Applications of multiplicative chaos: extreme values of logarithmically correlated fields

Christian Webb

Aalto University, Finland

June 17 - Extreme values in Number Theory and Probability IHP

Based on joint work with T. Claeys, B. Fahs, G. Lambert; J. Junnila and E. Saksman

Goal of the talk

- Basic setting. X_{N} centered stoch. proc. on $\Omega \subset \mathbb{R}^{d}$:

$$
\mathbb{E} X_{N}(x) X_{N}(y)=\min \left(\log |x-y|^{-1}, \sigma_{N}^{2}\right)+\mathcal{O}(1)
$$

$$
\text { and } \sigma_{N} \rightarrow \infty \text { as } N \rightarrow \infty
$$

Goal of the talk

- Basic setting. X_{N} centered stoch. proc. on $\Omega \subset \mathbb{R}^{d}$:

$$
\mathbb{E} X_{N}(x) X_{N}(y)=\min \left(\log |x-y|^{-1}, \sigma_{N}^{2}\right)+\mathcal{O}(1)
$$

and $\sigma_{N} \rightarrow \infty$ as $N \rightarrow \infty$.

- Logarithmically correlated field - though not necessarily Gaussian!

Goal of the talk

- Basic setting. X_{N} centered stoch. proc. on $\Omega \subset \mathbb{R}^{d}$:

$$
\mathbb{E} X_{N}(x) X_{N}(y)=\min \left(\log |x-y|^{-1}, \sigma_{N}^{2}\right)+\mathcal{O}(1)
$$

and $\sigma_{N} \rightarrow \infty$ as $N \rightarrow \infty$.

- Logarithmically correlated field - though not necessarily Gaussian!
- Main questions. Understand extrema of X_{N} : e.g. $\max _{x} X_{N}(x)$ as $N \rightarrow \infty$?

Goal of the talk

- Basic setting. X_{N} centered stoch. proc. on $\Omega \subset \mathbb{R}^{d}$:

$$
\mathbb{E} X_{N}(x) X_{N}(y)=\min \left(\log |x-y|^{-1}, \sigma_{N}^{2}\right)+\mathcal{O}(1)
$$

and $\sigma_{N} \rightarrow \infty$ as $N \rightarrow \infty$.

- Logarithmically correlated field - though not necessarily Gaussian!
- Main questions. Understand extrema of X_{N} : e.g. $\max _{x} X_{N}(x)$ as $N \rightarrow \infty$?
- Tools. Assume that corresponding multiplicative chaos measure exists:

$$
\int_{A} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \xrightarrow{d} \mu_{\gamma}(A)
$$

for all $0<\gamma<\sqrt{2 d}$ and $A \subset \Omega$ Borel.

Goal of the talk

- Basic setting. X_{N} centered stoch. proc. on $\Omega \subset \mathbb{R}^{d}$:

$$
\mathbb{E} X_{N}(x) X_{N}(y)=\min \left(\log |x-y|^{-1}, \sigma_{N}^{2}\right)+\mathcal{O}(1)
$$

and $\sigma_{N} \rightarrow \infty$ as $N \rightarrow \infty$.

- Logarithmically correlated field - though not necessarily Gaussian!
- Main questions. Understand extrema of X_{N} : e.g. $\max _{x} X_{N}(x)$ as $N \rightarrow \infty$?
- Tools. Assume that corresponding multiplicative chaos measure exists:

$$
\int_{A} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \xrightarrow{d} \mu_{\gamma}(A)
$$

for all $0<\gamma<\sqrt{2 d}$ and $A \subset \Omega$ Borel.

- Other approaches/tools exist too (see Louis-Pierre's minicourse, Adam's talk, and Joseph's talk).

