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Summary. In this work we design new interface transmission conditions for a do-
main decomposition Schwarz algorithm for the Euler equations in 2 dimensions.
These new interface conditions are designed to improve the convergence properties
of the Schwarz algorithm. These conditions depend on a few parameters and they
generalize the classical ones. Numerical results illustrate the effectiveness of the new
interface conditions.

1 Introduction

In a previous paper [DLN04] we formulated and studied by means of Fourier
analysis the convergence of a Schwarz algorithm (interface iteration which
relies on the successive solving of the local decomposed problems and the
transmission of the result at the interface) involving transmission conditions
that are derived naturally from a weak formulation of the underlying boundary
value problem. Various works and studies exist when dealing with Schwarz
algorithms applied to the scalar problems but to our knowledge, little is known
about complex systems. When dealing with systems we can mention some
classical works by Quarteroni and al. [Qua90] [QS96] Bjorhus [Bjø95] or Cai
et al.[CFS98]. The most related work to our study belongs to Clerc [Cle98]
and it describes the principle of building very simple interface conditions for a
general hyperbolic system which we will apply and extend to Euler system. In
this work we formulate and analyze the convergence of the Schwarz algorithm
with new interface conditions inspired by [Cle98], depending on 2 parameters
whose value is determined by minimizing the norm of the convergence rate.
The paper is organized as follows. In the section 2 we first formulate the
Schwarz algorithm for a general linear hyperbolic system of PDEs with general
interface conditions built in order to have a well-posed problem. In the section
3 we estimate the convergence rate at the discrete level. We will find the
optimal parameters of the interface conditions at the discrete level. In the
section 4, we use the new optimal interface conditions in Euler computations
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which illustrate the improvement over the classical interface conditions (first
described in [QS96]).

2 A Schwarz algorithm with general interface conditions

2.1 A well-posed boundary value problem

If we consider here a general non-linear system of conservation laws under the
hypothesis that its solution is regular, we can also use a non-conservative (or
quasi-linear) equivalent form. Assume that we first proceed to an integration
in time using a backward Euler implicit scheme involving a linearization of the
flux functions and eventually we symmetrize it (we know that when the system
admits an entropy it can be symmetrized by multiplying it by the hessian
matrix of this entropy). This operation results in the linearized system:

L(W ) ≡ Id

∆t
W +

d
∑

i=1

Ai

∂W

∂xi

= f (1)

In the following we will define the boundary conditions that have to be
imposed when solving the problem on a domain Ω ⊂ R

d. We denote by

An =
d

∑

i=1

Aini, the linear combination of jacobian matrices by the components

of the outward normal vector at the boundary of the domain ∂Ω. This matrix
is real, symmetric and can be diagonalized An = TΛnT−1, Λn = diag(λi). It
can also be splitted in negative (A−

n
) and positive (A+

n
) part using this di-

agonalization. This corresponds to a decomposition with local characteristic
variables. A more general splitting in negative(positive) definite parts, Aneg

n

and Apos
n

of An can be done such that these matrices satisfy the following
properties:







An = Aneg
n

+ Apos
n

rank(Aneg,pos
n

) = rank(A±
n

)
Apos

−n
= −Aneg

n

(2)

In the scalar case the only possible choice is Aneg
n

= A−
n

. Using the previous
formalism we can define the following boundary condition:

Aneg
n

W = Aneg
n

g, on ∂Ω (3)

Within this framework we have a result of well-possedness of the boundary
value problem associated to the system (1) with the boundary conditions (3)
that can be found in [Cle98]. As the boundary value problem is well-posed,
the decomposition (2) enables the design of a domain decomposition method.
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2.2 Schwarz algorithm with general interface conditions

We consider a decomposition of the domain Ω into N overlapping or non-

overlapping subdomains Ω̄ =

N
⋃

i=1

Ω̄i. We denote by nij the outward nor-

mal to the interface Γij bewteen Ωi and a neighboring subdomain Ωj . Let

W
(0)
i denote the initial appoximation of the solution in subdomain Ωi. A gen-

eral formulation of a Schwarz algorithm for computing (W p+1
i )1≤i≤N from

(W p
i )1≤i≤N (where p defines the iteration of the Schwarz algorithm) reads :











