

Emma Bailey University of Bristol

Emma	

21st June 1 / 34

Joint work with Jon Keating arXiv:1807.06605 (to appear in CMP)

	a		

3 → 4 3

・ロト ・聞ト ・ヨト ・ヨト

Consider moments of the zeta function,

$$\frac{1}{T}\int_0^T |\zeta(\tfrac{1}{2}+it)|^{2\beta} dt.$$

nma	

∃ → < ∃</p>

Consider moments of the zeta function,

$$\frac{1}{T}\int_0^T |\zeta(\frac{1}{2}+it)|^{2\beta}dt.$$

Conjecture

For $\beta \in \mathbb{R}^+$,

$$rac{1}{T}\int_0^T |\zeta(rac{1}{2}+it)|^{2eta} dt \sim f(eta) c_\zeta(eta) \left(\log rac{ au}{2\pi}
ight)^{eta^2},$$

as $T \to \infty$.

Consider moments of the zeta function,

$$\frac{1}{T}\int_0^T |\zeta(\frac{1}{2}+it)|^{2\beta}dt.$$

Conjecture

For $\beta \in \mathbb{R}^+$,

$$rac{1}{T}\int_0^T |\zeta(rac{1}{2}+it)|^{2eta} dt \sim f(eta) c_\zeta(eta) \left(\log rac{T}{2\pi}
ight)^{eta^2},$$

as $T \to \infty$.

 \bigcirc $f(\beta)$ is a known arithmetic function

Consider moments of the zeta function,

$$\frac{1}{T}\int_0^T |\zeta(\frac{1}{2}+it)|^{2\beta}dt.$$

Conjecture

For $\beta \in \mathbb{R}^+$,

$$rac{1}{T}\int_0^T |\zeta(rac{1}{2}+it)|^{2eta} dt \sim f(eta) c_\zeta(eta) \left(\log rac{T}{2\pi}
ight)^{eta^2},$$

as $T \to \infty$.

 $\bigcirc f(\beta)$ is a known arithmetic function

 $\bigcirc c_{\zeta}(\beta)$ is another function depending on β .

< 3

Image: A image: A

For $A \in CUE_N$ ($A \in U(N)$ with Haar measure) set $P_N(A, \theta) = \det(I - Ae^{-i\theta}).$

	a		

- (四) - (三) - (三)

For $A \in \text{CUE}_N$ ($A \in \text{U}(N)$ with Haar measure) set $P_{i}(A, \theta) = \text{det}(I - A e^{-i\theta})$

$$P_N(A,\theta) = \det(I - Ae^{-i\theta}).$$

Then recall

$$\frac{1}{T}\int_0^T |\zeta(\frac{1}{2}+it)|^{2\beta}dt$$

Emma	

(3)

- ∢ ศ⊒ ▶

For $A \in CUE_N$ ($A \in U(N)$ with Haar measure) set $P_N(A, \theta) = \det(I - Ae^{-i\theta}).$

Instead

$$\int_{\mathsf{U}(N)} |P_N(A,\theta)|^{2\beta} dA$$

Emma B	

< 回 > < 三 > < 三 >

For $A \in CUE_N$ ($A \in U(N)$ with Haar measure) set $P_N(A, \theta) = \det(I - Ae^{-i\theta}).$

Keating and Snaith: for $\beta > -1/2$,

$$P_N(A,\theta) = \det(I - Ae^{-i\theta}).$$

Keating and Snaith: for $\beta > -1/2$,

$$\int_{\mathsf{U}(N)} |P_N(A,\theta)|^{2\beta} dA = \prod_{j=1}^N \frac{\Gamma(j)\Gamma(j+2\beta)}{(\Gamma(j+\beta))^2}$$

$$P_N(A,\theta) = \det(I - Ae^{-i\theta}).$$

Keating and Snaith: for $\beta > -1/2$,

$$\int_{\mathsf{U}(\mathsf{N})} |\mathsf{P}_{\mathsf{N}}(\mathsf{A},\theta)|^{2\beta} d\mathsf{A} = \prod_{j=1}^{\mathsf{N}} \frac{\Gamma(j)\Gamma(j+2\beta)}{(\Gamma(j+\beta))^2} \sim c_U(\beta) N^{\beta^2}$$

Emma Bailey

$$P_N(A,\theta) = \det(I - Ae^{-i\theta}).$$

Keating and Snaith: for $\beta > -1/2$,

$$\int_{\mathsf{U}(\mathsf{N})} |\mathsf{P}_{\mathsf{N}}(\mathsf{A},\theta)|^{2\beta} d\mathsf{A} = \prod_{j=1}^{\mathsf{N}} \frac{\mathsf{\Gamma}(j)\mathsf{\Gamma}(j+2\beta)}{(\mathsf{\Gamma}(j+\beta))^2} \sim c_U(\beta) \mathsf{N}^{\beta^2}$$

where

$$c_U(\beta) = \frac{G^2(\beta+1)}{G(2\beta+1)},$$

with G(s) the Barnes G-function and if $\beta \in \mathbb{N}$,

$$c_U(\beta) = \prod_{j=0}^{\beta-1} \frac{j!}{(j+\beta)!}.$$

(日) (同) (日) (日) (日)

$$P_N(A,\theta) = \det(I - Ae^{-i\theta}).$$

Keating and Snaith: for $\beta > -1/2$,

$$\int_{\mathsf{U}(\mathsf{N})} |\mathsf{P}_{\mathsf{N}}(\mathsf{A},\theta)|^{2\beta} d\mathsf{A} = \prod_{j=1}^{\mathsf{N}} \frac{\Gamma(j)\Gamma(j+2\beta)}{(\Gamma(j+\beta))^2} \sim c_U(\beta) \mathsf{N}^{\beta^2}$$

where

$$c_U(\beta) = \frac{G^2(\beta+1)}{G(2\beta+1)},$$

with G(s) the Barnes G-function and if $\beta \in \mathbb{N}$,

$$c_U(\beta) = \prod_{j=0}^{\beta-1} \frac{j!}{(j+\beta)!}.$$

Conjecture: $c_U(\beta) = c_{\zeta}(\beta)$.