Examples (either known or conjectured)

- Riemann zeta (partly conjecture): For $\omega \sim \operatorname{Unif}[0,1]$ and $x \in \mathbb{R}$

$$
X_{N}(x)=\sqrt{2} \log \left|\zeta\left(\frac{1}{2}+i \omega N+i x\right)\right|
$$

Examples (either known or conjectured)

- Riemann zeta (partly conjecture): For $\omega \sim \operatorname{Unif}[0,1]$ and $x \in \mathbb{R}$

$$
X_{N}(x)=\sqrt{2} \log \left|\zeta\left(\frac{1}{2}+\delta_{N}+i \omega N+i x\right)\right|
$$

Examples (either known or conjectured)

- Riemann zeta (partly conjecture): For $\omega \sim \operatorname{Unif}[0,1]$ and $x \in \mathbb{R}$

$$
X_{N}(x)=\sqrt{2} \log \left|\zeta\left(\frac{1}{2}+\delta_{N}+i \omega N+i x\right)\right|
$$

- Eigenvalue counting function of the GUE (CFLW): For $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{N}$ eigenvalues of a $N \times N$ GUE matrix (suitably normalized) and $x \in(-1,1)$

$$
X_{N}(x)=\sqrt{2} \pi\left(\sum_{j=1}^{N} \mathbf{1}\left\{\lambda_{j} \leq x\right\}-N \int_{-1}^{x} \frac{2}{\pi} \sqrt{1-u^{2}} d u\right)
$$

Examples (either known or conjectured)

- Riemann zeta (partly conjecture): For $\omega \sim \operatorname{Unif}[0,1]$ and $x \in \mathbb{R}$

$$
X_{N}(x)=\sqrt{2} \log \left|\zeta\left(\frac{1}{2}+\delta_{N}+i \omega N+i x\right)\right|
$$

- Eigenvalue counting function of the GUE (CFLW): For $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{N}$ eigenvalues of a $N \times N$ GUE matrix (suitably normalized) and $x \in(-1,1)$

$$
X_{N}(x)=\sqrt{2} \pi\left(\sum_{j=1}^{N} \mathbf{1}\left\{\lambda_{j} \leq x\right\}-N \int_{-1}^{x} \frac{2}{\pi} \sqrt{1-u^{2}} d u\right)
$$

- The Ginibre ensemble (Bourgade, Dubach, and Hartung): For G_{N} $N \times N$ complex Ginibre (suitably normalized) and $z \in \mathbb{C},|z|<1$

$$
X_{N}(z)=\sqrt{2} \log \left|\operatorname{det}\left(z-G_{N}\right)\right|-\frac{1}{\sqrt{2}} N\left(|z|^{2}-1\right)
$$

Examples (either known or conjectured)

- Riemann zeta (partly conjecture): For $\omega \sim \operatorname{Unif}[0,1]$ and $x \in \mathbb{R}$

$$
X_{N}(x)=\sqrt{2} \log \left|\zeta\left(\frac{1}{2}+\delta_{N}+i \omega N+i x\right)\right|
$$

- Eigenvalue counting function of the GUE (CFLW): For $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{N}$ eigenvalues of a $N \times N$ GUE matrix (suitably normalized) and $x \in(-1,1)$

$$
X_{N}(x)=\sqrt{2} \pi\left(\sum_{j=1}^{N} \mathbf{1}\left\{\lambda_{j} \leq x\right\}-N \int_{-1}^{x} \frac{2}{\pi} \sqrt{1-u^{2}} d u\right)
$$

- The Ginibre ensemble (Bourgade, Dubach, and Hartung): For G_{N} $N \times N$ complex Ginibre (suitably normalized) and $z \in \mathbb{C},|z|<1$

$$
X_{N}(z)=\sqrt{2} \log \left|\operatorname{det}\left(z-G_{N}\right)\right|-\frac{1}{\sqrt{2}} N\left(|z|^{2}-1\right)
$$

- See also Reda's talk.

What kind of beasts are these (fields in $d=1,2$)?

What kind of beasts are these (fields in $d=1,2$)?

What kind of beasts are these (realizations of the field and chaos for $\gamma=0.5,1,2)$?

