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Summary. We propose adaptive selection of the coarse space of the BDDC and
FETI-DP iterative substructuring methods by adding coarse degrees of freedom
(dofs) on faces between substructures constructed using eigenvectors associated with
the faces. Provably the minimal number of coarse dofs on the faces is added to
decrease the condition number estimate under a target value specified a priori. It
is assumed that corner dofs are already sufficient to prevent relative rigid body
motions of any two substructures with a common face. It is shown numerically on
a 2D elasticity problem that the condition number estimate based on faces is quite
indicative of the actual condition number and that the method can select adaptively
a hard part of the problem and concentrate computational work there to achieve
the target value for the condition number and good convergence of the iterations,
at a modest cost.

1 Introduction

The BDDC and FETI-DP methods are iterative substructuring methods
that use coarse degrees of freedom associated with corners and edges (in
2D) or faces (in 3D, further on just faces) between substructures, and they
are currently the most advanced versions of the BDD and FETI families
of methods. The BDDC method by Dohrmann [2] is a Neumann-Neumann
method of Schwarz type [3]. The BDDC method iterates on the system of
primal variables reduced to the interfaces between the substructures and it
can be understood as further development of the BDD method by Mandel [11].
The FETI-DP method by Farhat et al. [5, 4] is a dual method that iterates
on a system for Lagrange multipliers that enforce continuity on the interfaces,
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and it is a further development of the FETI method by Farhat and Roux [6].
Algebraic relations between FETI and BDD methods were pointed out by
Rixen et al. [13], Klawonn and Widlund [8], and Fragakis and Papadrakakis [7].
A common bound on the condition number of both the FETI and the BDD
method in terms of a single inequality in was given by [8]. In the case of
corner constraints only, methods same as BDDC were derived as primal
versions of FETI-DP by Cros [1] and Fragakis and Papadrakakis [7], who
have also observed that the eigenvalues of BDD and a certain version of
FETI are identical. Mandel, Dohrmann, and Tezaur [12] have proved that
the eigenvalues of BDDC and FETI-DP are identical and they have obtained
a simplifed and fully algebraic version (i.e., with no undetermined constants)
of a common condition number estimate for BDDC and FETI-DP, similar to
the estimate by Klawon and Widlund [8] for BDD and FETI.

In this contribution, we show how to use the algebraic estimate from [12] to
develop an adaptive fast method. This estimate makes it possible to compute
the condition number bound from the matrices in the method as the solution of
an eigenvalue problem. By restricting the eigenproblems onto pairs of adjacent
substructures with a common face, we obtain a reliable heuristic estimate of
the condition number based on eigenvalues associated with the faces. Finally,
we show how to use the eigenvectors to obtain coarse degrees of freedom that
result in an optimal decrease of the condition number estimate. We show on
numerical examples that the condition number estimates are quite tight and
such adaptive approach can result in the concentration of computational work
in a small troublesome part of the problem, which leads to good convergence
behavior at a small added cost.

Related work on adaptive adaptive coarse space selection has focused on
the global problem of selecting the smallest number of corners to prevent
coarse mechanisms (Lesoinne [10]) and the smallest number of (more general)
coarse degrees of freedom to assure asymptotically optimal convergence
estimates (Klawonn and Widlund [9]). In contrast, our estimates are local in
nature and we assume that corner degrees of freedom are already sufficient to
prevent relative rigid body motions of any two substructures with a common
face.

2 Formulation of BDDC and FETI-DP

We need to briefly recall the formulation of the methods and the condition
number bound. Let Ki be the stiffness matrix and vi the vector of degrees of
freedom (dofs) for substructure i. We want to solve the problem in decomposed
form

1

2
vT Kv − vT f → min, v =




v1

...
vN


 K =




K1

. . .