イロン スピン スヨン スヨン

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

21st June 6 / 34

21st June 6 / 34

21st June 6 / 34

Moments of Moments

Emma	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Moments of Moments

$MoM_N(k,\beta)$

Set

$$\mathsf{MoM}_{\mathsf{N}}(k,eta)\coloneqq \mathbb{E}_{\mathsf{A}\in\mathsf{U}(\mathsf{N})}\left(\left(rac{1}{2\pi}\int_{0}^{2\pi}|\mathsf{P}_{\mathsf{N}}(\mathsf{A}, heta)|^{2eta}d heta
ight)^{k}
ight).$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Moments of Moments

$MoM_N(k,\beta)$

Set

$$\mathsf{MoM}_{N}(k,eta) \coloneqq \mathbb{E}_{A \in \mathsf{U}(N)} \left(\left(rac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A, heta)|^{2eta} d heta
ight)^{k}
ight).$$

Conjecture (Fyodorov & Keating)

As $N
ightarrow \infty$,

$$\mathsf{MoM}_{N}(k,eta) \sim egin{cases} \left(rac{(G(1+eta))^2}{G(1+2eta)\Gamma(1-eta^2)}
ight)^k \Gamma(1-keta^2) \mathcal{N}^{keta^2} & keta^2 < 1 \ c(k,eta) \mathcal{N}^{k^2eta^2-k+1} & keta^2 > 1, \end{cases}$$

where G(s) is the Barnes G-function and $c(k,\beta)$ is some complicated function of k and β .

$$\mathsf{MoM}_{N}(k,\beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^{2}}{G(1+2\beta)\Gamma(1-\beta^{2})}\right)^{k} \Gamma(1-k\beta^{2}) N^{k\beta^{2}} & k\beta^{2} < 1\\ c(k,\beta) N^{k^{2}\beta^{2}-k+1} & k\beta^{2} > 1. \end{cases}$$

Emma	

21st June 8 / 34

$$\mathsf{MoM}_{N}(k,\beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^{2}}{G(1+2\beta)\Gamma(1-\beta^{2})}\right)^{k} \Gamma(1-k\beta^{2}) N^{k\beta^{2}} & k\beta^{2} < 1\\ c(k,\beta) N^{k^{2}\beta^{2}-k+1} & k\beta^{2} > 1. \end{cases}$$

$$\mathsf{MoM}_{N}(k,\beta) = \frac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \mathbb{E} \prod_{j=1}^{k} |P_{N}(A,\theta_{j})|^{2\beta} d\theta_{1} \cdots d\theta_{k}.$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

$$\mathsf{MoM}_{N}(k,\beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^{2}}{G(1+2\beta)\Gamma(1-\beta^{2})}\right)^{k} \Gamma(1-k\beta^{2}) N^{k\beta^{2}} & k\beta^{2} < 1\\ c(k,\beta) N^{k^{2}\beta^{2}-k+1} & k\beta^{2} > 1. \end{cases}$$

$$\mathsf{MoM}_{N}(k,\beta) = \frac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \mathbb{E} \prod_{j=1}^{k} |P_{N}(A,\theta_{j})|^{2\beta} d\theta_{1} \cdots d\theta_{k}.$$

○ Integrand can be expressed as a Toeplitz determinant

Emma Baile		

$$\mathsf{MoM}_{N}(k,\beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^{2}}{G(1+2\beta)\Gamma(1-\beta^{2})}\right)^{k} \Gamma(1-k\beta^{2}) N^{k\beta^{2}} & k\beta^{2} < 1\\ c(k,\beta) N^{k^{2}\beta^{2}-k+1} & k\beta^{2} > 1. \end{cases}$$

$$\mathsf{MoM}_{N}(k,\beta) = \frac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \mathbb{E} \prod_{j=1}^{k} |P_{N}(A,\theta_{j})|^{2\beta} d\theta_{1} \cdots d\theta_{k}.$$

○ Integrand can be expressed as a Toeplitz determinant ○ As $N \to \infty$ and when $\theta_1, \ldots, \theta_k$ are distinct and fixed, can use Fisher-Hartwig

$$\mathsf{MoM}_{N}(k,\beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^{2}}{G(1+2\beta)\Gamma(1-\beta^{2})}\right)^{k} \Gamma(1-k\beta^{2}) N^{k\beta^{2}} & k\beta^{2} < 1\\ c(k,\beta) N^{k^{2}\beta^{2}-k+1} & k\beta^{2} > 1. \end{cases}$$

$$\mathsf{MoM}_{N}(k,\beta) = rac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \mathbb{E} \prod_{j=1}^{k} |P_{N}(A,\theta_{j})|^{2\beta} d\theta_{1} \cdots d\theta_{k}.$$

- Integrand can be expressed as a Toeplitz determinant
- \bigcirc As $N \to \infty$ and when $\theta_1, \ldots, \theta_k$ are distinct and fixed, can use Fisher-Hartwig
- \bigcirc When $k\beta^2<1,$ can then use Selberg to recover conjecture in this range

(3)

$$\mathsf{MoM}_{N}(k,\beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^{2}}{G(1+2\beta)\Gamma(1-\beta^{2})}\right)^{k} \Gamma(1-k\beta^{2}) N^{k\beta^{2}} & k\beta^{2} < 1\\ c(k,\beta) N^{k^{2}\beta^{2}-k+1} & k\beta^{2} > 1. \end{cases}$$

$$\mathsf{MoM}_{N}(k,\beta) = rac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \mathbb{E} \prod_{j=1}^{k} |P_{N}(A,\theta_{j})|^{2\beta} d\theta_{1} \cdots d\theta_{k}.$$

- Integrand can be expressed as a Toeplitz determinant
- \bigcirc As $N \to \infty$ and when $\theta_1, \ldots, \theta_k$ are distinct and fixed, can use Fisher-Hartwig
- \bigcirc When $k\beta^2 < 1$, can then use Selberg to recover conjecture in this range
- \bigcirc However, if $k\beta^2 \ge 1$, then the expression diverges coalescence of singularities becomes important

Emma Bailey

$$\operatorname{MoM}_{N}(k,\beta) \coloneqq \mathbb{E}_{A \in U(N)} \left(\left(\frac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A,\theta)|^{2\beta} d\theta \right)^{k} \right).$$

(日) (四) (三) (三) (三)

$$\operatorname{MoM}_{N}(k,\beta) \coloneqq \mathbb{E}_{A \in U(N)} \left(\left(\frac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A,\theta)|^{2\beta} d\theta \right)^{k} \right).$$