What kind of beasts are these (realizations of the field and chaos for $\gamma=0.5,1,2)$?

Thick points - heuristics based on Gaussian case

Much known about $\frac{e^{\gamma x_{N}(x)}}{\mathbb{E} e^{\gamma x_{N}(x)}}$ and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield ~ 2010, Berestycki $\sim 2015, \ldots$...).

Thick points - heuristics based on Gaussian case

Much known about $\frac{e^{\gamma \lambda_{N}(x)}}{\mathbb{E} e^{\gamma x_{N}(x)}}$ and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield ~2010, Berestycki ~ 2015, ...).

- Expected: $\frac{e^{\gamma x_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}}$ lives on " γ-thick points" (random set):

$$
\left\{x \in \Omega: X_{N}(x) \approx \gamma \mathbb{E} X_{N}(x)^{2}\right\}
$$

Thick points - heuristics based on Gaussian case

Much known about $\frac{e^{\gamma \lambda_{N}(x)}}{\mathbb{E} e^{\gamma \lambda_{N}(x)}}$ and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield ~2010, Berestycki ~ 2015, ...).

- Expected: $\frac{e^{\gamma x_{N}(x)}}{\mathbb{E}^{\gamma X_{N}(x)}}$ lives on " γ-thick points" (random set):

$$
\left\{x \in \Omega: X_{N}(x) \approx \gamma \mathbb{E} X_{N}(x)^{2}\right\}
$$

- Interpretation: μ_{γ} encodes "extreme level sets".

Thick points - heuristics based on Gaussian case

Much known about $\frac{e^{\gamma x_{N}(x)}}{\mathbb{E} e^{\gamma \lambda_{N}(x)}}$ and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield ~2010, Berestycki ~ 2015, ...).

- Expected: $\frac{e^{\gamma x_{N}(x)}}{\mathbb{E}^{\gamma \chi_{N}(x)}}$ lives on " γ-thick points" (random set):

$$
\left\{x \in \Omega: X_{N}(x) \approx \gamma \mathbb{E} X_{N}(x)^{2}\right\}
$$

- Interpretation: μ_{γ} encodes "extreme level sets".
- Expect: μ_{γ} non-trivial for $\gamma<\sqrt{2 d}$, so γ-thick points exist and

$$
\max _{x} X_{N}(x) \geq \sqrt{2 d} \mathbb{E} X_{N}(x)^{2}
$$

Thick points - heuristics based on Gaussian case

Much known about $\frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}}$ and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield ~2010, Berestycki ~ 2015, ...).

- Expected: $\frac{e^{\gamma x_{N}(x)}}{\mathbb{E}^{\gamma \chi_{N}(x)}}$ lives on " γ-thick points" (random set):

$$
\left\{x \in \Omega: X_{N}(x) \approx \gamma \mathbb{E} X_{N}(x)^{2}\right\}
$$

- Interpretation: μ_{γ} encodes "extreme level sets".
- Expect: μ_{γ} non-trivial for $\gamma<\sqrt{2 d}$, so γ-thick points exist and

$$
\max _{x} X_{N}(x) \geq \sqrt{2 d} \mathbb{E} X_{N}(x)^{2}
$$

- Expect: $\mu_{\gamma}=0$ for $\gamma \geq \sqrt{2 d}$ and no thick points to live on so

$$
\max _{x} X_{N}(x) \leq \sqrt{2 d} \mathbb{E} X_{N}(x)^{2}
$$

Standing assumptions for X_{N}

Before going to rigorous claims, need assumptions on X_{N}.

Standing assumptions for X_{N}

Before going to rigorous claims, need assumptions on X_{N}.
Assumption (Close to being a centered Gaussian of variance σ_{N}^{2})
For each $\alpha>0$ and $K \subset \Omega$ compact, $\exists c=c(\alpha, K), C=C(\alpha, K)>0$:

$$
c e^{\frac{\alpha^{2}}{2} \sigma_{N}^{2}} \leq \mathbb{E} e^{\alpha X_{N}(x)} \leq C e^{\frac{\alpha^{2}}{2} \sigma_{N}^{2}} \quad \text { for all } \quad x \in K
$$

for some $\sigma_{N} \rightarrow \infty$ (independent of x, α, K).

