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Summary. In this work we present a Finite Volume Discretization of an elliptic
Boundary Value Problem on adaptively refined meshes. This problem is important
in many practical applications, e.g. porous media flow. We propose an error indicator
functional which is used to select elements that should be refined. Two numerical
examples are provided to demonstrate the potential of the proposed refinement
strategy.

1 Introduction

Finite Volume [6] and Finite Element [1, 2, 3] Methods are widely used meth-
ods for discretizing partial differential equations. Behaviour of Finite Element
Methods on adaptive meshes is well understood and studied, e.g., [1, 2, 3],
whereas Finite Volume Methods seems to be less studied. In this paper we
will consider a cell centered Finite Volume Method also known as Control
Volume Finite Difference Method (CVFD) [6, 9]. Finite Volume Methods are
popular for example in the porous media community since they are based on
conservation principles and honour the continuity of fluxes. There are differ-
ent ways of expressing the fluxes through the boundaries of a cell which give
rise to different formulations like the Two Point Flux Approximation Methods
(TPFA) and the Multi Point Flux Approximation Methods (MPFA), [4, 6].
In this work we will use a TPFA method. Consider the numerical solution of
the following elliptic boundary value problem using adaptive meshes:

−∇ · (K∇p) = f(x, y) in Ω, (1)

p(x, y) = pD on ∂Ω. (2)

Here Ω is a polyhedral domain in IR2, the source function f is assumed to
be in L2(Ω), and K is a symmetric, uniformly positive definite tensor which
may depend on the spatial coordinate. In porous media flow the unknown
function p = p(x, y) represents the pressure of a single fluid, and K is the
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permeability of the porous medium Ω. The rest of the paper is organised as
follows: In Section 2 a simple criterion for adaptive refinement is proposed,
and an algorithm for an adaptive meshing strategy is given. In Section 3
we give two numerical examples. In the first example the permeability K is
constant while the source exhibits a huge variability. In the second example
the medium properties represented by the permeability K are discontinuous.
In both cases an analytic solution is known and the error for the discrete
solutions on adaptively and uniformly refined meshes can be computed. These
errors are then compared for meshes that possess the same degree of freedom
(DOF). Finally, in Section 4, we provide some concluding remarks.

2 Adaptive Criteria and Adaptive Algorithm

Adaptive refinement are feed-back based discretizations (Solve → Estimate →
Refine/Coarse). Thus we need criterion for selecting finite volumes/cells in
the mesh for further refinement. Ultimately these methods constructs a se-
quence of meshes that may converge to an optimal mesh (the most accurate
solution at a fixed cost or lowest computational effort for a given accuracy).
Generally most of the error occurs in areas where the solution exhibits large
gradients, varying curvature, or high source variability [1, 2, 3]. Based on these
heuristics we propose the following error indicator for a cell i in the mesh:

ηi = α‖ph‖L2(Ωi) + αGηG + αF ηF + αSηS . (3)

Here α, αG, αF and αS are weights belonging to the interval [0, 1], and ηG,
ηF and ηS are given as follows:

ηG := ‖∇ph‖L2(Ωi), (4)

ηF := ‖(K · ∇ph).n̂‖L2(∂Ωi), (5)

ηS := ‖f‖L2(Ωi). (6)

In these formulas we will use least square fitting to approximate the gradient,
∇ph, of the discrete pressure ph. An error error indicator need not to represent
the error very accurately, [2, 11], they just need to select the elements for
further refinement. An element i in the mesh will be refined if ηi