KN



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subject to continuity dofs between substructures. Partitioning the dofs in each
subdomain i into internal and interface (boundary)

Ki =

[
Kii

i Kib
i

Kib
i

T
Kbb

i

]
, vi =

[
vi

i

vb
i

]
, fi =

[
f i

i

f b
i

]
,

and eliminating the interior dofs we obtain the problem reduced to interfaces

1

2
wT Sw − wT g → min, S = diag(Si), Si = Kbb

i − Kib
i

T
Kii−1

i Kib
i ,

again subject to continuity of dofs between substructures
In BDD type methods, the continuity of dofs between substructures is

enforced by imposing common values on substructures interfaces: w = Ru for
some u, where

R =




R1

...
RN




and Ri is the operator of restriction of global dofs on the interfaces
to substructure i. In FETI type methods, continuity of dofs between
substructures is enforced by the constraint Bw = 0, where the entries of B

are typically 0,±1. By construction, we have RiR
T
i = I and rangeR = nullB.

A BDDC or FETI-DP method is specified by the choice of coarse dofs
and the choice of weights for intersubdomain averaging. To define the coarse
problem for BDDC, choose a matrix QT

P that selects coarse dofs uc from global
interface dofs u, e.g. as values at corners or averages on sides:

uc = QT
P u.

We define W̃ as the space of all vectors of substructure interface dofs that are
continuous between substructures,

W̃ = {w ∈ W : ∃uc∀i : Ciwi = Rciuc}

where Ci = RciQ
T
P RT

i , and Rci restricts a vector of all coarse dof values into
a vector of coarse dof values that can be nonzero on substructure i . The dual
approach in FETI-DP is to construct QD such that W̃ = nullQT

DB.
In BDDC, the intersubdomain averaging is defined by the matrices

DP = diag (DPi) that form a decomposition of unity, RT DP R = I. The
corresponding dual matrices in FETI-DP are are BD = [DD1B1, . . . DDNBN ],
where the dual weights DDi are defined so that BT

DB + RRT DP = I.
The BDDC method is then the method of conjugate gradients for the

assembled system Au = RT g with the system matrix A = RT SR and the
preconditioner P defined by Pr = RT DP (Ψuc + z), where uc is the solution
of the coarse problem ΨT SΨuc = ΨT DT

P Rr and z is the solution of
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Sz + CT µ = DT
P Rr

Cz = 0
,

which is a collection of independent substructure problems. The coarse basis
functions Ψ are defined by energy minimization,

[
S CT

C 0

] [
Ψ

Λ

]
=

[
0

Rc

]
.

The FETI-DP method solves the saddle point problem

min
w∈fW

max
λ

L(w, λ) = max
λ

min
w∈fW

L(w, λ),

where L(w, λ) = 1
2wT Sw − wT f + wT BT λ by iterating on the dual problem

∂F(λ)
∂λ

= Fλ − h = 0, where

F(λ) = min
w∈fW

L(w, λ),

by conjugate gradients with the preconditioner M = BDSBT
D. See [12] for

more details.

3 Condition Number Estimates

Theorem 1 ([12]). The eigenvalues of the preconditioned operators PA of
BDDC and MF of FETI-DP are same except for eigenvalues of zero and
one, and the condition numbers satisfy

κBDDC = κFETI−DP ≤ ω = sup
w∈fW

∥∥BT
DBw

∥∥2

S

‖w‖
2
S

= sup
w∈fW

∥∥RRT DP w
∥∥2

S

‖w‖
2
S

.

Here, the condition number is the ratio of the largest and the smallest
nonzero eigenvalue. Zero eigenvalues in FETI-DP are caused by redundant
constraints, common in practice.

