

# Applications of multiplicative chaos: extreme values of logarithmically correlated fields

Christian Webb

Aalto University, Finland

June 17 – Extreme values in Number Theory and Probability IHP

Based on joint work with T. Claeys, B. Fahs, G. Lambert; J. Junnila and E. Saksman

## Goal of the talk

- Basic setting.  $X_N$  centered stoch. proc. on  $\Omega \subset \mathbb{R}^d$ :

$$\mathbb{E}X_N(x)X_N(y) = \min(\log|x - y|^{-1}, \sigma_N^2) + \mathcal{O}(1)$$

and  $\sigma_N \rightarrow \infty$  as  $N \rightarrow \infty$ .

## Goal of the talk

- Basic setting.  $X_N$  centered stoch. proc. on  $\Omega \subset \mathbb{R}^d$ :

$$\mathbb{E}X_N(x)X_N(y) = \min\left(\log|x-y|^{-1}, \sigma_N^2\right) + \mathcal{O}(1)$$

and  $\sigma_N \rightarrow \infty$  as  $N \rightarrow \infty$ .

- **Logarithmically correlated field – though not necessarily Gaussian!**

## Goal of the talk

- Basic setting.  $X_N$  centered stoch. proc. on  $\Omega \subset \mathbb{R}^d$ :

$$\mathbb{E}X_N(x)X_N(y) = \min\left(\log|x-y|^{-1}, \sigma_N^2\right) + \mathcal{O}(1)$$

and  $\sigma_N \rightarrow \infty$  as  $N \rightarrow \infty$ .

- **Logarithmically correlated field – though not necessarily Gaussian!**
- Main questions. Understand extrema of  $X_N$ : e.g.  $\max_x X_N(x)$  as  $N \rightarrow \infty$ ?

## Goal of the talk

- Basic setting.  $X_N$  centered stoch. proc. on  $\Omega \subset \mathbb{R}^d$ :

$$\mathbb{E}X_N(x)X_N(y) = \min(\log|x-y|^{-1}, \sigma_N^2) + \mathcal{O}(1)$$

and  $\sigma_N \rightarrow \infty$  as  $N \rightarrow \infty$ .

- **Logarithmically correlated field – though not necessarily Gaussian!**
- Main questions. Understand extrema of  $X_N$ : e.g.  $\max_x X_N(x)$  as  $N \rightarrow \infty$ ?
- Tools. **Assume** that corresponding multiplicative chaos measure exists:

$$\int_A \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \xrightarrow{d} \mu_\gamma(A)$$

for all  $0 < \gamma < \sqrt{2d}$  and  $A \subset \Omega$  Borel.

## Goal of the talk

- Basic setting.  $X_N$  centered stoch. proc. on  $\Omega \subset \mathbb{R}^d$ :

$$\mathbb{E}X_N(x)X_N(y) = \min(\log|x-y|^{-1}, \sigma_N^2) + \mathcal{O}(1)$$

and  $\sigma_N \rightarrow \infty$  as  $N \rightarrow \infty$ .

- **Logarithmically correlated field – though not necessarily Gaussian!**
- Main questions. Understand extrema of  $X_N$ : e.g.  $\max_x X_N(x)$  as  $N \rightarrow \infty$ ?
- Tools. **Assume** that corresponding multiplicative chaos measure exists:

$$\int_A \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \xrightarrow{d} \mu_\gamma(A)$$

for all  $0 < \gamma < \sqrt{2d}$  and  $A \subset \Omega$  Borel.

- Other approaches/tools exist too (see Louis-Pierre's minicourse, Adam's talk, and Joseph's talk).

## Examples (either known or conjectured)

- Riemann zeta (partly conjecture): For  $\omega \sim \text{Unif}[0, 1]$  and  $x \in \mathbb{R}$

$$X_N(x) = \sqrt{2} \log |\zeta\left(\frac{1}{2} + i\omega N + ix\right)|$$

## Examples (either known or conjectured)

- Riemann zeta (partly conjecture): For  $\omega \sim \text{Unif}[0, 1]$  and  $x \in \mathbb{R}$

$$X_N(x) = \sqrt{2} \log \left| \zeta \left( \frac{1}{2} + \delta_N + i\omega N + ix \right) \right|$$