maxj ηj
≥ δ

(0 ≤ δ ≤ 1). Thus, δ = 0 means a uniform refinement and δ = 1 means
that the algorithm will refine a single element per iteration. None of these
end point values may be optimal. A trade off between uniform refinement
and refining a single element at a time is obtained by choosing δ = 0.5. This
value has also been suggested in the literature, e.g., [3]. In general the choice
of an optimal set of parameters δ, α, αG, αF and αS is a difficult task. In
this work we have chosen these parameters based on experience with the
specific problems. Optimal choice of these numbers will be investigated in
future research. It should be noted that if αS and αF are equal to zero then
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the indicator (3) is similar to the indicator proposed in [3] for an Adaptive
Discontinuous Galerikin Method, whereas if α and αG is equal to zero then the
indicator is similar to the one given in [1, 2] for an Adaptive Finite Element
Method. The overall algorithm we are using is presented in Algorithm 1.
This adaptive algorithm works on the principle of equally distributing the
adaptivity index over all cells in the mesh. For a cell centered finite volume
method the degrees of freedom (DOF) are equal to the number of cells in the
mesh. In Algorithm 1 the refinement is stopped at a fixed maximum DOFs. In
general an a posteriori error estimator should be added as a stopping criterion,
cf. [3, 7, 10, 11].

Algorithm 1: Adaptive Algorithm.

Mesh the domain;
while (DOF < DOFmax) do

Discretize the PDE over the mesh by CVFD;
Solve the discrete system;
forall (elements j in the mesh) do

if (ηj/maxiηi ≥ δ) then
Refine the element j in the mesh;

end

end

Form a new mesh;
end

3 Numerical Examples

Let pk denote the exact solution for the pressure at the cell center of cell k and
pk

h denote the discrete pressure obtained by the Finite Volume approximation
for the same location. Then the discrete error e in the L2 norm for a mesh
can be expressed as:

‖e‖L2
:=

√∑
{(pk(x, y) − pk

h(x, y))2Ωk}, (7)

Here the summation and the maximum is to be taken over all the cells/finite
volumes in the mesh. The CVFD-discretization of the equation (1) subject to
the boundary condition (2) using a Two Point Flux Approximation (TPFA)
leads to symmetric positive definite linear systems. To solve these systems we
are using ILU preconditioned CG with a tolerance of 1 × 10−10.

3.1 Example 1

Let the domain Ω = (0, 1)×(0, 1), and the permeability be the identity tensor,
K = I. We enforce the source term, f = f(x, y) such that the analytical
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solution to Equation (1) is given by

u(x, y) = 0.0005 x2 (x − 1)
2
y2 (y − 1)

2
e10.0 x2+10.0 y2

. (8)

Note that this solution is consistent with zero Dirichlet boundary condition
(2). Furtheremore, taking the Laplacian of (8) shows that the source term ex-
hibits a huge variability inside the domain and even within the cells. For this
problem we found that δ = 0.5, α = 0.0, αG = 0.10, αF = 0.90 and αS = 1.0
was a good choice of parameters for the indicator functional (3). However,
other choices may work even better. Figures 2 reports the outcome of a nu-
merical experiment comparing the discrete solutions on an adaptively refined
mesh and a uniform mesh. The degrees of freedom (DOF) associated with the
meshes depicted in these figures are approximately the same. However, the
L2 errors in the solutions on adaptive and uniform meshes are 8.91 × 10−4

and 3.7 × 10−3 respectively. Thus the error of the solution on the adaptively
refined mesh is much smaller compared to the solution on the uniform grid.
In Figure 1 we have plotted the error versus DOF for solutions on adaptively
refined meshes and for uniform meshes. From this plot we get that ‖e‖ ∼
DOF−p/2 with p ≈ 2 on the adaptive meshes, which is quasi optimal in the
sense of [7, 10]. Since the solution is smooth, we expect the advantage of adap-
tive refinement to be largest for coarser grids, while this advantage should be
reduced compared to a uniform refinement for finer grids. This is indeed what
can be observed in Figure 1.

3.2 Example 2

In porous media flow, material properties as given by the permeability, is often
piecewise constant. The numerical challenges introduced by the discontinuities
in the permeability are difficult to handle by standard formulations, see [3, 4,
5, 6, 9]. In this example we will investigate the behaviour of our refinement
strategy for a problem with discontinuous permeability. Let Ω = (−1, 1) ×
(−1, 1). We subdivided Ω into four non overlapping subregions Ωi i = 1 · · · 4
such that Ω = ∪iΩi as shown in Figure 3. For each subregion Ωi we associate
a constant permeability K, and will assume that