We estimate the condition number bound as the maximum of the bounds
from Theorem 1 computed for the problem restricted to a pair of adjacent
substructures i, j with a common face:

ω ≈ ω̃ = max
ij

ωij , ωij = sup
wij∈

fWij

Jij (wij) , (1)

where Jij is the Rayleigh quotient

Jij (wij) =
wT

ijB
T
ijBDijSijB

T
DijBijwij

wT
ijSijwij

,

and the subscript ij means restriction on the pair of substructures i and j.
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Theorem 2. Let a > 0, Πij be the orthogonal projection onto W̃ij, and Πij

be the orthogonal projection onto the complement of

null
(
ZT

ij [ΠijSijΠij + a (I − Πij)]Zij

)
,

where

nullSi ⊂ range Zi, nullSj ⊂ range Zj , Zij =

[
Zi

Zj

]
.

Then the stationary values ωij,1 ≥ ωij,2 ≥ . . . and the corresponding stationary

vectors wij,k of the Rayleigh quotient Jij on W̃ij satisfy

Xijwij,k = ωij,kYijwij,k (2)

with Yij positive definite, where

Xij = ΠijB
T
ijBDijSijB

T
DijBijΠij ,

Yij =
(
Πij (ΠijSijΠij + a (I − Πij))Πij + a

(
I − Πij

))

The coarse basis functions Ψi can be used as Zi because the span of coarse
basis functions contains rigid body modes, but rigid body modes are often
available directly, which leads to a more efficient computation.

4 Optimal Coarse Degrees of Freedom on Faces

Writing W̃ij in the dual form W̃ij= nullQT
DijBij

suggests how to add coarse

dofs in an optimal way to decrease the estimate ω̃.

Theorem 3. Suppose ℓij ≥ 0 and the dual coarse dof selection matrix

QT
Dij is augmented to become

[
QT

Dij , q
T

Dij,1
, . . . , qT

Dij,ℓij

]
with qT

Dij,k =

wT
ij,kBT

ijBDijSijB
T
Dij, where wT

ij,k are the eigenvectors from (2). Then ωij =

ωij,ℓij+1, and ωij ≥ ωij,ℓij+1 for any other augmentation of QT
Dij by at most

ℓij columns.
In particular, if ωij,ℓij+1 ≤ τ for all pairs of substructures i, j with a

common face, then ω̃ ≤ τ .

Theorem 3 allows to gurantee that the condition number estimate ω̃ ≤ τ

for a given target value τ , by adding the smallest possible number of face
coarse dofs.

The primal coarse space selection mechanism that corresponds to this
augmentation can be seen easily in the case when the entries of Bij are +1

for substructure i and −1 for substructrure j. Then wij ∈ W̃ij can be written
as

QT
Dij(Iijwi − Ijiwj) = 0
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Fig. 1. Mesh with H/h = 16, 4 × 4 substructures, and one jagged edge
between substructures 2 and 6. Zero displacement is imposed on the left edge. For
compressible elasticity (Tables 1 and 2(a)) and tolerance τ = 10, 7 coarse dofs at
the jagged edge and 1 coarse dof at an adjacent edge are added automatically.

where Iij is the 0−1 matrix that selects from wi the degrees of freedom on the
intersection of the substructures i and j. Each column of qD of QDij defines a
coarse degree of freedom associated with the interface of substructures i and
j. The corresponding column qP of QP is such that

qT
P RT

i = qT
DIij (3)

Because Ri is also a 0− 1 matrix, this means that the vector qP is formed by
a scattering of the entries of the vector qD.

5 Numerical results

Consider plane elasticity discretized by bilinear elements on a rectangular
mesh decomposed into 16 substructure, with one edge between substructures
jagged (Fig. 1). The eigenvalues ωij,k associated with edges between
substructures (Table 1) clearly distinguish between the problematic edge and
the others. Adding the coarse dofs created from the associated eigenvectors
according to Theorem 3 decreases the condition number estimate ω̃ and
improves convergence at the cost of increasing the number of coarse dofs. This
effect is even more pronounced for almost incompressible elasticity where the
iterations converge poorly or not at all without the additional coarse dofs. This
incompressible elasticity problem is particularly hard for an iterative method
because standard bilinear elements were used instead of stable elements or
reduced integration. In all cases, the condition number estimate ω̃ is quite
close to the actually observed condition number κ (Table 2).
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i j ωij,1 ωij,2 ωij,3 ωij,4 ωij,5 ωij,6 ωij,7 ωij,8

