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Summary. A FETI-DP formulation for three dimensional elasticity problems on
non-matching grids is considered. To resolve the nonconformity of the finite ele-
ments, a mortar matching condition is imposed on subdomain interfaces. The mor-
tar matching condition are considered as weak continuity constraints in the FETI-
DP formulation. A relatively large set of primal constraints, which include average
and moment constraints over interfaces (faces) as well as vertex constraints, is fur-
ther introduced to achieve a scalable FETI-DP method. A condition number bound,
C(1+log(H/h))2, for the FETI-DP formulation with a Neumann-Dirichlet precondi-
tioner is then proved for elasticity problems with discontinuous material parameters
when the primal constraints are enforced on only some of the faces instead of all of
them. These faces are called primal faces. An algorithm for selecting a quite small
number of primal faces is described in [5].

1 A model problem

Let Ω be a polyhedral domain in R3. The space H1(Ω) is the set of functions
in L2(Ω) which are square integrable up to first weak derivatives and equipped
with the standard Sobolev norm: ‖v‖2

1,Ω := |v|21,Ω + ‖v‖2
0,Ω, where |v|21,Ω =∫

Ω ∇v · ∇v dx and ‖v‖0,Ω =
∫

Ω v2 dx. We assume that ∂Ω is divided into two
parts ∂ΩD and ∂ΩN on which a Dirichlet boundary condition and a natural
boundary condition are specified, respectively. The subspace H1

D(Ω) ⊂ H1(Ω)
is a set of functions having zero trace on ∂ΩD. For the elasticity problem, we
introduce the vector valued Sobolev spaces

H1
D(Ω) =

3∏

i=1

H1
D(Ω), H1(Ω) =

3∏

i=1

H1(Ω)
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equipped with the product norm.
We consider the following variational form of the compressible elasticity

problem: find u ∈ H1
D(Ω) such that

∫

Ω

G(x)ε(u) : ε(v) dx +

∫

Ω

G(x)β(x)∇ · u∇ · v dx = 〈F,v〉 ∀v ∈ H1
D(Ω),

(1)
where G = E/(1 + ν) and β = ν/(1− 2ν) are material parameters depending
on the Young’s modulus E > 0 and the Poisson ratio ν ∈ (0, 1/2] bounded
away from 1/2. The linearized strain tensor is defined by

ε(u)ij :=
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
i, j = 1, 2, 3,

and the tensor product and the force term are given by

ε(u) : ε(v) =

3∑

i,j=1

εij(u)εij(v), 〈F,v〉 =

∫

Ω

f · v dx +

∫

∂ΩN

g · vdσ.

Here f is the body force and g is the surface force on the natural boundary
part ∂ΩN .

The space ker(ε) has the following six rigid body motions as its basis,
which are three translations

r1 =




1
0
0


 , r2 =




0
1
0


 , r3 =




0
0
1


 , (2)

and three rotations

r4 =
1

H




x2 − x̂2

−x1 + x̂1

0


 , r5 =

1

H



−x3 + x̂3

0
x1 − x̂1


 , r6 =

1

H




0
x3 − x̂3

−x2 + x̂2


 . (3)

Here x̂ = (x̂1, x̂2, x̂3) ∈ Ω and H is the diameter of Ω. This shift and the
scaling make the L2-norm of the six vectors scale in the same way with H .

2 FETI-DP formulation

2.1 Finite elements and mortar matching condition

We divide the domain Ω into a geometrically conforming partition {Ωi}
N
i=1

and we assume that the coefficients G(x) and β(x) are positive constants in
each subdomain

G(x)|Ωi = Gi, β(x)|Ωi = βi.
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Since we confine our study to the compressible elasticity problem, we can
associate the conforming P1-finite element space Xi to a quasi-uniform tri-
angulation τi of each subdomain Ωi. In addition, functions in the space Xi

satisfy the Dirichlet boundary condition on ∂Ωi ∩ ∂ΩD. The triangulations
{τi}

N
i=1 may not match across subdomain interfaces. We associate the finite

element space Wi to the boundary of subdomain Ωi; it is the trace space
of Xi on ∂Ωi. Throughout this paper, we will use Hi and hi to denote the
diameter of Ωi and the typical mesh size of τi, respectively.