 \bigcirc k = 1, $\beta > -1/2$: follows from Keating and Snaith, 2000 *CMP*

Emma		

・ロン ・四 ・ ・ ヨン ・ ヨン

$$\operatorname{MoM}_{N}(k,\beta) \coloneqq \mathbb{E}_{A \in U(N)} \left(\left(\frac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A,\theta)|^{2\beta} d\theta \right)^{k} \right).$$

○ k = 1, $\beta > -1/2$: follows from Keating and Snaith, 2000 *CMP* ○ k = 1, $\beta \in \mathbb{N}$: alternative proof from Bump and Gamburd, 2006 *CMP*

$$\mathsf{MoM}_{N}(k,\beta) \coloneqq \mathbb{E}_{A \in \mathsf{U}(N)} \left(\left(\frac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A,\theta)|^{2\beta} d\theta \right)^{k} \right).$$

 k = 1, β > -1/2: follows from Keating and Snaith, 2000 CMP
 k = 1, β ∈ N: alternative proof from Bump and Gamburd, 2006 CMP
 k = 2 and β ∈ N: can be deduced from Keating, Rodgers, Roditty-Gershon and Rudnick, 2018 Mathematische Zeitschrift

- 4 同 6 4 日 6 4 日 6

$$\mathsf{MoM}_{N}(k,\beta) \coloneqq \mathbb{E}_{A \in \mathsf{U}(N)} \left(\left(\frac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A,\theta)|^{2\beta} d\theta \right)^{k} \right).$$

 \bigcirc k = 1, $\beta > -1/2$: follows from Keating and Snaith, 2000 *CMP*

 \bigcirc $k = 1, \beta \in \mathbb{N}$: alternative proof from Bump and Gamburd, 2006 *CMP*

- k = 2 and $\beta \in \mathbb{N}$: can be deduced from Keating, Rodgers, Roditty-Gershon and Rudnick, 2018 *Mathematische Zeitschrift*
- \bigcirc k = 2 all β : Claeys and Krasovsky establish correct powers of N, and relate $c(2,\beta)$ to Painlevé, 2015 *Duke*

(日) (同) (三) (三)

$$\mathsf{MoM}_{N}(k,\beta) \coloneqq \mathbb{E}_{A \in \mathsf{U}(N)} \left(\left(\frac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A,\theta)|^{2\beta} d\theta \right)^{k} \right).$$

 $\bigcirc~k=$ 1, $\beta>-1/2:$ follows from Keating and Snaith, 2000 CMP

 \bigcirc $k = 1, \beta \in \mathbb{N}$: alternative proof from Bump and Gamburd, 2006 *CMP*

- \bigcirc k = 2 and $\beta \in \mathbb{N}$: can be deduced from Keating, Rodgers, Roditty-Gershon and Rudnick, 2018 *Mathematische Zeitschrift*
- \bigcirc k = 2 all β : Claeys and Krasovsky establish correct powers of N, and relate $c(2,\beta)$ to Painlevé, 2015 *Duke*
- $\bigcirc k\beta^2$ small: Webb, and Nikula, Saksman and Webb get consistent results

・ロン ・四 ・ ・ ヨン ・ ヨン

Consider the case when $k, \beta \in \mathbb{N}$.

Emma	

・ロト ・聞ト ・ヨト ・ヨト

Consider the case when $k, \beta \in \mathbb{N}$. Then recall

$$\mathsf{MoM}_{N}(k,\beta) = \mathbb{E}_{A \in \mathsf{U}(N)} \left(\left(\frac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A,\theta)|^{2\beta} d\theta \right)^{k} \right)$$
$$= \frac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \mathbb{E} \left(\prod_{j=1}^{k} |P_{N}(A,\theta_{j})|^{2\beta} \right) d\theta_{1} \cdots d\theta_{k}.$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Consider the case when $k, \beta \in \mathbb{N}$. Then recall

$$\mathsf{MoM}_N(k,\beta) = rac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \mathbb{E}\Big(\prod_{j=1}^k |P_N(A,\theta_j)|^{2\beta}\Big) d\theta_1 \cdots d\theta_k.$$

Emma Bai				

イロト イヨト イヨト イヨト

Consider the case when $k, \beta \in \mathbb{N}$. Then recall

$$\mathsf{MoM}_{N}(k,\beta) = \frac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \mathbb{E}\Big(\prod_{j=1}^{k} |P_{N}(A,\theta_{j})|^{2\beta}\Big) d\theta_{1} \cdots d\theta_{k}.$$

Also $k\beta^2 > 1$ so we expect $\text{MoM}_N(k,\beta) \sim c(k,\beta)N^{k^2\beta^2-k+1}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Results

Consider the case when $k, \beta \in \mathbb{N}$. Then recall

$$\mathsf{MoM}_{N}(k,\beta) = rac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \mathbb{E}\Big(\prod_{j=1}^{k} |P_{N}(A,\theta_{j})|^{2\beta}\Big) d\theta_{1} \cdots d\theta_{k}.$$

Also $k\beta^2 > 1$ so we expect $MoM_N(k,\beta) \sim c(k,\beta)N^{k^2\beta^2-k+1}$.

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then $MoM_N(k, \beta)$ is a polynomial in N.

Emma	

Results

Consider the case when $k, \beta \in \mathbb{N}$. Then recall

$$\mathsf{MoM}_{N}(k,\beta) = \frac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \mathbb{E}\Big(\prod_{j=1}^{k} |P_{N}(A,\theta_{j})|^{2\beta}\Big) d\theta_{1} \cdots d\theta_{k}.$$

Also $k\beta^2 > 1$ so we expect $MoM_N(k,\beta) \sim c(k,\beta)N^{k^2\beta^2-k+1}$.

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then $MoM_N(k, \beta)$ is a polynomial in N.