1 2 3.7 2.3 1.4 1.3 1.1 1.1 1.1 1.1
1 5 5.8 3.2 2.3 1.4 1.2 1.1 1.1 1.1
2 3 6.0 2.5 1.7 1.3 1.2 1.1 1. 1.1
2 6 21.7 19.5 17.8 14.9 14.5 11.7 11.2 9.7
3 4 3.3 2.3 1.4 1.3 1.1 1.1 1.1 1.1
3 7 7.1 5.1 3.2 1.8 1.4 1.3 1.2 1.1
4 8 5.9 3.4 2.6 1.4 1.2 1.1 1.1 1.1
5 6 12.0 4.9 4.4 1.8 1.6 1.3 1.3 1.2
5 9 5.9 3.4 2.6 1.4 1.3 1.3 1.1 1.1
6 7 8.7 4.9 3.9 1.8 1.5 1.3 1.2 1.1
6 10 7.3 4.8 3.4 1.8 1.4 1.3 1.2 1.1

Table 1. Several largest eigenvalues ωij,k for several edges for the elasticity problem
from Fig. 1 with H/h = 16. (i, j) = (2, 6) is the jagged edge.

H/h Ndof τ Nc eω κ it

4 578 42 10.3 5.6 19
10 43 5.2 4.0 18
3 44 3.0 4.0 18
2 58 2.0 2.8 15

16 8450 42 22 20 37
10 50 8.7 9.9 29
3 77 3.0 4.6 22
2 112 2.0 2.6 15

64 132098 42 87 40 55
10 89 9.8 9.9 36
3 151 3.0 4.7 22
2 174 2.0 2.9 17

H/h Ndof τ Nc eω κ it

4 578 42 285 208 64
10 68 8.0 8.6 28
3 89 2.9 4.6 22
2 114 2.0 2.6 16

16 8450 42 1012 1010 161
10 87 9.8 9.9 29
3 77 3.0 4.6 22
2 126 2.0 2.9 19

64 132098 42 6910 NA ∞

10 183 9.8 9.7 37
3 213 3.0 4.9 26
2 274 2.0 3.0 20

(a) compressible elasticity (b) almost incompressible

Table 2. BDDC results for plane elasticity on a square with one jagged edge. The
Lamé coefficients are λ = 1 and µ = 2 for (a), and λ = 1000 and µ = 2 for (b). H/h is
the number of elements per substructure in one direction, Ndof the number of dofs
in the problem, τ the condition number tolerance as in Theorem 3, Nc the number
of coarse dofs, eω the apriori condition number estimate from (1), κ the approximate
condition number computed from the Lanczos sequence in conjugate gradients, and
it the number of BDDC iterations for relative residual tolerance 10−8.
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Cocoyoc, January 6–12, 2002.

11. Jan Mandel. Balancing domain decomposition. Comm. Numer. Methods Engrg.,
9(3):233–241, 1993.

12. Jan Mandel, Clark R. Dohrmann, and Radek Tezaur. An alge-
braic theory for primal and dual substructuring methods by con-
straints. Appl. Numer. Math., in print. Available online October 2004,
http://dx.doi.org/10.1016/j.apnum.2004.09.022 Proceedings of the 6th IMACS
International Symposium on Iterative Methods, Denver, CO, March 2003.

13. Daniel J. Rixen, Charbel Farhat, Radek Tezaur, and Jan Mandel. Theoretical
comparison of the FETI and algebraically partitioned FETI methods, and
performance comparisons with a direct sparse solver. Int. J. Numer. Meth.

Engrg, 46:501–534, 1999.


