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Goal of the talk

e Basic setting. Xy centered stoch. proc. on Q C RY:

EXy(x)Xn(y) = min (log |x — |7, 0%) + O(1) )

and oy — 00 as N — oo.
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e Basic setting. Xy centered stoch. proc. on Q C RY:

EXy(x)Xn(y) = min (log |x — y| ™%, 0%) + O(1) ]

and oy — 00 as N — oo.

e Logarithmically correlated field — though not necessarily
Gaussian!

e Main questions. Understand extrema of Xy: e.g. max, Xy(x) as
N — o007

e Tools. Assume that corresponding multiplicative chaos measure

exists:
e7XN(X) d
/A mdx = piy(A)

for all 0 < v < v2d and A C Q Borel.
e Other approaches/tools exist too (see Louis-Pierre’s minicourse,
Adam'’s talk, and Joseph's talk).
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Examples (either known or conjectured)

e Riemann zeta (partly conjecture): For w ~ Unif[0,1] and x € R

Xn(x) = v2log |¢(} + iwN + ix)| J
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Examples (either known or conjectured)

e Riemann zeta (partly conjecture): For w ~ Unif[0, 1] and x € R

Xn(x) = V2log [C(3+6n + iwN + ix)| J

e Eigenvalue counting function of the GUE (CFLW): For
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Examples (either known or conjectured)

Riemann zeta (partly conjecture): For w ~ Unif[0, 1] and x € R

Xn(x) = V2log |¢(3+0n + iwN + ix)|

Eigenvalue counting function of the GUE (CFLW): For

A1 < A2 < ... < Ay eigenvalues of a N x N GUE matrix (suitably
normalized) and x € (—1,1)

Xn(x) = V2r (XL, 1{ < x} = N X, 21— 1Pdu).

The Ginibre ensemble (Bourgade, Dubach, and Hartung): For Gy

N x N complex Ginibre (suitably normalized) and z € C, |z| < 1

Xn(z) = V2log | det(z — Gy)| — %N(M2 -1)

See also Reda’s talk.
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What kind of beasts are these (fields in d = 1,2)?

4/16



What kind of beasts are these (fields in d = 1,2)?

4/16



What kind of beasts are these (realizations of the field and
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Thick points — heuristics based on Gaussian case

Much known about ]Eevw'(\’((x and extrema in Gaussian setting (goes back to

Kahane 80s, Duplantier-Sheffield ~ 2010, Berestycki ~ 2015, ...).
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Much known about ]Eevw'(\’((x and extrema in Gaussian setting (goes back to

Kahane 80s, Duplantier-Sheffield ~ 2010, Berestycki ~ 2015, ...).

e Expected: I;VW)QVN lives on “y-thick points” (random set):
{x € Q: Xn(x) = YEXn(x)?}. J

e Interpretation: p., encodes “extreme level sets”.

e Expect: g, non-trivial for v < v/2d, so ~-thick points exist and

maxx Xy (x) > V2dEXp(x)>. J

e Expect: 1, = 0 for v > v/2d and no thick points to live on so

maxx Xy(x) < V2dEXp(x)>?. J
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Standing assumptions for Xy

Before going to rigorous claims, need assumptions on Xy.
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Standing assumptions for Xy
Before going to rigorous claims, need assumptions on Xy.

Assumption (Close to being a centered Gaussian of variance o3))

For each o > 0 and K C Q compact, 3¢ = c(a, K),C = C(a, K) > 0:

a2 2 a2 2
ce TN < Ee® V() < Ce TN for all xeK

for some o — oo (independent of x, o, K).

Assumption (Non-triviality of chaos)

For 0 < v < v2d, K C Q compact with non-empty interior, and some
random variable 11,(K) which is almost surely finite and positive

eVXN(X) d
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Thick points — rigorous definitions and results

Define for v > 0

Tn(y) = {x € Q: Xn(x) > vo3}. J
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Thick points — rigorous definitions and results

Define for v > 0

Tn(y) = {x € Q: Xn(x) > vo3}. ]
Theorem
Forany e > 0,0 < v < v2d and K C Q compact
e”YXN(X) d
————dx — p(K).
/(Knmw—e))\m(we) Eer () !

Interpretation: only points x with Xy(x) ~ o3 ~ yEXy(x)? contribute
t e Xn(x)
o EeYXn() "
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Thick points — proof
Proof.

]E e'YXN(X) d 1 X e’YXN(X)
= <
ngquwM = / Xu(x) < (0 = Don} g &

(- Xn(x)
a0y, [ Ee
<e N/K EeWXN( ) dx

C(y — ¢ K)
<7Ke UN—)O
< —cmry X




Thick points — proof
Proof.

e'YXN(X)
IE/ dx— / 1{Xn(x) < (v — €)orn} o
K\Tn(y—€)

EevXn(x
Ee(—-9Xn(x)
< e(v—e€)o?
<e N/K EeWXN( 9 dx

C(y — ¢ K)
<7Ke UN—)O
< —cmry X

Similarly (using again approx Gaussian assumption)

e’yXN(X)
IE/ fdx — 0.
KNTy(y+e) EeY n(x)

eVXN (X)
EevXn(x )
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Thick points — proof