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then for $c(k, \beta)$, an explicit function of k, β ,

$$\mathsf{MoM}_{N}(k,\beta) = c(k,\beta)N^{k^{2}\beta^{2}-k+1} + O(N^{k^{2}\beta^{2}-k})$$

< 🗇 🕨

$MoM_N(k,\beta)$

▲口> ▲圖> ▲屋> ▲屋>

Emma	

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Complex analysis

Emma	

21st June 11 / 34

4 ∃ > 4

 Conrey, Farmer, Keating, Rubinstein and Snaith

- Conrey, Farmer, Keating, Rubinstein and Snaith
- L'Hôpital

- Conrey, Farmer, Keating, Rubinstein and Snaith
- C L'Hôpital
- Bump and Gamburd SSYT

- Conrey, Farmer, Keating, Rubinstein and Snaith
- C L'Hôpital
- Bump and Gamburd SSYT

Complex analysis

 \bigcirc Exact representation of $\mathbb{E} \prod_{j=1}^{k} |P_N(A, \theta_j)|^{2\beta}$

- Conrey, Farmer, Keating, Rubinstein and Snaith
- C L'Hôpital
- Bump and Gamburd SSYT

- $\bigcirc \text{ Exact representation of } \\ \mathbb{E} \prod_{j=1}^{k} |P_{N}(A, \theta_{j})|^{2\beta}$
- O Multiple contour integrals

- Conrey, Farmer, Keating, Rubinstein and Snaith
- C L'Hôpital
- Bump and Gamburd SSYT

- $\bigcirc \text{ Exact representation of } \\ \mathbb{E} \prod_{j=1}^{k} |P_{N}(A, \theta_{j})|^{2\beta}$
- Multiple contour integrals
- C Leading order analysis

Aside

Representation-theoretic approach

	~	D	

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Aside

Representation-theoretic approach

Partition

A partition λ is a sequence $(\lambda_1, ..., \lambda_k)$ of positive integers satisfying $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$.

Emma	

Aside

Representation-theoretic approach

Partition

A partition λ is a sequence $(\lambda_1, ..., \lambda_k)$ of positive integers satisfying $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$.

Take the partition $\lambda = (6, 4, 2, 2)$. Then λ corresponds to the Young diagram

(本語) (本語) (本語)

SSYT

For λ a partition, a *semistandard Young tableau (SSYT)* of shape λ is an array $T = (T_{ij})_{1 \le i \le \ell(\lambda), 1 \le j \le \lambda_i}$ of positive integers such that $T_{i,j} \le T_{i,j+1}$ and $T_{ij} < T_{i+1,j}$. It is common to write SSYTs in a Young diagram; e.g.

1	1	2	3	3	7
2	3	3	4		
4	4				
6	7				

is a SSYT of shape (6, 4, 2, 2).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SSYT

For λ a partition, a *semistandard Young tableau* (SSYT) of shape λ is an array $T = (T_{ij})_{1 \le i \le \ell(\lambda), 1 \le j \le \lambda_i}$ of positive integers such that $T_{i,j} \le T_{i,j+1}$ and $T_{ij} < T_{i+1,j}$. It is common to write SSYTs in a Young diagram; e.g.

1	1	2	3	3	7
2	3	3	4		
4	4				
6	7				

is a SSYT of shape (6, 4, 2, 2). T has type $t = (t_1, t_2, ...)$ if T has t_i parts equal to i. The SSYT above has type (2, 2, 4, 3, 0, 1, 2).

イロト 不得下 イヨト イヨト 二日

SSYT

For λ a partition, a *semistandard Young tableau* (SSYT) of shape λ is an array $T = (T_{ij})_{1 \le i \le \ell(\lambda), 1 \le j \le \lambda_i}$ of positive integers such that $T_{i,j} \le T_{i,j+1}$ and $T_{ij} < T_{i+1,j}$. It is common to write SSYTs in a Young diagram; e.g.

1	1	2	3	3	7
2	3	3	4		
4	4				
6	7				

is a SSYT of shape (6, 4, 2, 2). *T* has *type* $t = (t_1, t_2, ...)$ if *T* has t_i parts equal to *i*. The SSYT above has type (2, 2, 4, 3, 0, 1, 2). It is common to use the multivariate notation

$$x^{T} = x_{1}^{t_{1}(T)} x_{2}^{t_{2}(T)} \cdots,$$

so for the example SSYT above,

$$x^{T} = x_1^2 x_2^2 x_3^4 x_4^3 x_6 x_7^2.$$

The combinatorial definition of *Schur functions* is as follows: For a partition λ , the Schur function in the variables $x_1, ..., x_r$ indexed by λ is a multivariable polynomial defined by

$$s_{\lambda}(x_1,...,x_r)\coloneqq \sum_{\mathcal{T}}x^{\mathcal{T}}=\sum_{\mathcal{T}}x_1^{t_1(\mathcal{T})}\cdots x_r^{t_r(\mathcal{T})},$$

where the sum is over all SSYTs T whose entries belong to the set $\{1, ..., r\}$ (i.e. $t_i(T) = 0$ for i > r).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The combinatorial definition of *Schur functions* is as follows: For a partition λ , the Schur function in the variables $x_1, ..., x_r$ indexed by λ is a multivariable polynomial defined by

$$s_{\lambda}(x_1,...,x_r)\coloneqq \sum_{\mathcal{T}} x^{\mathcal{T}} = \sum_{\mathcal{T}} x_1^{t_1(\mathcal{T})}\cdots x_r^{t_r(\mathcal{T})},$$

where the sum is over all SSYTs T whose entries belong to the set $\{1, ..., r\}$ (i.e. $t_i(T) = 0$ for i > r). Take $\lambda = (2, 1) \vdash 3$.

- 4 同 6 4 日 6 4 日 6

The combinatorial definition of *Schur functions* is as follows: For a partition λ , the Schur function in the variables $x_1, ..., x_r$ indexed by λ is a multivariable polynomial defined by

$$s_{\lambda}(x_1,...,x_r)\coloneqq \sum_{\mathcal{T}} x^{\mathcal{T}} = \sum_{\mathcal{T}} x_1^{t_1(\mathcal{T})}\cdots x_r^{t_r(\mathcal{T})},$$

where the sum is over all SSYTs T whose entries belong to the set $\{1, ..., r\}$ (i.e. $t_i(T) = 0$ for i > r). Take $\lambda = (2, 1) \vdash 3$. Then to calculate $s_{\lambda}(x_1, x_2, x_3)$:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The combinatorial definition of *Schur functions* is as follows: For a partition λ , the Schur function in the variables $x_1, ..., x_r$ indexed by λ is a multivariable polynomial defined by

$$s_{\lambda}(x_1,...,x_r) \coloneqq \sum_{T} x^T = \sum_{T} x_1^{t_1(T)} \cdots x_r^{t_r(T)},$$

where the sum is over all SSYTs T whose entries belong to the set $\{1, ..., r\}$ (i.e. $t_i(T) = 0$ for i > r). Take $\lambda = (2, 1) \vdash 3$. Then to calculate $s_\lambda(x_1, x_2, x_3)$:

 $s_{\lambda}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2.$

< □ > < ---->

S

Theorem (Bump & Gamburd 2006)

For $\beta \in \mathbb{N}$

$$\mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta} = s_{\langle N^{eta}
angle}(1^{2eta})$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theorem (Bump & Gamburd 2006)

For $\beta \in \mathbb{N}$

$$\mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta} = s_{\langle N^{eta}
angle}(1^{2eta})$$

Corollary (Bump & Gamburd 2006)

For $\beta \in \mathbb{N}$

$$\mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta} = \prod_{j=0}^{N-1} \frac{j!(j+2\beta)!}{(j+\beta)!^2}$$

Emma	

・ロン ・四 ・ ・ ヨン ・ ヨン

Theorem (Bump & Gamburd 2006)

For $\beta \in \mathbb{N}$

$$\mathbb{E}_{A\in U(N)}|P_N(A, heta)|^{2eta}=s_{\langle N^eta
angle}(1^{2eta})$$

Corollary (Bump & Gamburd 2006)

For $\beta \in \mathbb{N}$

$$\mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta} = \prod_{j=0}^{N-1} \frac{j!(j+2\beta)!}{(j+\beta)!^2}$$

This also gives the interpretation that, for $eta \in \mathbb{N}$, as $N o \infty$

$$\mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta} \sim \frac{g_{\beta}}{\beta^2 !} N^{\beta^2}$$

where g_{β} is the number of ways of filling a $\beta \times \beta$ array with the integers $1, 2, \ldots, \beta^2$ in such a way that the numbers increase along each row and down each column.

Proof of polynomial structure

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof of polynomial structure

Recall

Theorem

Let $k, \beta \in \mathbb{N}$. Then $MoM_N(k, \beta)$ is a polynomial in N.

Emma	

A B A A B A

Proof of polynomial structure

Recall

Theorem

Let $k, \beta \in \mathbb{N}$. Then $MoM_N(k, \beta)$ is a polynomial in N.

Proposition (Bump and Gamburd)

$$\mathbb{E}_{A\in U(N)}\left(\prod_{j=1}^{k}|P_{N}(A,\theta_{j})|^{2\beta}\right)=\frac{s_{\langle N^{k\beta}\rangle}\left(e^{i\underline{\theta}}\right)}{\prod_{j=1}^{k}e^{iN\beta\theta_{j}}},$$

where $s_{\nu}(x_1, \ldots, x_n)$ is the Schur polynomial in *n* variables with respect to the partition ν . Here $\langle N^{k\beta} \rangle = (N, \ldots, N)$, and

Hence for $k, \beta \in \mathbb{N}$,

$$\begin{split} \mathsf{MoM}_{\mathsf{N}}(k,\beta) &= \frac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \sum_{\mathcal{T}} e^{i\theta_{1}(\tau_{1}-\mathsf{N}\beta)} \cdots e^{i\theta_{k}(\tau_{k}-\mathsf{N}\beta)} \prod_{j=1}^{k} d\theta_{j} \\ &= \sum_{\widetilde{\mathcal{T}}} \mathbf{1}, \end{split}$$

	a		

(日) (同) (日) (日)

Hence for $k, \beta \in \mathbb{N}$,

$$MoM_N(k,\beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \sum_T e^{i\theta_1(\tau_1 - N\beta)} \cdots e^{i\theta_k(\tau_k - N\beta)} \prod_{j=1}^k d\theta_j$$
$$= \sum_{\widetilde{T}} 1,$$

where the sum is now over $\widetilde{\mathcal{T}},$ restricted SSYT

Emma	

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Hence for $k, \beta \in \mathbb{N}$,

$$MoM_N(k,\beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \sum_{\mathcal{T}} e^{i\theta_1(\tau_1 - N\beta)} \cdots e^{i\theta_k(\tau_k - N\beta)} \prod_{j=1}^k d\theta_j$$
$$= \sum_{\tilde{\mathcal{T}}} 1,$$

where the sum is now over \widetilde{T} , restricted SSYT - require $N\beta$ entries from each of the sets $\{2\beta(j-1)+1,\ldots,2j\beta\}$, for $j \in \{1,\ldots,k\}$.

$$\mathsf{MoM}_{N}(k,eta) = \sum_{\widetilde{\mathcal{T}}} 1 < \sum_{\mathcal{T}} 1 = \mathsf{Poly}_{N}(k^{2}eta^{2}).$$

(日) (周) (三) (三)

Emma	

(日) (同) (三) (三)

Conrey, Farmer, Rubinstein, Keating and Snaith give that

$$\mathbb{E}\prod_{j=1}^{k}|P_{N}(A,\theta_{j})|^{2\beta} = \prod_{j=k\beta+1}^{2k\beta}\omega_{j}^{-N}\sum_{\sigma\in\Xi_{k\beta}}\frac{(\omega_{\sigma(k\beta+1)}\omega_{\sigma(k\beta+2)}\cdots\omega_{\sigma(2k\beta)})^{N}}{\prod_{l\leq k\beta< q}(1-\omega_{\sigma(l)}\omega_{\sigma(q)}^{-1})}$$

Emma	

Conrey, Farmer, Rubinstein, Keating and Snaith give that

$$\mathbb{E}\prod_{j=1}^{k}|P_{N}(A,\theta_{j})|^{2\beta} = \prod_{j=k\beta+1}^{2k\beta}\omega_{j}^{-N}\sum_{\sigma\in\Xi_{k\beta}}\frac{(\omega_{\sigma(k\beta+1)}\omega_{\sigma(k\beta+2)}\cdots\omega_{\sigma(2k\beta)})^{N}}{\prod_{l\leq k\beta< q}(1-\omega_{\sigma(l)}\omega_{\sigma(q)}^{-1})}$$

where $\Xi_{k\beta}$ is the set of $\binom{2k\beta}{k\beta}$ permutations $\sigma \in S_{2k\beta}$ such that $\sigma(1) < \sigma(2) < \cdots < \sigma(k\beta)$ and $\sigma(k\beta + 1) < \cdots < \sigma(2k\beta)$, and

$$\underline{\omega} = (\underbrace{e^{i\theta_1}, \ldots, e^{i\theta_1}}_{\beta}, \ldots, \underbrace{e^{i\theta_k}, \ldots, e^{i\theta_k}}_{\beta}, \underbrace{e^{i\theta_1}, \ldots, e^{i\theta_1}}_{\beta}, \ldots, \underbrace{e^{i\theta_k}, \ldots, e^{i\theta_k}}_{\beta}).$$