## Examples (either known or conjectured)

- Riemann zeta (partly conjecture): For  $\omega \sim \text{Unif}[0, 1]$  and  $x \in \mathbb{R}$

$$X_N(x) = \sqrt{2} \log \left| \zeta\left(\frac{1}{2} + \delta_N + i\omega N + ix\right) \right|$$

- Eigenvalue counting function of the GUE (CFLW): For  $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_N$  eigenvalues of a  $N \times N$  GUE matrix (suitably normalized) and  $x \in (-1, 1)$

$$X_N(x) = \sqrt{2}\pi \left( \sum_{j=1}^N \mathbf{1}\{\lambda_j \leq x\} - N \int_{-1}^x \frac{2}{\pi} \sqrt{1-u^2} du \right).$$

## Examples (either known or conjectured)

- Riemann zeta (partly conjecture): For  $\omega \sim \text{Unif}[0, 1]$  and  $x \in \mathbb{R}$

$$X_N(x) = \sqrt{2} \log \left| \zeta\left(\frac{1}{2} + \delta_N + i\omega N + ix\right) \right|$$

- Eigenvalue counting function of the GUE (CFLW): For  $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_N$  eigenvalues of a  $N \times N$  GUE matrix (suitably normalized) and  $x \in (-1, 1)$

$$X_N(x) = \sqrt{2}\pi \left( \sum_{j=1}^N \mathbf{1}\{\lambda_j \leq x\} - N \int_{-1}^x \frac{2}{\pi} \sqrt{1-u^2} du \right).$$

- The Ginibre ensemble (Bourgade, Dubach, and Hartung): For  $G_N$   $N \times N$  complex Ginibre (suitably normalized) and  $z \in \mathbb{C}$ ,  $|z| < 1$

$$X_N(z) = \sqrt{2} \log |\det(z - G_N)| - \frac{1}{\sqrt{2}} N(|z|^2 - 1)$$

## Examples (either known or conjectured)

- Riemann zeta (partly conjecture): For  $\omega \sim \text{Unif}[0, 1]$  and  $x \in \mathbb{R}$

$$X_N(x) = \sqrt{2} \log \left| \zeta\left(\frac{1}{2} + \delta_N + i\omega N + ix\right) \right|$$

- Eigenvalue counting function of the GUE (CFLW): For  $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_N$  eigenvalues of a  $N \times N$  GUE matrix (suitably normalized) and  $x \in (-1, 1)$

$$X_N(x) = \sqrt{2}\pi \left( \sum_{j=1}^N \mathbf{1}\{\lambda_j \leq x\} - N \int_{-1}^x \frac{2}{\pi} \sqrt{1-u^2} du \right).$$

- The Ginibre ensemble (Bourgade, Dubach, and Hartung): For  $G_N$   $N \times N$  complex Ginibre (suitably normalized) and  $z \in \mathbb{C}$ ,  $|z| < 1$

$$X_N(z) = \sqrt{2} \log |\det(z - G_N)| - \frac{1}{\sqrt{2}} N(|z|^2 - 1)$$

- See also Reda's talk.

What kind of beasts are these (fields in  $d = 1, 2$ )?



What kind of beasts are these (fields in  $d = 1, 2$ )?



What kind of beasts are these (realizations of the field and chaos for  $\gamma = 0.5, 1, 2$ )?



What kind of beasts are these (realizations of the field and chaos for  $\gamma = 0.5, 1, 2$ )?



## Thick points – heuristics based on Gaussian case

Much known about  $\frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}}$  and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield  $\sim$  2010, Berestycki  $\sim$  2015, ...).

## Thick points – heuristics based on Gaussian case

Much known about  $\frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}}$  and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield  $\sim$  2010, Berestycki  $\sim$  2015, ...).

- Expected:  $\frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}}$  lives on “ **$\gamma$ -thick points**” (random set):

$$\{x \in \Omega : X_N(x) \approx \gamma \mathbb{E} X_N(x)^2\}.$$

## Thick points – heuristics based on Gaussian case

Much known about  $\frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}}$  and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield  $\sim$  2010, Berestycki  $\sim$  2015, ...).

- Expected:  $\frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}}$  lives on “ **$\gamma$ -thick points**” (random set):

$$\{x \in \Omega : X_N(x) \approx \gamma \mathbb{E} X_N(x)^2\}.$$

- Interpretation:  $\mu_\gamma$  encodes “extreme level sets”.