Standing assumptions for X_{N}

Before going to rigorous claims, need assumptions on X_{N}.
Assumption (Close to being a centered Gaussian of variance σ_{N}^{2})
For each $\alpha>0$ and $K \subset \Omega$ compact, $\exists c=c(\alpha, K), C=C(\alpha, K)>0$:

$$
c e^{\frac{\alpha^{2}}{2} \sigma_{N}^{2}} \leq \mathbb{E} e^{\alpha X_{N}(x)} \leq C e^{\frac{\alpha^{2}}{2} \sigma_{N}^{2}} \quad \text { for all } \quad x \in K
$$

for some $\sigma_{N} \rightarrow \infty$ (independent of x, α, K).

Assumption (Non-triviality of chaos)

For $0<\gamma<\sqrt{2 d}, K \subset \Omega$ compact with non-empty interior, and some random variable $\mu_{\gamma}(K)$ which is almost surely finite and positive

$$
\int_{K} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \xrightarrow{d} \mu_{\gamma}(K) .
$$

Thick points - rigorous definitions and results

Define for $\gamma>0$

$$
T_{N}(\gamma)=\left\{x \in \Omega: X_{N}(x) \geq \gamma \sigma_{N}^{2}\right\} .
$$

Thick points - rigorous definitions and results

Define for $\gamma>0$

$$
T_{N}(\gamma)=\left\{x \in \Omega: X_{N}(x) \geq \gamma \sigma_{N}^{2}\right\}
$$

Theorem
For any $\epsilon>0,0<\gamma<\sqrt{2 d}$ and $K \subset \Omega$ compact

$$
\int_{\left(K \cap T_{N}(\gamma-\epsilon)\right) \backslash T_{N}(\gamma+\epsilon)} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \xrightarrow{d} \mu_{\gamma}(K) .
$$

Thick points - rigorous definitions and results

Define for $\gamma>0$

$$
T_{N}(\gamma)=\left\{x \in \Omega: X_{N}(x) \geq \gamma \sigma_{N}^{2}\right\} .
$$

Theorem
For any $\epsilon>0,0<\gamma<\sqrt{2 d}$ and $K \subset \Omega$ compact

$$
\int_{\left(K \cap T_{N}(\gamma-\epsilon)\right) \backslash T_{N}(\gamma+\epsilon)} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \xrightarrow{d} \mu_{\gamma}(K) .
$$

Interpretation: only points x with $X_{N}(x) \approx \gamma \sigma_{N}^{2} \approx \gamma \mathbb{E} X_{N}(x)^{2}$ contribute to $\frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}}$.

Thick points - proof

Proof.

$$
\begin{aligned}
\mathbb{E} \int_{K \backslash T_{N}(\gamma-\epsilon)} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x & =\mathbb{E} \int_{K} 1\left\{X_{N}(x)<(\gamma-\epsilon) \sigma_{N}^{2}\right\} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \\
& \leq e^{\epsilon(\gamma-\epsilon) \sigma_{N}^{2}} \int_{K} \frac{\mathbb{E} e^{(\gamma-\epsilon) X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \\
& \leq \frac{C(\gamma-\epsilon, K)}{c(\gamma, K)}|K| e^{-\frac{\epsilon^{2}}{2} \sigma_{N}^{2}} \rightarrow 0 .
\end{aligned}
$$

Thick points - proof

Proof.