K2 = K4 = I and K1 = K3 = R I, (9)

where R is a parameter to be determined. An analytic solution can be con-
structed using the polar representation

p(r, θ) = rγη(θ), (10)

see [7, 10]. Let η(θ) be given by

η(θ) =





cos((π/2 − σ)γ) · cos((θ − π/2 + ρ)γ), 0 ≤ θ ≥ π/2,
cos(ργ) · cos((θ − π + σ)γ), π/2 ≤ θ ≥ π,
cos(σγ) · cos((θ − π − ρ)γ), π ≤ θ ≥ 3π/2,
cos((π/2 − ρ)γ) · cos((θ − 3π/2 − σ)γ), 3π/2 ≤ θ ≥ 2π,

(11)
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Fig. 1. (Ex. 3.1) L2 error vs degrees of freedom for adaptively generated meshes
and uniform meshes.

Fig. 2. (Ex. 3.1) Discrete solution on adaptive and uniform meshes. DOF for the
adaptive mesh is 601 and DOF for uniform refinement is 625. L2 error on adaptive
mesh is 8.91 × 10−4 while on uniform mesh it is 3.7 × 10−3.
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and let the numbers R, γ, ρ and σ satisfy the nonlinear relations:

R = −tan((π − σ) · γ) · cot(ργ),
1/R = −tan(ργ) · cot(σγ),
R = −tan(σγ) · cot((π/2 − ρ)γ),
0 < γ < 2,
max{0, πγ − π} < 2γρ < min{πγ, π},
max{0, π − πγ} < −2γρ < min{π, 2π − πγ}.

(12)

Then it can be shown that (10) satisfies Equation (1) with K given by (9),
and f(x, y) = 0. Boundary conditions need to be chosen consistently with the
form (10). Furthermore it can be shown that the solution p belongs to the
fractional Sobolev space H1+k(Ω) where k < γ, cf. [8]. By choosing γ = 0.3
we can solve the constrained nonlinear relations (12) using Newton’s iteration
to get R = 17.34762217, σ = −4.450589, and ρ = 0.7853981. We specify the
parameters for the indicator functional to be δ = 0.6, α = 0.0, αG = 0.0, αF =
1.0, αS = 0.0. In Figure 4 we have plotted the error in the discrete solution
against the degrees of freedom for both adaptive and uniform meshes. Again
we observe that the convergence on adaptive meshes are much better than for
uniform refinement. We also get that ‖e‖L2

∼ DOF−p/2 with p ≈ 1.0 for the
solution on adaptive meshes. Because of the regularity of the solution, this
convergence is also quasi optimal in the sense of [7, 10]. Finally in Figure 5 we
plot the number of CG iterations (without preconditioning) vs. the DOFs for
the adaptive and uniformly refined meshes. The plot shows that the uniformly
refined meshes require approximately twice as many CG iterations as the
adaptive refinement. This suggests that the condition number for the matrix
obtained for uniform refinement is four times the condition number for the
matrix obtained for adaptive refinement.

Ω1 Ω2

Ω3Ω4

Fig. 3. (Ex. 3.2) Domain with discontinuous medium properties. The permeability
is constant over each sub-domains i.e., K=Ki in Ωi.

4 Conclusions

In this work we have given a strategy for adaptive refinement in the setting
of CVFD discretizations of boundary value problems. The mesh refinement is
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Fig. 4. (Ex. 3.2) Pressure convergence in L2 norm for adaptive and uniform refine-
ment.
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Fig. 5. (Ex. 3.2) Number of CG Iterations (no preconditioner) vs. DOFs.
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based on the use of an error indicator functional. We have tested the methods
on two test examples. In both cases the solution has a strong local behaviour
which is clearly captured by our refinement strategy. We have computed the
error in the discrete solution to obtain convergence rates. The numerical ex-
periments suggest that convergence is quasi optimal as the mesh is adap-
tively refined for both the test examples. Furthermore we have compared
CVFD on adaptive and uniform meshes. As expected the solutions obtained
for adaptive meshes are significantly more accurate, and the system matri-
ces are better conditioned when we employ adaptive meshes. Even though
our preliminary investigations show that the proposed CVFD discretization
on adaptive meshes has a great potential, many challenges remain open for
further research. Most importantly we need to find better ways of selecting
parameters for the indicator functional.
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