Applications of multiplicative chaos: extreme values of logarithmically correlated fields

Christian Webb

Aalto University, Finland

June 17 - Extreme values in Number Theory and Probability IHP

Based on joint work with T. Claeys, B. Fahs, G. Lambert; J. Junnila and E. Saksman

• Basic setting. X_N centered stoch. proc. on $\Omega \subset \mathbb{R}^d$:

$$\mathbb{E}X_N(x)X_N(y) = \min\left(\log|x-y|^{-1},\sigma_N^2\right) + \mathcal{O}(1)$$

and $\sigma_N \to \infty$ as $N \to \infty$.

• Basic setting. X_N centered stoch. proc. on $\Omega \subset \mathbb{R}^d$:

$$\mathbb{E}X_N(x)X_N(y) = \min\left(\log|x-y|^{-1},\sigma_N^2\right) + \mathcal{O}(1)$$

and $\sigma_N \to \infty$ as $N \to \infty$.

• Logarithmically correlated field – though not necessarily Gaussian!

• Basic setting. X_N centered stoch. proc. on $\Omega \subset \mathbb{R}^d$:

$$\mathbb{E}X_N(x)X_N(y) = \min\left(\log|x-y|^{-1},\sigma_N^2\right) + \mathcal{O}(1)$$

and $\sigma_N \to \infty$ as $N \to \infty$.

- Logarithmically correlated field though not necessarily Gaussian!
- Main questions. Understand extrema of X_N : e.g. $\max_x X_N(x)$ as $\overline{N \to \infty}$?

• Basic setting. X_N centered stoch. proc. on $\Omega \subset \mathbb{R}^d$:

$$\mathbb{E}X_N(x)X_N(y) = \min\left(\log|x-y|^{-1},\sigma_N^2\right) + \mathcal{O}(1)$$

and $\sigma_N \to \infty$ as $N \to \infty$.

- Logarithmically correlated field though not necessarily Gaussian!
- Main questions. Understand extrema of X_N : e.g. $\max_x X_N(x)$ as $\overline{N \to \infty}$?
- <u>Tools.</u> Assume that corresponding multiplicative chaos measure exists:

$$\int_{A} \frac{e^{\gamma X_{\mathcal{N}}(x)}}{\mathbb{E} e^{\gamma X_{\mathcal{N}}(x)}} dx \stackrel{d}{\to} \mu_{\gamma}(A)$$

for all $0 < \gamma < \sqrt{2d}$ and $A \subset \Omega$ Borel.

• Basic setting. X_N centered stoch. proc. on $\Omega \subset \mathbb{R}^d$:

$$\mathbb{E}X_N(x)X_N(y) = \min\left(\log|x-y|^{-1},\sigma_N^2\right) + \mathcal{O}(1)$$

and $\sigma_N \to \infty$ as $N \to \infty$.

- Logarithmically correlated field though not necessarily Gaussian!
- Main questions. Understand extrema of X_N : e.g. $\max_x X_N(x)$ as $\overline{N \to \infty}$?
- <u>Tools.</u> Assume that corresponding multiplicative chaos measure exists:

$$\int_{A} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E}e^{\gamma X_{N}(x)}} dx \stackrel{d}{\to} \mu_{\gamma}(A)$$

for all $0 < \gamma < \sqrt{2d}$ and $A \subset \Omega$ Borel.

• Other approaches/tools exist too (see Louis-Pierre's minicourse, Adam's talk, and Joseph's talk).

• Riemann zeta (partly conjecture): For $\omega \sim \mathrm{Unif}[0,1]$ and $x \in \mathbb{R}$

$$X_N(x) = \sqrt{2} \log \left| \zeta \left(\frac{1}{2} + i\omega N + ix \right) \right|$$

• Riemann zeta (partly conjecture): For $\omega \sim \mathrm{Unif}[0,1]$ and $x \in \mathbb{R}$

$$X_{N}(x) = \sqrt{2} \log \left| \zeta \left(\frac{1}{2} + \delta_{N} + i\omega N + ix \right) \right|$$