## Thick points – heuristics based on Gaussian case

Much known about  $\frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}}$  and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield  $\sim 2010$ , Berestycki  $\sim 2015$ , ...).

- Expected:  $\frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}}$  lives on “ **$\gamma$ -thick points**” (random set):

$$\{x \in \Omega : X_N(x) \approx \gamma \mathbb{E} X_N(x)^2\}.$$

- Interpretation:  $\mu_\gamma$  encodes “extreme level sets”.
- Expect:  $\mu_\gamma$  non-trivial for  $\gamma < \sqrt{2d}$ , so  $\gamma$ -thick points exist and

$$\max_x X_N(x) \geq \sqrt{2d} \mathbb{E} X_N(x)^2.$$

## Thick points – heuristics based on Gaussian case

Much known about  $\frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}}$  and extrema in Gaussian setting (goes back to Kahane 80s, Duplantier-Sheffield  $\sim 2010$ , Berestycki  $\sim 2015$ , ...).

- Expected:  $\frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}}$  lives on “ **$\gamma$ -thick points**” (random set):

$$\{x \in \Omega : X_N(x) \approx \gamma \mathbb{E} X_N(x)^2\}.$$

- Interpretation:  $\mu_\gamma$  encodes “extreme level sets”.
- Expect:  $\mu_\gamma$  non-trivial for  $\gamma < \sqrt{2d}$ , so  $\gamma$ -thick points exist and

$$\max_x X_N(x) \geq \sqrt{2d} \mathbb{E} X_N(x)^2.$$

- Expect:  $\mu_\gamma = 0$  for  $\gamma \geq \sqrt{2d}$  and no thick points to live on so

$$\max_x X_N(x) \leq \sqrt{2d} \mathbb{E} X_N(x)^2.$$

## Standing assumptions for $X_N$

Before going to rigorous claims, need assumptions on  $X_N$ .

## Standing assumptions for $X_N$

Before going to rigorous claims, need assumptions on  $X_N$ .

**Assumption (Close to being a centered Gaussian of variance  $\sigma_N^2$ )**

For each  $\alpha > 0$  and  $K \subset \Omega$  compact,  $\exists c = c(\alpha, K), C = C(\alpha, K) > 0$  :

$$c e^{\frac{\alpha^2}{2} \sigma_N^2} \leq \mathbb{E} e^{\alpha X_N(x)} \leq C e^{\frac{\alpha^2}{2} \sigma_N^2} \quad \text{for all } x \in K$$

for some  $\sigma_N \rightarrow \infty$  (independent of  $x, \alpha, K$ ).

## Standing assumptions for $X_N$

Before going to rigorous claims, need assumptions on  $X_N$ .

### Assumption (Close to being a centered Gaussian of variance $\sigma_N^2$ )

For each  $\alpha > 0$  and  $K \subset \Omega$  compact,  $\exists c = c(\alpha, K), C = C(\alpha, K) > 0$  :

$$c e^{\frac{\alpha^2}{2} \sigma_N^2} \leq \mathbb{E} e^{\alpha X_N(x)} \leq C e^{\frac{\alpha^2}{2} \sigma_N^2} \quad \text{for all } x \in K$$

for some  $\sigma_N \rightarrow \infty$  (independent of  $x, \alpha, K$ ).

### Assumption (Non-triviality of chaos)

For  $0 < \gamma < \sqrt{2d}$ ,  $K \subset \Omega$  compact with non-empty interior, and some random variable  $\mu_\gamma(K)$  which is **almost surely finite and positive**

$$\int_K \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \xrightarrow{d} \mu_\gamma(K).$$

## Thick points – rigorous definitions and results

Define for  $\gamma > 0$

$$T_N(\gamma) = \{x \in \Omega : X_N(x) \geq \gamma \sigma_N^2\}.$$

# Thick points – rigorous definitions and results

Define for  $\gamma > 0$

$$T_N(\gamma) = \{x \in \Omega : X_N(x) \geq \gamma\sigma_N^2\}.$$

## Theorem

For any  $\epsilon > 0$ ,  $0 < \gamma < \sqrt{2d}$  and  $K \subset \Omega$  compact

$$\int_{(K \cap T_N(\gamma-\epsilon)) \setminus T_N(\gamma+\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \xrightarrow{d} \mu_\gamma(K).$$

