms of interface unknowns

H1 = D1(u2)(0, .) and H2 = D2(u1)(0, .)

see [9].
At this point, it should be noted that the analysis of the present paper is
restricted to rather idealistic geometries. However, the same formalism can
be used for a domain decomposition into an arbitrary number of subdomains
[12]. It has also been found there that the convergence estimates provided in
this simple geometry predict very accurately the ones observed in practice
even for complicated interface boundaries.

We first define interface conditions that lead to convergence in two steps
of the algorithm. Let

Λi = C
1/2
i A

1/2
i C

1/2
i (7)
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where Ai := C
−1/2
i BiC

−1/2
i . Taking

D1 = (C1
∂

∂n1
+ Λ2) and D2 = (C2

∂

∂n2
+ Λ1)

leads to a convergence in two steps of (1), see [9]. This result is optimal in
terms of iteration counts. But, matrices Λi are a priori full matrices of order
n costly to compute and use. Instead, we will use approximations in terms of
sparse matrices denoted Λi,ap. We lose convergence in two steps. In order to
have the best convergence rate, we choose optimized sparse approximations
to Λi w.r.t the domain decomposition method.

We first consider diagonal approximations to Λi. At the continuous level,
they correspond to Robin interface conditions. For a matrix F , let λm,M (F )
denote respectively the smallest and largest eigenvalues of F and diag(F ) the
diagonal matrix made of the diagonal of F . We define

Λ0
i,ap = β̃i,optD̃i (8)

where D̃i := C
1/2
i diag(Ai)1/2C

1/2
i and

β̃i,opt =
√

βm βM

with
βm,M =

√
λm,M (diag(Ai)−1/2Ai diag(Ai)−1/2)

We also consider sparse approximations that will have the same sparsity as
Ai. Let λm,M = λm,M (D̃−2

i Ai)1/2, the real parameters β1 and β2 are defined
as follows

β1β2 = λm λM (9)

β1 + β2 =
(
2
√

λmλM (λm + λM )
)1/2

(10)

We define

Λ2
ap,β1,β2

:= C
1/2
i

D̃−1
i Ai + β1β2D̃i

β1 + β2
C

1/2
i (11)

At the continuous level, they correspond to optimized of order 2 interface
conditions. The motivation for definitions (8) and (11) are given in [9].

3.2 Numerical results

The substructured problems are solved by a GMRES algorithm [29]. In the
tables and figures, opt0 refers to (8) and opt2 to formula (11). In figure 4, we
compare them with interface conditions obtained using a “frozen” coefficient
approach. In the latter case, the interface conditions depend only locally on
the coefficients of the problem, see [36] at the continuous level, [13] at the
semi-discrete level and [28] at the algebraic level. We see a plateau in the
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convergence curve which can be related to a few very small eigenvalues in
the spectrum of the substructured problem, see figure 4. A possible cure to
this problem is the use of deflation methods, [21], [16], [22] and [30]. They
rely on an accurate knowledge of the eigenvectors corresponding to the “bad”
eigenvalues. With the opt2 interface conditions, no eigenvalue is close to zero
and we need only extremal eigenvalues (and not the eigenvectors) of an aux-
iliary matrix. We also give comparisons with the Neumann-Neumann [33] [4]
or FETI [18] approach, see figure 5. In the numerical tests, we have typically
ten layers in each subdomain. In each layer, the diffusion tensor is anisotropic.
We have jumps in the coefficients both across and along the interface. We are
thus in a situation where the Neumann-Neumann or FETI methods are not
necessarily optimal.

Fig. 4. Left: Convergence curve for various interface conditions. Right: Eigenvalues
of the interface problem for opt2 (cross) and “frozen” (circles) interface conditions.

0 2 4 6 8 10 12 14 16 18
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Frozen Coefficients ICs

Opt2

Fig. 5. residual vs. subdomain solve counts
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4 Conclusion

We have first recalled known results on optimized Schwarz methods for
smooth coefficients operators. We have then considered problems with highly
anisotropic and discontinuous coefficients, for which plateaus in the conver-
gence of Krylov methods exist even when using “good” preconditioners. A
classical remedy is to use deflated Krylov methods. We have developed in this
paper a new algebraic approach in the DDM framework. We propose a way to
compute optimized interface conditions for domain decomposition methods
for symmetric positive definite equations. Compared to deflation, only two
extreme eigenvalues have to be computed. Numerical results show that the
approach is efficient and robust even with highly discontinuous coefficients
both across and inside subdomains. The non-symmetric case is considered in
this volume at the algebraic level in a joint work with Luca Gerardo-Giorda,
see also [14]. The optimization of the interface condition is then much more
difficult. Let us mention that such interface conditions can be used on non
matching grids, see [1] and [7].
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