Emma Bailey

21st June 18 / 34

A B A A B A

$$\mathsf{MoM}_{N}(k,\beta) = \mathbb{E}_{A \in \mathsf{U}(N)} \left(\left(\frac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A,\theta)|^{2\beta} d\theta \right)^{k} \right)$$

$$\mathsf{MoM}_{N}(k,\beta) = \mathbb{E}_{A \in \mathsf{U}(N)} \left(\left(\frac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A,\theta)|^{2\beta} d\theta \right)^{k} \right)$$

 $MoM_N(1,1) = N+1$

Emma	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\mathsf{MoM}_{N}(k,\beta) = \mathbb{E}_{A \in \mathsf{U}(N)} \left(\left(\frac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A,\theta)|^{2\beta} d\theta \right)^{k} \right)$$

$$MoM_N(1,1) = N + 1$$

 $MoM_N(2,1) = \frac{1}{6}(N+3)(N+2)(N+1)$

Emma		

$$\mathsf{MoM}_{N}(k,\beta) = \mathbb{E}_{A \in \mathsf{U}(N)} \left(\left(\frac{1}{2\pi} \int_{0}^{2\pi} |P_{N}(A,\theta)|^{2\beta} d\theta \right)^{k} \right)$$

$$MoM_N(1,1) = N + 1$$

$$MoM_N(2,1) = \frac{1}{6}(N+3)(N+2)(N+1)$$

$$MoM_N(3,1) = \frac{1}{2520}(N+5)(N+4)(N+3)(N+2)(N+1)(N^2+6N+21)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} \mathsf{MoM}_N(k,\beta) &= \mathbb{E}_{A \in \mathsf{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A,\theta)|^{2\beta} d\theta \right)^k \right) \\ \mathsf{MoM}_N(1,1) &= N+1 \\ \mathsf{MoM}_N(2,1) &= \frac{1}{6} (N+3)(N+2)(N+1) \\ \mathsf{MoM}_N(3,1) &= \frac{1}{2520} (N+5)(N+4)(N+3)(N+2)(N+1)(N^2+6N+21) \\ \mathsf{MoM}_N(4,1) &= \frac{1}{778377600} (N+7)(N+6)(N+5)(N+4)(N+3)(N+2) \\ &\times (N+1)(7N^6+168N^5+1804N^4+10944N^3+ \\ &+ 41893N^2+99624N+154440) \end{split}$$

Emma Bailey

$$\begin{split} \mathsf{MoM}_N(k,\beta) &= \mathbb{E}_{A \in \mathsf{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A,\theta)|^{2\beta} d\theta \right)^k \right) \\ \mathsf{MoM}_N(1,1) &= N+1 \\ \mathsf{MoM}_N(2,1) &= \frac{1}{6} (N+3)(N+2)(N+1) \\ \mathsf{MoM}_N(3,1) &= \frac{1}{2520} (N+5)(N+4)(N+3)(N+2)(N+1)(N^2+6N+21) \\ \mathsf{MoM}_N(4,1) &= \frac{1}{778377600} (N+7)(N+6)(N+5)(N+4)(N+3)(N+2) \\ &\times (N+1)(7N^6+168N^5+1804N^4+10944N^3+ \\ &+ 41893N^2+99624N+154440) \\ \mathsf{MoM}_N(1,2) &= \frac{1}{12} (N+1)(N+2)^2 (N+3). \end{split}$$

$$MoM_{N}(2,2) = \frac{1}{163459296000} (N+7)(N+6)(N+5)(N+4) \\ \times (N+3)(N+2)(N+1)(298N^{8}+9536N^{7}+134071N^{6} \\ + 1081640N^{5}+5494237N^{4}+18102224N^{3}+38466354N^{2} \\ + 50225040N+32432400).$$

 $\mathsf{MoM}_{N}(2,3) = \frac{(N+1)(N+2)(N+3)(N+4)(N+5)(N+6)(N+7)(N+8)(N+9)(N+10)(N+11)}{172219132773102415494444188958720000000}$ $\times (12308743625763N^{24} + 1772459082109872N^{23} + 121902830804059138N^{22} +$ $+5328802119564663432N^{21}+166214570195622478453N^{20}+3937056259812505643352N^{19}$ +73583663800226157619008 N^{18} +1113109355823972261429312 N^{17} +13869840005250869763713293 N^{16} $+144126954435929329947378912N^{15}+1259786144898207172443272698N^{14}$ $+9315726913410827893883025672N^{13}+58475127984013141340467825323N^{12}$ $+311978271286536355427593012632N^{11}+1413794106539529439589778645028N^{10}$ $+5427439874579682729570383266992N^9 + 17564370687865211818995713096848N^8$ $+47561382824003032731805262975232N^7 + 106610927256886475209611301000128N^6$ $+194861499503272627170466392014592N^{5}+284303877221735683573377603640320N^{4}$ $+320989495108428049992898521600000N^3 + 266974288159876385845370793984000N^2$ +148918006780282798012340305920000N+43144523802785397500411904000000)

Moments of Moments

< ロ > < 同 > < 三 > < 三

Recall,

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then

$$\operatorname{MoM}_{N}(k,\beta) = c(k,\beta)N^{k^{2}\beta^{2}-k+1} + O(N^{k^{2}\beta^{2}-k}),$$

where $c(k,\beta)$ is an explicit function of k,β .

Emma	

(人) 目() (人) 目

Recall,

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then

$$\mathsf{MoM}_{N}(k,\beta) = c(k,\beta)N^{k^{2}\beta^{2}-k+1} + O(N^{k^{2}\beta^{2}-k}),$$

where $c(k,\beta)$ is an explicit function of k,β .

Proof ingredients:

 \bigcirc Expand $\mathbb{E}\prod_{j=1}^{k}|P_{N}(A, heta_{j})|^{2eta}$ as a multiple contour integral

・ 回 ト ・ ヨ ト ・ ヨ ト

Recall,

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then

$$\mathsf{MoM}_{N}(k,\beta) = c(k,\beta)N^{k^{2}\beta^{2}-k+1} + O(N^{k^{2}\beta^{2}-k}),$$

where $c(k,\beta)$ is an explicit function of k,β .