• Riemann zeta (partly conjecture): For $\omega \sim \mathrm{Unif}[0,1]$ and $x \in \mathbb{R}$

$$X_N(x) = \sqrt{2} \log \left| \zeta \left(\frac{1}{2} + \delta_N + i\omega N + ix \right) \right|$$

• Eigenvalue counting function of the GUE (CFLW): For $\overline{\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_N}$ eigenvalues of a $N \times N$ GUE matrix (suitably normalized) and $x \in (-1, 1)$

$$X_N(x) = \sqrt{2}\pi \left(\sum_{j=1}^N \mathbf{1}\{\lambda_j \le x\} - N \int_{-1}^x \frac{2}{\pi} \sqrt{1-u^2} du\right).$$

• Riemann zeta (partly conjecture): For $\omega \sim \mathrm{Unif}[0,1]$ and $x \in \mathbb{R}$

$$X_N(x) = \sqrt{2} \log \left| \zeta \left(\frac{1}{2} + \delta_N + i\omega N + ix \right) \right|$$

• Eigenvalue counting function of the GUE (CFLW): For $\overline{\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_N}$ eigenvalues of a $N \times N$ GUE matrix (suitably normalized) and $x \in (-1, 1)$

$$X_N(x) = \sqrt{2}\pi \left(\sum_{j=1}^N \mathbf{1}\{\lambda_j \le x\} - N \int_{-1}^x \frac{2}{\pi} \sqrt{1-u^2} du\right).$$

• The Ginibre ensemble (Bourgade, Dubach, and Hartung): For $G_N = \overline{N \times N}$ complex Ginibre (suitably normalized) and $z \in \mathbb{C}$, |z| < 1

$$X_N(z) = \sqrt{2} \log |\det(z - G_N)| - \frac{1}{\sqrt{2}} N(|z|^2 - 1)$$

• Riemann zeta (partly conjecture): For $\omega \sim \mathrm{Unif}[0,1]$ and $x \in \mathbb{R}$

$$X_N(x) = \sqrt{2} \log \left| \zeta \left(\frac{1}{2} + \delta_N + i\omega N + ix \right) \right|$$

• Eigenvalue counting function of the GUE (CFLW): For $\overline{\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_N}$ eigenvalues of a $N \times N$ GUE matrix (suitably normalized) and $x \in (-1, 1)$

$$X_N(x) = \sqrt{2}\pi \left(\sum_{j=1}^N \mathbf{1}\{\lambda_j \le x\} - N \int_{-1}^x \frac{2}{\pi} \sqrt{1-u^2} du\right).$$

• The Ginibre ensemble (Bourgade, Dubach, and Hartung): For $G_N = \overline{N \times N}$ complex Ginibre (suitably normalized) and $z \in \mathbb{C}$, |z| < 1

$$X_N(z) = \sqrt{2} \log |\det(z - G_N)| - \frac{1}{\sqrt{2}} N(|z|^2 - 1)$$

• See also Reda's talk.

What kind of beasts are these (fields in d = 1, 2)?

What kind of beasts are these (fields in d = 1, 2)?

What kind of beasts are these (realizations of the field and chaos for $\gamma = 0.5, 1, 2$)?

What kind of beasts are these (realizations of the field and chaos for $\gamma = 0.5, 1, 2$)?

Much known about $\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}$ and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield ~ 2010, Berestycki ~ 2015, ...).

Much known about $\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}$ and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield ~ 2010, Berestycki ~ 2015, ...).

• Expected: $\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}$ lives on " γ -thick points" (random set):

 $\{x \in \Omega : X_N(x) \approx \gamma \mathbb{E} X_N(x)^2\}.$

Much known about $\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}$ and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield ~ 2010, Berestycki ~ 2015, ...).

• Expected: $\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}$ lives on " γ -thick points" (random set):

 $\{x \in \Omega : X_N(x) \approx \gamma \mathbb{E} X_N(x)^2\}.$

• Interpretation: μ_{γ} encodes "extreme level sets".

Much known about $\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}$ and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield ~ 2010, Berestycki ~ 2015, ...).