$$
\begin{aligned}
\mathbb{E} \int_{K \backslash T_{N}(\gamma-\epsilon)} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x & =\mathbb{E} \int_{K} 1\left\{X_{N}(x)<(\gamma-\epsilon) \sigma_{N}^{2}\right\} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \\
& \leq e^{\epsilon(\gamma-\epsilon) \sigma_{N}^{2}} \int_{K} \frac{\mathbb{E} e^{(\gamma-\epsilon) X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \\
& \leq \frac{C(\gamma-\epsilon, K)}{c(\gamma, K)}|K| e^{-\frac{\epsilon^{2}}{2} \sigma_{N}^{2}} \rightarrow 0 .
\end{aligned}
$$

Similarly (using again approx Gaussian assumption)

$$
\mathbb{E} \int_{K \cap T_{N}(\gamma+\epsilon)} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \rightarrow 0
$$

Thick points - proof

Proof.

$$
\begin{aligned}
\mathbb{E} \int_{K \backslash T_{N}(\gamma-\epsilon)} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x & =\mathbb{E} \int_{K} 1\left\{X_{N}(x)<(\gamma-\epsilon) \sigma_{N}^{2}\right\} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \\
& \leq e^{\epsilon(\gamma-\epsilon) \sigma_{N}^{2}} \int_{K} \frac{\mathbb{E} e^{(\gamma-\epsilon) X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \\
& \leq \frac{C(\gamma-\epsilon, K)}{c(\gamma, K)}|K| e^{-\frac{\epsilon^{2}}{2} \sigma_{N}^{2}} \rightarrow 0 .
\end{aligned}
$$

Similarly (using again approx Gaussian assumption)

$$
\mathbb{E} \int_{K \cap T_{N}(\gamma+\epsilon)} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x \rightarrow 0
$$

Thus for some \mathcal{E}_{N} with $\mathbb{E}\left|\mathcal{E}_{N}\right| \rightarrow 0$ (can thus use Slutsky's theorem)

$$
\int_{\left(K \cap T_{N}(\gamma-\epsilon)\right) \backslash T_{N}(\gamma+\epsilon)} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x=\int_{K} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x+\mathcal{E}_{N} .
$$

Lower bound for the maximum

Corollary

For any $\epsilon>0$ and $K \subset \Omega$ compact with non-empty interior.

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\max _{x \in K} X_{N}(x) \geq(\sqrt{2 d}-\epsilon) \sigma_{N}^{2}\right)=1
$$

Lower bound for the maximum: proof

Proof.

Let $\alpha<\gamma<\sqrt{2 d}$ and note that for every $\epsilon>0$ and $K \subset \Omega$ compact

$$
\begin{aligned}
\mathbb{P}\left(\max _{x \in K} X_{N}(x) \geq \alpha \sigma_{N}^{2}\right) & \geq \mathbb{P}\left(T_{N}(\alpha) \cap K \neq \emptyset\right) \\
& \geq \mathbb{P}\left(\int_{T_{N}(\alpha) \cap K} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x>\epsilon\right) \\
& \rightarrow \mathbb{P}\left(\mu_{\gamma}(K)>\epsilon\right) .
\end{aligned}
$$

Lower bound for the maximum: proof

Proof.

Let $\alpha<\gamma<\sqrt{2 d}$ and note that for every $\epsilon>0$ and $K \subset \Omega$ compact

$$
\begin{aligned}
\mathbb{P}\left(\max _{x \in K} X_{N}(x) \geq \alpha \sigma_{N}^{2}\right) & \geq \mathbb{P}\left(T_{N}(\alpha) \cap K \neq \emptyset\right) \\
& \geq \mathbb{P}\left(\int_{T_{N}(\alpha) \cap K} \frac{e^{\gamma X_{N}(x)}}{\mathbb{E} e^{\gamma X_{N}(x)}} d x>\epsilon\right) \\
& \rightarrow \mathbb{P}\left(\mu_{\gamma}(K)>\epsilon\right) .
\end{aligned}
$$

If K has non-empty interior, then (non-triviality of chaos assumption)

$$
\liminf _{N \rightarrow \infty} \mathbb{P}\left(\max _{x \in K} X_{N}(x) \geq \alpha \sigma_{N}^{2}\right) \geq \mathbb{P}\left(\mu_{\gamma}(K)>\epsilon\right) \rightarrow 1
$$

as $\epsilon \rightarrow 0$.