For each interface (face) F ij = ∂Ωi ∩ ∂Ωj , we will choose the one with
larger G(x) as the mortar side and the other as the nonmortar side. We then
introduce the finite element space on the interface F ij

Wij =
{
w ∈ H1

0(F
ij) : w = v|F ij for v ∈ Xn(ij)

}
,

where n(ij) denotes the nonmortar side. A Lagrange multiplier space Mij ,
which depends on the space Wij is given. We refer to [4] for the detailed
construction of the dual Lagrange multiplier space and to [1] for the standard
Lagrange multiplier space. The mortar matching condition is written as

∫

Fij

(vi − vj) · λ ds = 0 ∀λ ∈ Mij , ∀Fij . (4)

For each subdomain Ωi, we define the set mi containing the subdomain indices
j which are mortar sides of interfaces F ⊂ ∂Ωi:

mi := {j : Ωi is the nonmortar side of F (:= ∂Ωi ∩ ∂Ωj) ∀F ⊂ ∂Ωi} .

We then introduce the finite element spaces on the interfaces

W =
N∏

i=1

Wi, Wn =
N∏

i=1

∏

j∈mi

Wij , M =
N∏

i=1

∏

j∈mi

Mij .

2.2 Primal constraints

Selection of primal constraints is important in achieving scalability of FETI-
DP algorithms as well as making each subdomain problem invertible. FETI-
DP algorithms have been developed for elasticity problems with conforming
discretization [3] and numerical results in [2] further show that primal con-
straints with faces average and vertex constraints provide a scalable algo-
rithm for three dimensional problems. Klawonn and Widlund [7] considered
various types of primal constraints for elasticity problems with discontinuous
coefficients. Their primal constraints are edge average and edge moment con-
straints, and vertex constraints. Furthermore they introduced the concepts
of an acceptable face path and an acceptable vertex path in an attempt to
reduce the number of primal constraints. For the case of mortar constraints,
we are able to construct primal constraints based on faces. Thus, in [6], we
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introduce face average constraints for three dimensional elliptic problems with
mortar discretizations and show that the condition number is bounded by a
polylogarithmic function of the subdomain problem size independently of the
mesh parameters and the coefficients.

We will now select primal constraints on each face for the elasticity prob-
lems with mortar discretization. For an interface F ij , we consider the rigid
body motions {ri}

6
i=1 as in (2) and (3), where H is the diameter of the inter-

face F ij and x̂ is a point in F ij . We define a projection Q : H1/2(F ij) → Mij

by ∫

F ij

(Q(w) − w) · φ ds = 0 ∀φ ∈ Wij .

We then construct the projected rigid body motions {Q(ri)}
6
i=1. Since the

space Mij contains the translational rigid body motions, Q(ri) = ri for i =
1, 2, 3. We now consider the following constraints on the face F ij

∫

F ij

(vi − vj) · Q(rl) ds = 0 ∀l = 1, · · · , 6.

For {Q(rl)}
3
l=1, these constraints are nothing but the average matching con-

ditions across the interface (face). The remaining constraints with {Q(rl)}
6
l=4

are similar to the moment matching constraints which were introduced for
fully primal edges in [8] except that our constraints use the projected rota-
tions and are imposed on faces. We call {Q(rl)}

6
l=4 the moment constraints.

To reduce the size of the coarse problem, we select only some faces as
primal among all the faces and we impose the primal constraints over only
them. For the remaining (non-primal faces), we assume that they satisfy an
acceptable face path condition. This assumption makes it possible for the
FETI-DP method to have a condition number bound comparable to when all
faces are chosen to be primal.