• Expected: $\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}$ lives on " γ -thick points" (random set):

 $\{x \in \Omega : X_N(x) \approx \gamma \mathbb{E} X_N(x)^2\}.$

- Interpretation: μ_γ encodes "extreme level sets".
- Expect: μ_{γ} non-trivial for $\gamma < \sqrt{2d}$, so γ -thick points exist and

 $\max_{x} X_N(x) \geq \sqrt{2d} \mathbb{E} X_N(x)^2.$

Much known about $\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}$ and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield ~ 2010, Berestycki ~ 2015, ...).

• Expected: $\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}$ lives on " γ -thick points" (random set):

 $\{x \in \Omega : X_N(x) \approx \gamma \mathbb{E} X_N(x)^2\}.$

- Interpretation: μ_{γ} encodes "extreme level sets".
- Expect: μ_{γ} non-trivial for $\gamma < \sqrt{2d}$, so γ -thick points exist and

 $\max_{x} X_{N}(x) \geq \sqrt{2d} \mathbb{E} X_{N}(x)^{2}.$

• Expect: $\mu_{\gamma} = 0$ for $\gamma \geq \sqrt{2d}$ and no thick points to live on so

 $\max_{x} X_N(x) \leq \sqrt{2d} \mathbb{E} X_N(x)^2.$

Standing assumptions for X_N

Before going to rigorous claims, need assumptions on X_N .

Standing assumptions for X_N

Before going to rigorous claims, need assumptions on X_N .

Assumption (Close to being a centered Gaussian of variance σ_N^2) For each $\alpha > 0$ and $K \subset \Omega$ compact, $\exists c = c(\alpha, K), C = C(\alpha, K) > 0$:

$$ce^{rac{lpha^2}{2}\sigma_N^2} \leq \mathbb{E}e^{lpha X_N(x)} \leq Ce^{rac{lpha^2}{2}\sigma_N^2} \qquad \qquad ext{for all} \qquad x \in K$$

for some $\sigma_N \rightarrow \infty$ (independent of x, α, K).

Standing assumptions for X_N

Before going to rigorous claims, need assumptions on X_N .

Assumption (Close to being a centered Gaussian of variance σ_N^2) For each $\alpha > 0$ and $K \subset \Omega$ compact, $\exists c = c(\alpha, K), C = C(\alpha, K) > 0$:

$$ce^{rac{lpha^2}{2}\sigma_N^2} \leq \mathbb{E}e^{lpha X_N(x)} \leq Ce^{rac{lpha^2}{2}\sigma_N^2} \qquad \qquad ext{for all} \qquad x \in K$$

for some $\sigma_N \to \infty$ (independent of x, α, K).

Assumption (Non-triviality of chaos)

For $0 < \gamma < \sqrt{2d}$, $K \subset \Omega$ compact with non-empty interior, and some random variable $\mu_{\gamma}(K)$ which is almost surely finite and positive

$$\int_{\mathcal{K}} \frac{e^{\gamma X_{\mathcal{N}}(x)}}{\mathbb{E} e^{\gamma X_{\mathcal{N}}(x)}} dx \stackrel{d}{\to} \mu_{\gamma}(\mathcal{K}).$$

Thick points - rigorous definitions and results

Define for $\gamma > 0$

$$T_N(\gamma) = \{ x \in \Omega : X_N(x) \ge \gamma \sigma_N^2 \}.$$

Thick points - rigorous definitions and results

Define for $\gamma > 0$

$$T_N(\gamma) = \{ x \in \Omega : X_N(x) \ge \gamma \sigma_N^2 \}.$$

Theorem

For any $\epsilon > 0$, $0 < \gamma < \sqrt{2d}$ and $K \subset \Omega$ compact

$$\int_{(K\cap T_N(\gamma-\epsilon))\setminus T_N(\gamma+\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}} dx \xrightarrow{d} \mu_{\gamma}(K).$$

Thick points - rigorous definitions and results

Define for $\gamma > 0$

$$T_N(\gamma) = \{ x \in \Omega : X_N(x) \ge \gamma \sigma_N^2 \}.$$

Theorem

For any $\epsilon > 0$, $0 < \gamma < \sqrt{2d}$ and $K \subset \Omega$ compact

$$\int_{(K\cap T_N(\gamma-\epsilon))\setminus T_N(\gamma+\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}} dx \stackrel{d}{\to} \mu_{\gamma}(K).$$

Interpretation: only points x with $X_N(x) \approx \gamma \sigma_N^2 \approx \gamma \mathbb{E} X_N(x)^2$ contribute to $\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}$.