Upper bound for the maximum: assumptions

Upper bound requires X_{N} to be regular enough on scale $e^{-\sigma_{N}^{2}}$ - need further assumptions.

Upper bound for the maximum: assumptions

Upper bound requires X_{N} to be regular enough on scale $e^{-\sigma_{N}^{2}}$ - need further assumptions.

Assumption (Local scale of regularity)

There exist deterministic $C, c>0$, such that for each $x \in \Omega$, there exists a (possibly random) compact $K_{x} \subset \Omega$ with $\left|K_{x}\right| \geq c e^{-d \sigma_{N}^{2}}$ and

$$
X_{N}(t) \geq X_{N}(x)-C \quad \text { for all } \quad t \in K_{x}
$$

Upper bound for the maximum

Theorem
For any $\epsilon>0$ and $K \subset \Omega$ compact with non-empty interior.

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\max _{x \in K} X_{N}(x) \leq(\sqrt{2 d}+\epsilon) \sigma_{N}^{2}\right)=1
$$

Upper bound for the maximum: proof

Proof.

- Assume that there is some $x_{*} \in K$ such that $X_{N}\left(x_{*}\right) \geq(\sqrt{2 d}+\epsilon) \sigma_{N}^{2}$.

Upper bound for the maximum: proof

Proof.

- Assume that there is some $x_{*} \in K$ such that $X_{N}\left(x_{*}\right) \geq(\sqrt{2 d}+\epsilon) \sigma_{N}^{2}$.
- By regularity assumption and approx Gaussian assumption

$$
\begin{aligned}
\int_{K} \frac{e^{(\sqrt{2 d}-\epsilon) X_{N}(x)}}{\mathbb{E} e^{(\sqrt{2 d}-\epsilon) X_{N}(x)}} d x & \geq e^{(\sqrt{2 d}-\epsilon)\left[(\sqrt{2 d}+\epsilon) \sigma_{N}^{2}-C\right]} \int_{K_{x_{*}}} \frac{1}{\mathbb{E} e^{(\sqrt{2 d}-\epsilon) X_{N}(x)} d x} \\
& \geq \widetilde{C} e^{\left(2 d-\epsilon^{2}\right) \sigma_{N}^{2}} e^{-\frac{(\sqrt{2 d}-\epsilon)^{2}}{2} \sigma_{N}^{2}} e^{-d \sigma_{N}^{2}} \\
& \geq \widetilde{C} e^{\left(\sqrt{2 d} \epsilon-\frac{\epsilon^{2}}{2}\right) \sigma_{N}^{2}} \rightarrow \infty
\end{aligned}
$$

Upper bound for the maximum: proof

Proof.

- Assume that there is some $x_{*} \in K$ such that $X_{N}\left(x_{*}\right) \geq(\sqrt{2 d}+\epsilon) \sigma_{N}^{2}$.
- By regularity assumption and approx Gaussian assumption

$$
\begin{aligned}
\int_{K} \frac{e^{(\sqrt{2 d}-\epsilon) X_{N}(x)}}{\mathbb{E} e^{(\sqrt{2 d}-\epsilon) X_{N}(x)}} d x & \geq e^{(\sqrt{2 d}-\epsilon)\left[(\sqrt{2 d}+\epsilon) \sigma_{N}^{2}-C\right]} \int_{K_{X_{*}}} \frac{1}{\mathbb{E} e^{(\sqrt{2 d}-\epsilon) X_{N}(x)} d x} \\
& \geq \widetilde{C} e^{\left(2 d-\epsilon^{2}\right) \sigma_{N}^{2}} e^{-\frac{(\sqrt{2 d}-\epsilon)^{2}}{2} \sigma_{N}^{2}} e^{-d \sigma_{N}^{2}} \\
& \geq \widetilde{C} e^{\left(\sqrt{2 d} \epsilon-\frac{\epsilon^{2}}{2}\right) \sigma_{N}^{2}} \rightarrow \infty
\end{aligned}
$$

- By assumption of non-triviality (finiteness) of chaos, the probability of this tends to zero.