Proof ingredients:

 \bigcirc Expand $\mathbb{E}\prod_{j=1}^{k} |P_N(A, \theta_j)|^{2\beta}$ as a multiple contour integral

O Deform and manipulate the integrals

• • = • • = •

Recall,

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then

$$\mathsf{MoM}_{N}(k,\beta) = c(k,\beta)N^{k^{2}\beta^{2}-k+1} + O(N^{k^{2}\beta^{2}-k}),$$

where $c(k,\beta)$ is an explicit function of k,β .

Proof ingredients:

 \bigcirc Expand $\mathbb{E}\prod_{j=1}^{k}|P_{N}(A,\theta_{j})|^{2\beta}$ as a multiple contour integral

Deform and manipulate the integrals

 \bigcirc Analyse the result asymptotically as $N \to \infty$.

• • = • • = •

Emma	

< ロ > < 同 > < 三 > < 三

Define

$$I_{k,eta}(heta_1,\ldots, heta_k) = \mathbb{E}_{A\in \mathsf{U}(N)}\left(\prod_{j=1}^k |P_N(A, heta_j)|^{2eta}
ight),$$

			500
Emma Bailey	Moments of Moments	21st June	23 / 34

Define

$$I_{k,\beta}(\theta_1,\ldots,\theta_k) = \mathbb{E}_{A\in U(N)}\left(\prod_{j=1}^k |P_N(A,\theta_j)|^{2\beta}\right),$$

SO

$$\mathsf{MoM}_{N}(k,\beta) = \frac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} I_{k,\beta}(\theta_{1},\ldots,\theta_{k}) d\theta_{1} \cdots d\theta_{k}.$$

Emma	

(日) (同) (三) (三)

Define

$$I_{k,\beta}(\theta_1,\ldots,\theta_k) = \mathbb{E}_{A\in U(N)}\left(\prod_{j=1}^k |P_N(A,\theta_j)|^{2\beta}\right),$$

so

$$\operatorname{MoM}_{N}(k,\beta) = \frac{1}{(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} I_{k,\beta}(\theta_{1},\ldots,\theta_{k}) d\theta_{1} \cdots d\theta_{k}.$$

Theorem [CFKRS]

For $k, \beta \in \mathbb{N}$,

$$I_{k,\beta}(\underline{\theta}) = \frac{(-1)^{k\beta} e^{-i\beta \sum_{j=1}^{k} \theta_j}}{(2\pi i)^{2k\beta} ((k\beta)!)^2} \oint \cdots \oint \frac{e^{-N(z_{k\beta+1}+\cdots+z_{2k\beta})} \Delta(z_1,\ldots,z_{2k\beta})^2 dz_1 \cdots dz_{2k\beta}}{\prod_{m \le k\beta < n} (1-e^{z_n-z_m}) \prod_{m=1}^{2k\beta} \prod_{n=1}^{k} (z_m+i\theta_n)^{2\beta}}.$$

Manipulation of MCI

$$I_{k,\beta}(\underline{\theta}) = \frac{(-1)^{k\beta} e^{-i\beta \sum_{j=1}^{k} \theta_j}}{(2\pi i)^{2k\beta} ((k\beta)!)^2} \oint \cdots \oint \frac{e^{-N(z_{k\beta+1}+\cdots+z_{2k\beta})} \Delta(z_1,\ldots,z_{2k\beta})^2 dz_1 \cdots dz_{2k\beta}}{\prod_{m \le k\beta < n} (1-e^{z_n-z_m}) \prod_{m=1}^{2k\beta} \prod_{n=1}^{k} (z_m+i\theta_n)^{2\beta}}.$$

Manipulation of MCI

$$I_{k,\beta}(\underline{\theta}) = \frac{(-1)^{k\beta} e^{-i\beta \sum_{j=1}^{k} \theta_j}}{(2\pi i)^{2k\beta} ((k\beta)!)^2} \oint \cdots \oint \frac{e^{-N(z_{k\beta+1}+\cdots+z_{2k\beta})} \Delta(z_1,\ldots,z_{2k\beta})^2 dz_1 \cdots dz_{2k\beta}}{\prod_{m \le k\beta < n} (1-e^{z_n-z_m}) \prod_{m=1}^{2k\beta} \prod_{n=1}^{k} (z_m+i\theta_n)^{2\beta}}.$$

O Deform the contours

- Change of variables
- Carefully analyse remaining integrals

• = • •

Leading order

$$\mathsf{MoM}_{N}(k,\beta) \sim c(k,\beta) N^{k^2\beta^2-k+1}$$

nma	

(日) (同) (三) (三)

Leading order

$$\mathsf{MoM}_{N}(k,\beta) \sim c(k,\beta) N^{k^2\beta^2-k+1}$$

where

$$c(k,\beta) = \sum_{\substack{l_1,\ldots,l_{k-1}=0\\ (\dagger)}}^{2\beta} c_{\underline{l}}(k,\beta)((k-1)\beta - \sum_{j=1}^{k-1} l_j)^{f(k,\beta,\underline{l})} P_{k,\beta}(l_1,\ldots,l_{k-1}),$$

Leading order

$$\mathsf{MoM}_{N}(k,\beta) \sim c(k,\beta) N^{k^2\beta^2-k+1}$$

where

$$c(k,\beta) = \sum_{\substack{l_1,\ldots,l_{k-1}=0\\ (\dagger)}}^{2\beta} c_{\underline{l}}(k,\beta)((k-1)\beta - \sum_{j=1}^{k-1} l_j)^{f(k,\beta,\underline{l})} P_{k,\beta}(l_1,\ldots,l_{k-1}),$$

Leading order

$$\mathsf{MoM}_{N}(k,\beta) \sim c(k,\beta) N^{k^2\beta^2-k+1}$$

where

$$c(k,\beta) = \sum_{\substack{l_1,\ldots,l_{k-1}=0\\ (\dagger)}}^{2\beta} \frac{c_{\underline{l}}(k,\beta)((k-1)\beta - \sum_{j=1}^{k-1} l_j)^{f(k,\beta,\underline{l})} P_{k,\beta}(l_1,\ldots,l_{k-1}),$$