Thick points - proof

Proof.

$$\mathbb{E}\int_{K\setminus T_N(\gamma-\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}} dx = \mathbb{E}\int_K \mathbf{1}\{X_N(x) < (\gamma-\epsilon)\sigma_N^2\} \frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}} dx$$
$$\leq e^{\epsilon(\gamma-\epsilon)\sigma_N^2} \int_K \frac{\mathbb{E}e^{(\gamma-\epsilon)X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}} dx$$
$$\leq \frac{C(\gamma-\epsilon,K)}{c(\gamma,K)} |K| e^{-\frac{\epsilon^2}{2}\sigma_N^2} \to 0.$$

Thick points - proof

Proof.

$$\mathbb{E} \int_{K \setminus T_N(\gamma - \epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx = \mathbb{E} \int_K \mathbf{1} \{ X_N(x) < (\gamma - \epsilon) \sigma_N^2 \} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx$$
$$\leq e^{\epsilon(\gamma - \epsilon)\sigma_N^2} \int_K \frac{\mathbb{E} e^{(\gamma - \epsilon)X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx$$
$$\leq \frac{C(\gamma - \epsilon, K)}{c(\gamma, K)} |K| e^{-\frac{\epsilon^2}{2}\sigma_N^2} \to 0.$$

Similarly (using again approx Gaussian assumption)

$$\mathbb{E}\int_{K\cap T_N(\gamma+\epsilon)}\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}dx\to 0$$

Thick points - proof

Proof.

$$\mathbb{E} \int_{K \setminus T_N(\gamma - \epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx = \mathbb{E} \int_K \mathbf{1} \{ X_N(x) < (\gamma - \epsilon) \sigma_N^2 \} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx$$
$$\leq e^{\epsilon(\gamma - \epsilon)\sigma_N^2} \int_K \frac{\mathbb{E} e^{(\gamma - \epsilon)X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx$$
$$\leq \frac{C(\gamma - \epsilon, K)}{c(\gamma, K)} |K| e^{-\frac{\epsilon^2}{2}\sigma_N^2} \to 0.$$

Similarly (using again approx Gaussian assumption)

$$\mathbb{E}\int_{K\cap \mathcal{T}_N(\gamma+\epsilon)}\frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}}dx\to 0.$$

Thus for some \mathcal{E}_N with $\mathbb{E}|\mathcal{E}_N| \to 0$ (can thus use Slutsky's theorem)

$$\int_{(K\cap T_N(\gamma-\epsilon))\setminus T_N(\gamma+\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}} dx = \int_K \frac{e^{\gamma X_N(x)}}{\mathbb{E}e^{\gamma X_N(x)}} dx + \mathcal{E}_N.$$

9/16

Lower bound for the maximum

Corollary

For any $\epsilon > 0$ and $K \subset \Omega$ compact with non-empty interior.

$$\lim_{N\to\infty}\mathbb{P}\left(\max_{x\in K}X_N(x)\geq (\sqrt{2d}-\epsilon)\sigma_N^2\right)=1.$$

Proof.

Let $\alpha < \gamma < \sqrt{2d}$ and note that for every $\epsilon > 0$ and $\mathcal{K} \subset \Omega$ compact

$$\mathbb{P}\left(\max_{x\in K} X_{N}(x) \geq \alpha \sigma_{N}^{2}\right) \geq \mathbb{P}\left(T_{N}(\alpha) \cap K \neq \emptyset\right)$$
$$\geq \mathbb{P}\left(\int_{T_{N}(\alpha)\cap K} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E}e^{\gamma X_{N}(x)}} dx > \epsilon\right)$$
$$\rightarrow \mathbb{P}(\mu_{\gamma}(K) > \epsilon).$$

Proof.