Upper bound for the maximum: proof

Proof.

- Assume that there is some $x_{*} \in K$ such that $X_{N}\left(x_{*}\right) \geq(\sqrt{2 d}+\epsilon) \sigma_{N}^{2}$.
- By regularity assumption and approx Gaussian assumption

$$
\begin{aligned}
\int_{K} \frac{e^{(\sqrt{2 d}-\epsilon) X_{N}(x)}}{\mathbb{E} e^{(\sqrt{2 d}-\epsilon) X_{N}(x)}} d x & \geq e^{(\sqrt{2 d}-\epsilon)\left[(\sqrt{2 d}+\epsilon) \sigma_{N}^{2}-C\right]} \int_{K_{X_{*}}} \frac{1}{\mathbb{E} e^{(\sqrt{2 d}-\epsilon) X_{N}(x)} d x} \\
& \geq \widetilde{C} e^{\left(2 d-\epsilon^{2}\right) \sigma_{N}^{2}} e^{-\frac{(\sqrt{2 d}-\epsilon)^{2}}{2} \sigma_{N}^{2}} e^{-d \sigma_{N}^{2}} \\
& \geq \widetilde{C} e^{\left(\sqrt{2 d} \epsilon-\frac{\epsilon^{2}}{2}\right) \sigma_{N}^{2}} \rightarrow \infty
\end{aligned}
$$

- By assumption of non-triviality (finiteness) of chaos, the probability of this tends to zero.

Again, other approaches exist.

Advertisements

Also various kinds of complex multiplicative chaos exists: formally $e^{\gamma X(x)+i \beta Y(x)}$ where X, Y log-correlated.

Advertisements

Also various kinds of complex multiplicative chaos exists: formally $e^{\gamma X(x)+i \beta Y(x)}$ where X, Y log-correlated.

Theorem (Saksman, W. 2016)
For $\omega \sim \operatorname{Unif}[0,1]$, as $T \rightarrow \infty$,

$$
\zeta\left(\frac{1}{2}+i \omega T+i x\right) \xrightarrow{d} e^{X(x)+i Y(x)}
$$

for suitable correlated non-Gaussian log-cor X, Y.

Advertisements

Also various kinds of complex multiplicative chaos exists: formally $e^{\gamma X(x)+i \beta Y(x)}$ where X, Y log-correlated.

Theorem (Saksman, W. 2016)
For $\omega \sim \operatorname{Unif}[0,1]$, as $T \rightarrow \infty$,

$$
\zeta\left(\frac{1}{2}+i \omega T+i x\right) \xrightarrow{d} e^{X(x)+i Y(x)}
$$

for suitable correlated non-Gaussian log-cor X, Y.

Theorem (Junnila, Saksman, W. 2018)
For $\sigma, \tilde{\sigma}$ independent realizations of a spin configuration of the critical Ising model with + b.c. on $\Omega \cap \delta \mathbb{Z}^{2}$, as $\delta \rightarrow 0$

$$
\delta^{-1 / 4} \sigma(x) \widetilde{\sigma}(x) \xrightarrow{d} f_{\Omega}(x) \operatorname{Re} " e^{i \frac{1}{\sqrt{2}} x_{\Omega}(x),}
$$

for a suitable deterministic f_{Ω} and X_{Ω} being the GFF on Ω.

Challenges/open questions

- What is the analogue of thick points for complex multiplicative chaos?

Challenges/open questions

- What is the analogue of thick points for complex multiplicative chaos?
- In other words, what x do $\zeta\left(\frac{1}{2}+i \omega T+i x\right)$ and $\sigma(x) \widetilde{\sigma}(x)$ live on?