# Thick points – rigorous definitions and results

Define for  $\gamma > 0$

$$T_N(\gamma) = \{x \in \Omega : X_N(x) \geq \gamma\sigma_N^2\}.$$

## Theorem

For any  $\epsilon > 0$ ,  $0 < \gamma < \sqrt{2d}$  and  $K \subset \Omega$  compact

$$\int_{(K \cap T_N(\gamma-\epsilon)) \setminus T_N(\gamma+\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \xrightarrow{d} \mu_\gamma(K).$$

Interpretation: only points  $x$  with  $X_N(x) \approx \gamma\sigma_N^2 \approx \gamma\mathbb{E} X_N(x)^2$  contribute to  $\frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}}$ .

## Thick points – proof

Proof.

$$\begin{aligned}\mathbb{E} \int_{K \setminus T_N(\gamma-\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx &= \mathbb{E} \int_K \mathbf{1}\{X_N(x) < (\gamma - \epsilon)\sigma_N^2\} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \\ &\leq e^{\epsilon(\gamma-\epsilon)\sigma_N^2} \int_K \frac{\mathbb{E} e^{(\gamma-\epsilon)X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \\ &\leq \frac{C(\gamma - \epsilon, K)}{c(\gamma, K)} |K| e^{-\frac{\epsilon^2}{2}\sigma_N^2} \rightarrow 0.\end{aligned}$$

## Thick points – proof

Proof.

$$\begin{aligned}\mathbb{E} \int_{K \setminus T_N(\gamma-\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx &= \mathbb{E} \int_K \mathbf{1}\{X_N(x) < (\gamma - \epsilon)\sigma_N^2\} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \\ &\leq e^{\epsilon(\gamma-\epsilon)\sigma_N^2} \int_K \frac{\mathbb{E} e^{(\gamma-\epsilon)X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \\ &\leq \frac{C(\gamma - \epsilon, K)}{c(\gamma, K)} |K| e^{-\frac{\epsilon^2}{2}\sigma_N^2} \rightarrow 0.\end{aligned}$$

Similarly (using again approx Gaussian assumption)

$$\mathbb{E} \int_{K \cap T_N(\gamma+\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \rightarrow 0.$$

## Thick points – proof

Proof.

$$\begin{aligned}\mathbb{E} \int_{K \setminus T_N(\gamma-\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx &= \mathbb{E} \int_K \mathbf{1}\{X_N(x) < (\gamma - \epsilon)\sigma_N^2\} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \\ &\leq e^{\epsilon(\gamma-\epsilon)\sigma_N^2} \int_K \frac{\mathbb{E} e^{(\gamma-\epsilon)X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \\ &\leq \frac{C(\gamma - \epsilon, K)}{c(\gamma, K)} |K| e^{-\frac{\epsilon^2}{2}\sigma_N^2} \rightarrow 0.\end{aligned}$$

Similarly (using again approx Gaussian assumption)

$$\mathbb{E} \int_{K \cap T_N(\gamma+\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx \rightarrow 0.$$

Thus for some  $\mathcal{E}_N$  with  $\mathbb{E}|\mathcal{E}_N| \rightarrow 0$  (can thus use Slutsky's theorem)

$$\int_{(K \cap T_N(\gamma-\epsilon)) \setminus T_N(\gamma+\epsilon)} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx = \int_K \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx + \mathcal{E}_N. \quad \square$$

## Lower bound for the maximum

### Corollary

For any  $\epsilon > 0$  and  $K \subset \Omega$  compact with non-empty interior.

$$\lim_{N \rightarrow \infty} \mathbb{P} \left( \max_{x \in K} X_N(x) \geq (\sqrt{2d} - \epsilon) \sigma_N^2 \right) = 1.$$

## Lower bound for the maximum: proof

Proof.

Let  $\alpha < \gamma < \sqrt{2d}$  and note that for every  $\epsilon > 0$  and  $K \subset \Omega$  compact

$$\begin{aligned}\mathbb{P}\left(\max_{x \in K} X_N(x) \geq \alpha \sigma_N^2\right) &\geq \mathbb{P}(T_N(\alpha) \cap K \neq \emptyset) \\ &\geq \mathbb{P}\left(\int_{T_N(\alpha) \cap K} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx > \epsilon\right) \\ &\rightarrow \mathbb{P}(\mu_\gamma(K) > \epsilon).\end{aligned}$$

## Lower bound for the maximum: proof

Proof.