LW p+1
i = f inΩi

Aneg
nij

W p+1
i = Aneg

nij
W p

j on Γij = ∂Ωi ∩ Ωj

Aneg
nij

W p+1
i = Aneg

nij
g on ∂Ω ∩ ∂Ωi

(4)

where Aneg
nij

and Apos
nij

satisfy (2). We have a convergence result of this algo-
rithm in the non-overlapping case, due to ([Cle98]). The convergence rate of
the algorithm defined by (4) depends of the choice of the decomposition of
Anij

into Aneg
nij

and Apos
nij

satisfying (2). In order to choose the right decompo-
sition we need to relate this choice to the convergence rate of (4).

2.3 Convergence rate of the algorithm with general interface

conditions

We consider a two-subdomain non-overlapping or overlapping decomposition
of the domain Ω = R

d, Ω1 =]−∞, γ[×R
d−1 and Ω2 =]β,∞[×R

d−1 with β ≤ γ
and study the convergence of the Schwarz algorithm in the subsonic case. A
Fourier analysis applied to the linearized equations allows us to derive the
convergence rate of the “ξ”-th Fourier component of the error as described in
detail in [DLN04]. After having defined in a general frame the well-possedness
of the boundary value problem associated to a general equation and the con-
vergence of the Schwarz algorithm applied to this class of problems, we will
concentrate ourselves on the conservative Euler equations in two-dimensions:

∂W

∂t
+ ∇.F(W ) = 0, W = (ρ, ρV, E)

T
. (5)

In the above expressions, ρ is the density, V = (u, v)T is the velocity vector,
E is the total energy per unit of volume and p is the pressure. In equation
(5), W = W (x, t) is the vector of conservative variables, x and t respectively

denote the space and time variables and F(W ) = (F1(W ), F2(W ))
T

is the
conservative flux vector whose components are given by

F1(W ) =
(

ρu, ρu2 + p, ρuv, u(E + p)
)T

, F2(W ) =
(

ρv, ρuv, ρv2 + p, v(E + p)
)T

.

The pressure is deduced from the other variables using the state equation for
a perfect gas p = (γs − 1)(E − 1

2ρ ‖ V ‖2) where γs is the ratio of the specific
heats (γs = 1.4 for the air).
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2.4 A new type of interface conditions

We will apply now the method described previously to the computation of
the convergence rate of the Schwarz algorithm applied to the two-dimensional
subsonic Euler equations. In the supersonic case there is only one decompo-
sition satisfying (2), that is: Apos = An and Aneg = 0 and the convergence
follows in 2 steps. Therefore the only case of interest is the subsonic one.
The starting point of our analysis is given by the linearized form of the Eu-
ler equations (5) which are of the form (1) to whom we applied a change of
variable W̃ = T−1W based on the eigenvector factorization of A1 = T Ã1T

−1.

We denote by Mn =
u

c
, Mt =

v

c
respectively the normal and the tangential

Mach number. Before estimating the convergence rate we will derive the gen-
eral transmission conditions at the interface by splitting the matrix A1 into a
positive and negative part.
We have the following general result concerning this decomposition:

Lemma 1. Let λ1 = Mn − 1, λ2 = Mn + 1, λ3 = λ4 = Mn. Suppose we deal
with a subsonic flow: 0 < u < c so that λ1 < 0, λ2,3,4 > 0. Any decomposition
of A1 = An, n = (1, 0) which satisfies (2) has to be of the form:

Aneg =
1

a1
u · ut, u = (a1, a2, a3, a4)

t

Apos = An −Aneg .

where (a1, a2, a3, a4) ∈ R
4 satisfies a1 ≤ λ1 < 0 and

a1

λ1
+

a2
2

a1λ2
+

a2
3

a1λ3
+

a2
4

a1λ4
= 1.