Let $\alpha < \gamma < \sqrt{2d}$ and note that for every $\epsilon > 0$ and $\mathcal{K} \subset \Omega$ compact

$$\mathbb{P}\left(\max_{x\in\mathcal{K}}X_{N}(x)\geq\alpha\sigma_{N}^{2}\right)\geq\mathbb{P}\left(T_{N}(\alpha)\cap\mathcal{K}\neq\emptyset\right)$$
$$\geq\mathbb{P}\left(\int_{T_{N}(\alpha)\cap\mathcal{K}}\frac{e^{\gamma X_{N}(x)}}{\mathbb{E}e^{\gamma X_{N}(x)}}dx>\epsilon\right)$$
$$\rightarrow\mathbb{P}(\mu_{\gamma}(\mathcal{K})>\epsilon).$$

If K has non-empty interior, then (non-triviality of chaos assumption)

$$\liminf_{N\to\infty} \mathbb{P}\left(\max_{x\in\mathcal{K}} X_N(x) \geq \alpha \sigma_N^2\right) \geq \mathbb{P}(\mu_{\gamma}(\mathcal{K}) > \epsilon) \to 1$$

as $\epsilon \rightarrow 0$.

Upper bound for the maximum: assumptions

Upper bound requires X_N to be regular enough on scale $e^{-\sigma_N^2}$ – need further assumptions.

Upper bound for the maximum: assumptions

Upper bound requires X_N to be regular enough on scale $e^{-\sigma_N^2}$ – need further assumptions.

Assumption (Local scale of regularity)

There exist deterministic C, c > 0, such that for each $x \in \Omega$, there exists a (possibly random) compact $K_x \subset \Omega$ with $|K_x| \ge ce^{-d\sigma_N^2}$ and

$$X_N(t) \ge X_N(x) - C$$
 for all $t \in K_x$.

Upper bound for the maximum

Theorem

For any $\epsilon > 0$ and $K \subset \Omega$ compact with non-empty interior.

$$\lim_{N\to\infty}\mathbb{P}\left(\max_{x\in K}X_N(x)\leq (\sqrt{2d}+\epsilon)\sigma_N^2\right)=1.$$

Proof.

• Assume that there is some $x_* \in K$ such that $X_N(x_*) \ge (\sqrt{2d} + \epsilon)\sigma_N^2$.

Proof.

- Assume that there is some $x_* \in K$ such that $X_N(x_*) \ge (\sqrt{2d} + \epsilon)\sigma_N^2$.
- By regularity assumption and approx Gaussian assumption

$$\begin{split} \int_{K} \frac{e^{(\sqrt{2d}-\epsilon)X_{N}(x)}}{\mathbb{E}e^{(\sqrt{2d}-\epsilon)X_{N}(x)}} dx &\geq e^{(\sqrt{2d}-\epsilon)[(\sqrt{2d}+\epsilon)\sigma_{N}^{2}-C]} \int_{K_{x_{*}}} \frac{1}{\mathbb{E}e^{(\sqrt{2d}-\epsilon)X_{N}(x)}} dx \\ &\geq \widetilde{C}e^{(2d-\epsilon^{2})\sigma_{N}^{2}} e^{-\frac{(\sqrt{2d}-\epsilon)^{2}}{2}\sigma_{N}^{2}} e^{-d\sigma_{N}^{2}} \\ &\geq \widetilde{C}e^{(\sqrt{2d}\epsilon-\frac{\epsilon^{2}}{2})\sigma_{N}^{2}} \to \infty. \end{split}$$

Proof.