Let  $\alpha < \gamma < \sqrt{2d}$  and note that for every  $\epsilon > 0$  and  $K \subset \Omega$  compact

$$\begin{aligned}\mathbb{P}\left(\max_{x \in K} X_N(x) \geq \alpha \sigma_N^2\right) &\geq \mathbb{P}(T_N(\alpha) \cap K \neq \emptyset) \\ &\geq \mathbb{P}\left(\int_{T_N(\alpha) \cap K} \frac{e^{\gamma X_N(x)}}{\mathbb{E} e^{\gamma X_N(x)}} dx > \epsilon\right) \\ &\rightarrow \mathbb{P}(\mu_\gamma(K) > \epsilon).\end{aligned}$$

If  $K$  has non-empty interior, then (non-triviality of chaos assumption)

$$\liminf_{N \rightarrow \infty} \mathbb{P}\left(\max_{x \in K} X_N(x) \geq \alpha \sigma_N^2\right) \geq \mathbb{P}(\mu_\gamma(K) > \epsilon) \rightarrow 1$$

as  $\epsilon \rightarrow 0$ .

□

## Upper bound for the maximum: assumptions

Upper bound requires  $X_N$  to be regular enough on scale  $e^{-\sigma_N^2}$  – need further assumptions.

## Upper bound for the maximum: assumptions

Upper bound requires  $X_N$  to be regular enough on scale  $e^{-\sigma_N^2}$  – need further assumptions.

### Assumption (Local scale of regularity)

*There exist deterministic  $C, c > 0$ , such that for each  $x \in \Omega$ , there exists a (possibly random) compact  $K_x \subset \Omega$  with  $|K_x| \geq ce^{-d\sigma_N^2}$  and*

$$X_N(t) \geq X_N(x) - C \quad \text{for all } t \in K_x.$$

## Upper bound for the maximum

### Theorem

For any  $\epsilon > 0$  and  $K \subset \Omega$  compact with non-empty interior.

$$\lim_{N \rightarrow \infty} \mathbb{P} \left( \max_{x \in K} X_N(x) \leq (\sqrt{2d} + \epsilon) \sigma_N^2 \right) = 1.$$

## Upper bound for the maximum: proof

Proof.

- Assume that there is some  $x_* \in K$  such that  $X_N(x_*) \geq (\sqrt{2d} + \epsilon)\sigma_N^2$ .

## Upper bound for the maximum: proof

Proof.

- Assume that there is some  $x_* \in K$  such that  $X_N(x_*) \geq (\sqrt{2d} + \epsilon)\sigma_N^2$ .
- By regularity assumption and approx Gaussian assumption

$$\begin{aligned} \int_K \frac{e^{(\sqrt{2d}-\epsilon)X_N(x)}}{\mathbb{E} e^{(\sqrt{2d}-\epsilon)X_N(x)}} dx &\geq e^{(\sqrt{2d}-\epsilon)[(\sqrt{2d}+\epsilon)\sigma_N^2 - C]} \int_{K_{x_*}} \frac{1}{\mathbb{E} e^{(\sqrt{2d}-\epsilon)X_N(x)}} dx \\ &\geq \tilde{C} e^{(2d-\epsilon^2)\sigma_N^2} e^{-\frac{(\sqrt{2d}-\epsilon)^2}{2}\sigma_N^2} e^{-d\sigma_N^2} \\ &\geq \tilde{C} e^{(\sqrt{2d}\epsilon - \frac{\epsilon^2}{2})\sigma_N^2} \rightarrow \infty. \end{aligned}$$

## Upper bound for the maximum: proof

Proof.