We will proceed now to the estimation of the convergence rate using some
results from [DLN04]. Following the technique described here we estimate the
convergence rate in the Fourier space in the non-overlapping case. We use
the non-dimensioned wave-number ξ̄ = c∆tξ, we get for the general interface
conditions the following:



































ρ2
2,novr(ξ) =

∣

∣

∣

∣

1 − 4Mn(1 − Mn)(1 + Mn)R(ξ)a2
1(a + MnR(ξ))

D1D2

∣

∣

∣

∣

D1 = R(ξ)[a1(1 + Mn) − a2(1 − Mn)] + a[a1(1 + Mn)

+a2(1 − Mn)] − i
√

2a3ξ(1 − M2
n)

D2 = Mna1[R(ξ)[a1(1 + Mn) − a2(1 − Mn)] + a[a1(1 + Mn) + a2(1 − Mn)]]

+a3(1 − M2
n)[a3(R + a) − iMna1ξ

√
2]

(6)
In order to simplify our optimization problem we will take a3 = 0, we can
thus reduce the number of parameters to 2, a1 and a2, as we can see from
the lemma that a4 can be expressed as a function of a1, a2 and a3. In the
same time for the optimization purpose only we introduce the parameters:
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b1 = −a1/(1 − Mn) and b2 = a2/(1 + Mn) which provide a simpler form of
the convergence rate. Nevertheless, solving this problem is quite a tedious task
even in the non-overlapping case, where we can obtain analytical expression of
the parameters only for some values of the Mach number. In the same time,
we have to analyze the convergence of the overlapping algorithm. Indeed,
standard discretizations of the interface conditions correspond to overlapping
decompositions with an overlap of size δ = h, h being the mesh size, as seen
in [DLN04]. By applying the Fourier transform technique to the overlapping
case we have the following expression of the convergence rate:



















































ρ2
2,ovr =

∣

∣

∣
Ae−(λ2(k)−λ1(k))δ̄ + (B + C)e−(λ3(k)−λ1(k))δ̄

∣

∣

∣

A =
a + MnR(ξ)

a − MnR(ξ)
·
(

b1(R(ξ) − a) + b2(R(ξ) + a)

b1(R(ξ) + a) + b2(R(ξ) − a)

)2

B = −2Mn(b1(1 − Mn) + b2(1 + Mn))R(ξ)(R(ξ) − a)(R(ξ) + a)

(1 − M2
n)(a − MnR(ξ))(b1(R(ξ) + a) + b2(R(ξ) − a))2

C =
4((1 − Mn)(b2

1 − b1) − b2
2(Mn + 1))(a + MnR(ξ))

(1 − M2
n)(b1(R(ξ) + a) + b2(R(ξ) − a))2

(7)

where δ̄ =
δ

c∆t
denotes the non-dimensioned overlap between subdomains.

Analytic optimization with respect to b1 and b2 seems out of reach. We will
have to use numerical procedures of optimization. In order to get closer to the
numerical simulations we will estimate the convergence rate for the discretized
equations with general transmission conditions, both in the non-overlapping
and the overlapping case and then optimize numerically this quantity in order
to get the best parameters for the convergence.

3 Optimized interface conditions

In this section we study the convergence of the Schwarz algorithm with general
interface conditions applied to the discrete Euler equations as described in
[DLN04] for the classical transmission conditions. This BVP is discretized
using a finite volume scheme where the flux at the interface of the finite volume
cells is computed using a Roe [Roe81] type solver. Afterwards, we formulate
a Schwarz algorithm whose convergence rate is estimated in the Fourier space
in a discrete context. Optimizing the convergence rate with respect to the
2 parameters is already a very difficult task at the continuous level in the
non-overlapping case, we could not carry on such a process and obtaining
analytical results at the discrete level in the overlapping case (which is our
case of interest). Therefore, we will get the theoretical optimized parameters
at the discrete level by means of a numerical algorithm, by calculating the
following
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ρ(b1, b2) = max
k∈Dh