Definition 1. (Acceptable face path) For a pair of subdomains (Ωi, Ωj)
having the common face F ij with Gi ≤ Gj, an acceptable face path is a path
{Ωi, Ωk1

, · · · , Ωkn , Ωj} from Ωi to Ωj such that the coefficient Gkl
of Ωkl

satisfy the conditions

TOL ∗ (1 + log(Hi/hi))
−1

(1 + log(Hkl
/hkl

))
2
∗ Gkl

≥ Gi (5)

and the path from one subdomain to another is always through a primal face.

Furthermore, we choose some of the vertices as primal vertices at which
we impose a point-wise matching condition. We assume that enough primal
vertices are taken so as to make each local problem invertible. Based on these
primal constraints, we introduce the following subspaces

W̃ : = {w ∈ W : w satisfies vertex constraints at the primal vertices

and the face constraints across the primal faces} ,

W̃n : = {wn ∈ Wn : wn satisfies zero average and zero moment

constraints for each primal faces} .
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For wn ∈ W̃n, let E(wn) ∈ W be the zero extension of wn to the whole
interface, i.e., mortar and nonmortar interfaces. We can easily see that E(wn)

belongs to W̃.

2.3 The FETI-DP equation

Let A(i) denote the stiffness matrix of the bilinear form

ai(ui,vi) := Gi

∫

Ωi

ε(ui) : ε(vi) dx + Giβi

∫

Ωi

∇ · ui∇ · vi dx,

and let S(i) be the Schur complement of the matrix A(i). The matrix B(i)

denotes the mortar matching matrix for the unknowns of ∂Ωi and the mortar
matching condition for w = (w1, · · · ,wN ) ∈ W can then be written as

N∑

i=1

B(i)wi = 0.

Let Vc be the set of unknowns at the primal vertices, let V
(i)
c be the restriction

of Vc on the subdomain Ωi, and let the mapping R
(i)
c : Vc → V

(i)
c denote a

restriction. The matrix B(i) and the vector wi ∈ Wi are ordered as

B(i) =
(
B

(i)
r B

(i)
c

)
, wi =

(
w

(i)
r

w
(i)
c

)
,

where c stands for the unknowns at the primal vertices in V
(i)
c and r stands

for the remaining unknowns. We then assemble vectors and matrices of each
subdomains

wr =




w
(1)
r

...

w
(N)
r


 , Br =

(
B

(1)
r . . . B

(N)
r

)
, Bc =

N∑

i=1

B(i)
c R(i)

c .

Since the primal face constraints are the mortar constraints, we express them
by using an appropriate matrix R

Rt(Brwr + Bcwc) = 0,

where wc represents the unknowns at the global primal vertices.
By introducing Lagrange multipliers µ and λ for the primal face con-

straints and for the mortar matching constraints, respectively, we get the
following mixed formulation of (1)




Srr Src Bt
rR Bt

r

Scr Scc Bt
cR Bt

c

RtBr RtBc 0 0
Br Bc 0 0







wr

wc

µ

λ


 =




gr

gc

0
0


 .
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We now eliminate all the unknowns except λ and obtain

FDPλ = d.

This matrix FDP satisfies the well-known relation

〈FDPλ,λ〉 = max
w∈fW

〈Bw,λ〉2

〈Sw,w〉
,

where
S = diag(S(i)), B =

(
B(1) . . . B(N)

)
.

We now introduce the Neumann-Dirichlet preconditioner M−1 given by

〈Mλ,λ〉 = max
wn∈fWn

〈BE(wn),λ〉2

〈SE(wn), E(wn)〉
,

where E(wn) is the zero extension of wn into the space W. From the fact

that E(wn) belongs to W̃ for wn ∈ W̃n, we obtain

〈Mλ,λ〉 = max
wn∈fWn

〈BE(wn),λ〉2

〈SE(wn), E(wn)〉
≤ max

w∈fW

〈Bw,λ〉2

〈Sw,w〉
= 〈FDPλ,λ〉. (6)

Therefore the lower bound of the FETI-DP operator is bounded from below
by 1.