- Assume that there is some  $x_* \in K$  such that  $X_N(x_*) \geq (\sqrt{2d} + \epsilon)\sigma_N^2$ .
- By regularity assumption and approx Gaussian assumption

$$\begin{aligned} \int_K \frac{e^{(\sqrt{2d}-\epsilon)X_N(x)}}{\mathbb{E} e^{(\sqrt{2d}-\epsilon)X_N(x)}} dx &\geq e^{(\sqrt{2d}-\epsilon)[(\sqrt{2d}+\epsilon)\sigma_N^2 - C]} \int_{K_{x_*}} \frac{1}{\mathbb{E} e^{(\sqrt{2d}-\epsilon)X_N(x)}} dx \\ &\geq \tilde{C} e^{(2d-\epsilon^2)\sigma_N^2} e^{-\frac{(\sqrt{2d}-\epsilon)^2}{2}\sigma_N^2} e^{-d\sigma_N^2} \\ &\geq \tilde{C} e^{(\sqrt{2d}\epsilon - \frac{\epsilon^2}{2})\sigma_N^2} \rightarrow \infty. \end{aligned}$$

- By assumption of non-triviality (finiteness) of chaos, the probability of this tends to zero.



## Upper bound for the maximum: proof

Proof.

- Assume that there is some  $x_* \in K$  such that  $X_N(x_*) \geq (\sqrt{2d} + \epsilon)\sigma_N^2$ .
- By regularity assumption and approx Gaussian assumption

$$\begin{aligned} \int_K \frac{e^{(\sqrt{2d}-\epsilon)X_N(x)}}{\mathbb{E} e^{(\sqrt{2d}-\epsilon)X_N(x)}} dx &\geq e^{(\sqrt{2d}-\epsilon)[(\sqrt{2d}+\epsilon)\sigma_N^2 - C]} \int_{K_{x_*}} \frac{1}{\mathbb{E} e^{(\sqrt{2d}-\epsilon)X_N(x)}} dx \\ &\geq \tilde{C} e^{(2d-\epsilon^2)\sigma_N^2} e^{-\frac{(\sqrt{2d}-\epsilon)^2}{2}\sigma_N^2} e^{-d\sigma_N^2} \\ &\geq \tilde{C} e^{(\sqrt{2d}\epsilon - \frac{\epsilon^2}{2})\sigma_N^2} \rightarrow \infty. \end{aligned}$$

- By assumption of non-triviality (finiteness) of chaos, the probability of this tends to zero.



Again, other approaches exist.

## Advertisements

Also various kinds of complex multiplicative chaos exists: formally  $e^{\gamma X(x) + i\beta Y(x)}$  where  $X, Y$  log-correlated.

## Advertisements

Also various kinds of complex multiplicative chaos exists: formally  $e^{\gamma X(x) + i\beta Y(x)}$  where  $X, Y$  log-correlated.

### Theorem (Saksman, W. 2016)

For  $\omega \sim \text{Unif}[0, 1]$ , as  $T \rightarrow \infty$ ,

$$\zeta\left(\frac{1}{2} + i\omega T + ix\right) \xrightarrow{d} e^{X(x) + iY(x)}$$

for suitable correlated non-Gaussian log-cor  $X, Y$ .

## Advertisements

Also various kinds of complex multiplicative chaos exists: formally  $e^{\gamma X(x) + i\beta Y(x)}$  where  $X, Y$  log-correlated.

### Theorem (Saksman, W. 2016)

For  $\omega \sim \text{Unif}[0, 1]$ , as  $T \rightarrow \infty$ ,

$$\zeta\left(\frac{1}{2} + i\omega T + ix\right) \xrightarrow{d} e^{X(x) + iY(x)}$$

for suitable correlated non-Gaussian log-cor  $X, Y$ .

### Theorem (Junnila, Saksman, W. 2018)

For  $\sigma, \tilde{\sigma}$  independent realizations of a spin configuration of the critical Ising model with + b.c. on  $\Omega \cap \delta\mathbb{Z}^2$ , as  $\delta \rightarrow 0$

$$\delta^{-1/4} \sigma(x) \tilde{\sigma}(x) \xrightarrow{d} f_\Omega(x) \text{Re} "e^{i \frac{1}{\sqrt{2}} X_\Omega(x)}"$$

for a suitable deterministic  $f_\Omega$  and  $X_\Omega$  being the GFF on  $\Omega$ .

## Challenges/open questions

- What is the analogue of thick points for complex multiplicative chaos?

## Challenges/open questions

- What is the analogue of thick points for complex multiplicative chaos?
- In other words, what  $x$  do  $\zeta(\frac{1}{2} + i\omega T + ix)$  and  $\sigma(x)\tilde{\sigma}(x)$  live on?