ρ2
2(k, ∆x, Mn, Mt, b1, b2)

min
(b1,b2)∈Ih

ρ(b1, b2)
(8)

where Dh is a uniform partition of the interval [0, π/∆x] and Ih ⊂ I a dis-
cretization by means of a uniform grid of a subset of the domain of the ad-
missible values of the parameters. This kind of calculations are done once for
all for a given pair (Mn, Mt) before the beginning of the Schwarz iterations.
An example of such a result is given in the figure 3 Mach number Mn = 0.2.
The computed parameters from the relation (8) will be further refered to with
a superscript th. The theoretical estimates are compared afterwards with the

Table 1. Overlapping Schwarz algorithm

Mn b
th
1 b

th
2 b

num
1 b

num
2

0.1 1.6 -0.8 1.6 -0.9
0.2 1.3 -0.5 1.4 -0.6
0.3 1.25 -0.3 1.25 -0.45
0.4 1.08 -0.15 1.08 -0.28
0.5 1.03 -0.08 1.02 -0.23
0.6 1.0 0.0 1.0 0.0
0.7 1.02 0.06 1.01 0.04
0.8 1.03 0.08 1.02 0.06
0.9 1.06 0.08 1.04 0.06

numerical ones obtained by running the Schwarz algorithm with different pairs
of parameters which lie in a an interval such that the algorithm is convergent.
We are thus able to estimate the optimal values for b1 and b2 from these nu-
merical computations. These values will be referred to by a superscript num.

4 Implementation and numerical results

We present here a set of results of numerical experiments that are concerned
with the evaluation of the influence of the interface conditions on the conver-
gence of the non-overlapping Schwarz algorithm of the form. The computa-
tional domain is given by the rectangle [0, 1] × [0, 1]. The numerical investi-
gation is limited to the resolution of the linear system resulting from the first
implicit time step using a Courant number CFL=100. In all these calculations
we considered a model problem: a flow normal to the interface (that is when
Mt = 0). In figures 3 we can see an example of a theoretical and numerical
estimation of the reduction factor of the error. We illustrate here the level
curves which represent the log of the precision after 20 iterations for different
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Fig. 1. Isovalues of the predicted (theoretical via formula (8)) and numerical(FV
code) reduction factor of the error after 20 iterations

values of the parameters (b1, b2), the minimum being attained in this case for
bth
1 = 1.3 and bth

2 = −0.5, bnum
1 = 1.4 and bnum

2 = −0.6. We can see that we
have good theoretical estimates of these parameters we can therefore use them
in the interface conditions of the Schwarz algorithm. Table 2 summarizes the

Table 2. Overlapping Schwarz algorithm

Classical vs. optimized counts for different values of Mn

Mn IT
num
0 IT

num
op Mn IT

num
0 IT

num
op

0.1 48 19 0.5 22 18
0.2 41 20 0.7 20 16
0.3 32 20 0.8 22 15
0.4 26 19 0.9 18 12

number of Schwarz iterations required to reduce the initial linear residual by
a factor 10−6 for different values of the reference Mach number with the op-
timal parameters bnum

1 and bnum
1 . Here we denoted by IT num

0 and IT num
op the

observed (numerical) iteration number for classical and optimized interface
conditions in order to achieve a convergence with a threshlod ε = 10−6. The
same results are presented in second picture of figure 2. In the first picture of
figure 2 we compare the theoretical estimated iteration number in the classical
and optimized case. Comparing the 2 pictures of figure 2 we can see that the
theoretical prediction are very close to the numerical tests. The conclusion of
these numerical tests is, on one hand, that the theoretical prediction is very
close to the numerical results: we can get by a numerical optimization (8) a
very good estimate of optimal parameters (b1, b2)). On the other hand, the
gain, in number of iterations, provided by the optimized interface conditions,
is very promising for low Mach numbers, where the classical algorithm doesn’t
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Fig. 2. Theoretical and numerical iteration number: classical vs. optimized condi-
tions

give optimal results. For bigger Mach numbers, for instance, those who are
close to 1, the classical algorithm already has a very good behaviour so the
optimization is less useful. In the same time we studied here the zero order
and therefore very simple transmission conditions. The use of higher order
conditions is a possible way that can be further studied to obtain even better
convergence results.
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