3 Condition number analysis

In the following, we will provide several lemmas which will be used to ob-
tain the upper bound of the FETI-DP operator. For a face F ⊂ ∂Ωi, the

space H
1/2
00 (F ) consists of the functions whose zero extension onto the whole

boundary ∂Ωi belongs to the space H1/2(∂Ωi) and it is equipped with the
norm

‖v‖
H

1/2

00
(F )

:=

(
|v|2H1/2(F ) +

∫

F

v(x)2

dist(x, ∂F )
ds

)1/2

.

We note that we can extend this norm to the product space H
1/2
00 (F ) :=

[H
1/2
00 (F )]3 by using the usual product norm. We now provide several inequal-

ities for the mortar projection of functions.

Definition 2. (Mortar projection) The mortar projection πij : L2(F ij) →
Wij is given by

∫

F ij

(πij(v) − v) · ψ ds = 0 ∀ψ ∈ Mij .



A FETI-DP formulation for elasticity with mortar constraints 7

Lemma 1. For F ij(= ∂Ωi ∩ ∂Ωj), a primal face with Gi ≤ Gj , and for

w ∈ W̃, we have

Gi‖πij(wi − wj)‖
2

H
1/2

00
(F ij)

≤ C

{(
1 + log

Hi

hi

)2

|wi|
2
Si

+
Gi

Gj

(
1 + log

Hj

hj

)(
1 + log

Hj

hj
+

hj

hi

)
|wj |

2
Sj

}
,

where |wl|
2
Sl

= 〈Slwl,wl〉 for l = i, j.

Lemma 2. For a non-primal face F = ∂Ωi ∩∂Ωj with Gi ≤ Gj , assume that

there is an acceptable face path {Ωi, Ωk1
, · · · , Ωkn , Ωj}. Then, for w ∈ W̃, we

have

Gi‖πij(wi − wj)‖
2

H
1/2

00
(F )

≤ C

{(
1 + log

Hi

hi

)2

|wi|
2
Si

+ L ∗

n∑

l=1

(
1 + log

Hi

hi

)
Gi

Gkl

|wkl
|2Skl

+
Gi

Gj

(
1 + log

Hj

hj

)(
1 + log

Hj

hj
+

hj

hi

)
|wj |

2
Sj

}
,

where wi = w|∂Ωi , wj = w|∂Ωj , and the constant L is the number of subdo-
mains on the acceptable face path.

To bound the term (Gi/Gj)(hj/hi) by a constant independently of mesh pa-
rameters, we need to impose an assumption on mesh sizes.

Assumption on mesh sizes For the subdomains Ωi and Ωj which have a
common face F with Gi ≤ Gj , the mesh sizes hi and hj satisfy

hj

hi
≤ C

(
Gj

Gi

)γ

for some 0 ≤ γ ≤ 1. (7)

By combining Lemmas 1 and 2 with the assumption on the mesh sizes and
the acceptable face path condition (5), we have the following upper bound for
the FETI-DP operator.

Lemma 3. Assume that the mesh sizes satisfy the assumption (7) and that
every non-primal face satisfies the acceptable face path condition with given
TOL and L. We then have

〈FDPλ,λ〉2 = max
w∈fW

〈Bw,λ〉2

〈Sw,w〉
≤ C(TOL,L) max

i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
〈Mλ,λ〉,

where the constant C depends on the TOL and L but not on the mesh param-
eters and the coefficients Gi.
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The lower bound in (6) and the upper bound from Lemma 3 lead to the
following condition number bound.

Theorem 1. Under the assumptions in Lemma 3, we obtain the condition
number bound

κ(M−1FDP ) ≤ C(TOL, L) max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}

.

Here the constant C is independent of the mesh parameters and the coefficients
Gi, but depends on TOL and L, the maximum face path length.
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