Proof.
]E e’YxN(X) 1 X 2 e'\/XN(X) d
P < —_ P
/K\mw o) BenXnx / D) < (= Do gt &
(v—€)Xn(x)
a0y, [ BT
<e N/K Eor%n (9 dx
< M|K|e S 0.
c(v, K)

Similarly (using again approx Gaussian assumption)
e’yXN(X)

E/ —————dx — 0.
KN Ty (y+e) Ee’yXN(X)

Thus for some Ey with E|Ey| — 0 (can thus use Slutsky's theorem)

eXn(x) / eXn(x)

—xa X = | ——xog 9X +En
/(KHTN('YG))\TN(’7+E) EeXn(x) « EerXn(3) N
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Lower bound for the maximum

Corollary

For any e > 0 and K C Q2 compact with non-empty interior.

im P (maxXN(x) > (V2d - 6)0,2\,> =1.

|
N—o0 xeK
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Lower bound for the maximum: proof

Proof.
Let @ < v < v2d and note that for every ¢ > 0 and K C 2 compact

P (mea}%(XN(x) > aa,2V> >P(Ty(a) N K #0)

IP) e’yXN(X) d
> o dx >
- /T,V(a)mK Eer ()~ ©

= By (K) > c).
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Lower bound for the maximum: proof

Proof.
Let @ < v < v2d and note that for every ¢ > 0 and K C €2 compact

P (maxXN(x) > ozo*,\,) >P(Ty(a) N K #£0)

xeEK
]P) e’yXN(X) d
> = >
h /TN(a)ﬂK Eewt) ¢

= By (K) > c).

If K has non-empty interior, then (non-triviality of chaos assumption)

liminf P (maxXN(x) > aaN> > P(uy(K) >€) = 1

N—oo xeK

as € — 0.
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Upper bound for the maximum: assumptions

Upper bound requires Xy to be regular enough on scale e~N — need
further assumptions.
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Upper bound for the maximum: assumptions

Upper bound requires Xy to be regular enough on scale e~N — need
further assumptions.

Assumption (Local scale of regularity)

There exist deterministic C,c > 0, such that for each x € S, there exists a
- 5 2
(possibly random) compact K, C Q with |K,| > ce=9°n and

XN(t) > XN(X) - C for all t € K.
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Upper bound for the maximum

Theorem
For any e > 0 and K C Q2 compact with non-empty interior.

N—o0 xeK

lim P (maxXN(X) < (V2d + 6)0,2\,> =1.
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Upper bound for the maximum: proof

Proof.
e Assume that there is some x. € K such that Xn(x.) > (V2d + €)o3.
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Upper bound for the maximum: proof
Proof.

o Assume that there is some x. € K such that Xn(x.) > (V2d + €)o3

e By regularity assumption and approx Gaussian assumption

\/ﬂ—e Xn(x
/ e( PXn(x) dx > e(\/ﬂfe)[(ere)olzfo] 1
K

eI S
E (V34— Xn(x) k.. BeV2d-9Xn()

~ d—e)?
> Ce(2d—62)0,2\,e—(\/27f)0?\,e—d0,2\,

_ 2
CelV2de=F)a _, .

\Y)
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Upper bound for the maximum: proof

Proof.
e Assume that there is some x. € K such that Xy(x.) > (v2d + €)o%.

e By regularity assumption and approx Gaussian assumption

/ VTP veowasasa [ 1
k Ee(V2d—)Xn(x) K., Ee(V2d—e)Xn(x)

~ d—e)?
> Ce(2d—62)0,2\,e—(\/27f)0%\,e—d0,2\,

_ 2
CelV2de=F)a _, .

\Y)

e By assumption of non-triviality (finiteness) of chaos, the probability of
this tends to zero.

Ol
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Upper bound for the maximum: proof

Proof.
e Assume that there is some x. € K such that Xy(x.) > (v2d + €)o%.

e By regularity assumption and approx Gaussian assumption

/ VTP veowasasa [ 1
k Ee(V2d—)Xn(x) K., Ee(V2d—e)Xn(x)

~ d—e)?
> Ce(2d—52)0,2\,e—(\/27f)0%\,e—d0,2\,

_ 2
CelV2de=F)a _, .

\Y)

e By assumption of non-triviality (finiteness) of chaos, the probability of
this tends to zero.

Ol

Again, other approaches exist.
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Advertisements

Also various kinds of complex multiplicative chaos exists: formally
e?X()+iBY (%) where X, Y log-correlated.
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Advertisements

Also various kinds of complex multiplicative chaos exists: formally
e?X()+iBY (%) where X, Y log-correlated.

Theorem (Saksman, W. 2016)
For w ~ Unif[0,1], as T — oo,

(L +iwT 4 ix) & XCIHY ()

for suitable correlated non-Gaussian log-cor X, Y .

Theorem (Junnila, Saksman, W. 2018)

For 0,0 independent realizations of a spin configuration of the critical
Ising model with + b.c. on QN 672, as § — 0

57 40(x)5(x) S fa(x)Re e VEX2()

for a suitable deterministic fq and Xq being the GFF on €.
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Challenges/open questions

e What is the analogue of thick points for complex multiplicative chaos?
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Challenges/open questions

e What is the analogue of thick points for complex multiplicative chaos?

e In other words, what x do ((3 + iwT + ix) and o(x)J(x) live on?
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