- Assume that there is some $x_* \in K$ such that $X_N(x_*) \ge (\sqrt{2d} + \epsilon)\sigma_N^2$.
- By regularity assumption and approx Gaussian assumption

$$\begin{split} \int_{K} \frac{e^{(\sqrt{2d}-\epsilon)X_{N}(x)}}{\mathbb{E}e^{(\sqrt{2d}-\epsilon)X_{N}(x)}} dx &\geq e^{(\sqrt{2d}-\epsilon)\left[(\sqrt{2d}+\epsilon)\sigma_{N}^{2}-C\right]} \int_{K_{x_{*}}} \frac{1}{\mathbb{E}e^{(\sqrt{2d}-\epsilon)X_{N}(x)}} dx \\ &\geq \widetilde{C}e^{(2d-\epsilon^{2})\sigma_{N}^{2}} e^{-\frac{(\sqrt{2d}-\epsilon)^{2}}{2}\sigma_{N}^{2}} e^{-d\sigma_{N}^{2}} \\ &\geq \widetilde{C}e^{(\sqrt{2d}\epsilon-\frac{\epsilon^{2}}{2})\sigma_{N}^{2}} \to \infty. \end{split}$$

• By assumption of non-triviality (finiteness) of chaos, the probability of this tends to zero.

Proof.

- Assume that there is some $x_* \in K$ such that $X_N(x_*) \geq (\sqrt{2d} + \epsilon)\sigma_N^2$.
- By regularity assumption and approx Gaussian assumption

$$\begin{split} \int_{K} \frac{e^{(\sqrt{2d}-\epsilon)X_{N}(x)}}{\mathbb{E}e^{(\sqrt{2d}-\epsilon)X_{N}(x)}} dx &\geq e^{(\sqrt{2d}-\epsilon)\left[(\sqrt{2d}+\epsilon)\sigma_{N}^{2}-C\right]} \int_{K_{x_{*}}} \frac{1}{\mathbb{E}e^{(\sqrt{2d}-\epsilon)X_{N}(x)}} dx \\ &\geq \widetilde{C}e^{(2d-\epsilon^{2})\sigma_{N}^{2}} e^{-\frac{(\sqrt{2d}-\epsilon)^{2}}{2}\sigma_{N}^{2}} e^{-d\sigma_{N}^{2}} \\ &\geq \widetilde{C}e^{(\sqrt{2d}\epsilon-\frac{\epsilon^{2}}{2})\sigma_{N}^{2}} \to \infty. \end{split}$$

• By assumption of non-triviality (finiteness) of chaos, the probability of this tends to zero.

Again, other approaches exist.

Advertisements

Also various kinds of complex multiplicative chaos exists: formally $e^{\gamma X(x)+i\beta Y(x)}$ where X, Y log-correlated.

Advertisements

Also various kinds of complex multiplicative chaos exists: formally $e^{\gamma X(x)+i\beta Y(x)}$ where X, Y log-correlated.

Theorem (Saksman, W. 2016)

For $\omega \sim \operatorname{Unif}[0,1]$, as $T \to \infty$,

$$\zeta(\frac{1}{2} + i\omega T + ix) \stackrel{d}{\rightarrow} e^{X(x) + iY(x)}$$

for suitable correlated non-Gaussian log-cor X, Y.

Advertisements

Also various kinds of complex multiplicative chaos exists: formally $e^{\gamma X(x)+i\beta Y(x)}$ where X, Y log-correlated.

Theorem (Saksman, W. 2016)

For $\omega \sim \text{Unif}[0,1]$, as $T \to \infty$,

$$\zeta(\frac{1}{2} + i\omega T + ix) \stackrel{d}{\rightarrow} e^{X(x) + iY(x)}$$

for suitable correlated non-Gaussian log-cor X, Y.

Theorem (Junnila, Saksman, W. 2018)

For $\sigma, \tilde{\sigma}$ independent realizations of a spin configuration of the critical lsing model with + b.c. on $\Omega \cap \delta \mathbb{Z}^2$, as $\delta \to 0$

$$\delta^{-1/4}\sigma(x)\widetilde{\sigma}(x) \xrightarrow{d} f_{\Omega}(x) \operatorname{Re} "e^{i\frac{1}{\sqrt{2}}X_{\Omega}(x)}"$$

for a suitable deterministic f_{Ω} and X_{Ω} being the GFF on Ω .

Challenges/open questions

• What is the analogue of thick points for complex multiplicative chaos?

Challenges/open questions

- What is the analogue of thick points for complex multiplicative chaos?
- In other words, what x do $\zeta(\frac{1}{2} + i\omega T + ix)$ and $\sigma(x)\widetilde{\sigma}(x)$ live on?