Leading order

$$\mathsf{MoM}_{N}(k,\beta) \sim c(k,\beta) N^{k^2\beta^2-k+1}$$

where

$$c(k,\beta) = \sum_{\substack{l_1,\ldots,l_{k-1}=0\\ (\dagger)}}^{2\beta} c_{\underline{l}}(k,\beta)((k-1)\beta - \sum_{j=1}^{k-1} l_j)^{f(k,\beta,\underline{l})} P_{k,\beta}(l_1,\ldots,l_{k-1}),$$

Leading order

$$\mathsf{MoM}_{N}(k,\beta) \sim c(k,\beta) N^{k^2\beta^2-k+1}$$

where

$$c(k,\beta) = \sum_{\substack{l_1,\ldots,l_{k-1}=0\\ (\dagger)}}^{2\beta} c_{\underline{l}}(k,\beta)((k-1)\beta - \sum_{j=1}^{k-1} l_j)^{f(k,\beta,\underline{l})} P_{k,\beta}(l_1,\ldots,l_{k-1}),$$

Leading order

$$MoM_N(k,\beta) \sim c(k,\beta)N^{k^2\beta^2-k+1}$$

where

$$c(k,\beta) = \sum_{\substack{l_1,\ldots,l_{k-1}=0\\ (\dagger)}}^{2\beta} c_{\underline{l}}(k,\beta)((k-1)\beta - \sum_{j=1}^{k-1} l_j)^{f(k,\beta,\underline{l})} P_{k,\beta}(l_1,\ldots,l_{k-1}),$$

and

$$P_{k,\beta}(\underline{l}) = \frac{(-1)^{\sum_{\sigma < \tau} |S_{\sigma < \tau}^-|}}{(2\pi i)^{2k\beta}((k\beta)!)^2} \int_{\Gamma_0} \cdots \int_{\Gamma_0} \frac{e^{-\sum_{m=k\beta+1}^{2k\beta} v_m} \prod_{\substack{m < n \\ \alpha_m = \alpha_n}} (v_n - v_m)^2}{\prod_{\substack{m \le k\beta < n \\ \alpha_m = \alpha_n}} (v_n - v_m) \prod_{m=1}^{2k\beta} v_m^{2\beta}} \times \Psi_{k,\beta,\underline{l}}(((k-1)\beta - \sum_{j=1}^{k-1} l_j)\underline{v}) \prod_{m=1}^{2k\beta} dv_m.$$

Leading order

So for $k, \beta \in \mathbb{N}$ we have

$$MoM_N(k,\beta) \sim c(k,\beta)N^{k^2\beta^2-k+1}$$

Emma	

(< ∃) < ∃)</p>

Leading order

So for $k, \beta \in \mathbb{N}$ we have

$$\operatorname{MoM}_{N}(k,\beta) \sim c(k,\beta) N^{k^{2}\beta^{2}-k+1}.$$

The theorem follows if one can show that $c(k,\beta) \neq 0$. A lengthy computation shows that this is the case - in fact $c(k,\beta) > 0$.

A B A A B A

Another alternative approach

Emma	

・ロト ・回ト ・ヨト ・ヨ

One can recover the same asymptotic result using Gelfand-Tsetlin patterns.

Theorem [Assiotis-Keating (2019)]

Let $k, \beta \in \mathbb{N}$. Then,

$$\mathsf{MoM}_{N}(k,\beta) = c(k,\beta)N^{k^{2}\beta^{2}-k+1} + O(N^{k^{2}\beta^{2}-k}),$$

where $c(k,\beta)$ can be written explicitly as a volume of a certain region involving continuous Gelfand-Tsetlin patterns with constraints.

Emma	

Emma	

メロト メポト メモト メモト

Analogue of $MoM_N(k, \beta)$:

$$\mathsf{MoM}_{T}^{\zeta}(k,\beta) \coloneqq \frac{1}{T} \int_{T}^{2T} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |\zeta(1/2 + i(t+\gamma))|^{2\beta} d\gamma \right)^{k} dt$$
$$= \frac{1}{T(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \int_{T}^{2T} \prod_{j=1}^{k} |\zeta(1/2 + i(t+\gamma_{j}))|^{2\beta} dt \prod_{j=1}^{k} d\gamma_{j}.$$

< ロ > < 同 > < 三 > < 三

Analogue of $MoM_N(k, \beta)$:

$$\mathsf{MoM}_{\mathcal{T}}^{\zeta}(k,\beta) \coloneqq \frac{1}{\mathcal{T}} \int_{\mathcal{T}}^{2\mathcal{T}} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |\zeta(1/2 + i(t+\gamma))|^{2\beta} d\gamma \right)^{k} dt$$
$$= \frac{1}{\mathcal{T}(2\pi)^{k}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \int_{\mathcal{T}}^{2\mathcal{T}} \prod_{j=1}^{k} |\zeta(1/2 + i(t+\gamma_{j}))|^{2\beta} dt \prod_{j=1}^{k} d\gamma_{j}$$

Conjecture Fyodorov & Keating

For
$$k\beta^2>1$$
, $\mathsf{MoM}^\zeta_{\mathcal{T}}(k,\beta)\sim c'(k,\beta)(\lograc{T}{2\pi})^{k^2\beta^2-k+1}.$

< 注) < 注

Conjectured expression for integrand (CFKRS):

$$\begin{aligned} \frac{1}{T} \int_0^T |\zeta(1/2 + it)|^{2\beta} dt &= \frac{1}{T} \int_0^T \frac{(-1)^{\beta}}{(\beta!)^2} \frac{1}{(2\pi i)^{2\beta}} \\ &\times \oint \cdots \oint \frac{G_{\zeta}(z_1, \dots, z_{2\beta}) \Delta^2(z_1, \dots, z_{2\beta})}{\prod_{j=1}^{2\beta} z_j^{2\beta}} \\ &\times e^{\frac{1}{2} \log \frac{t}{2\pi} \sum_{j=1}^{\beta} z_j - z_{\beta+j}} dz_1 \cdots dz_{2\beta} dt + o(1). \end{aligned}$$

A B A A B A

Conjectured expression for integrand (CFKRS):

$$\begin{aligned} \frac{1}{T} \int_0^T |\zeta(1/2 + it)|^{2\beta} dt &= \frac{1}{T} \int_0^T \frac{(-1)^{\beta}}{(\beta!)^2} \frac{1}{(2\pi i)^{2\beta}} \\ &\times \oint \cdots \oint \frac{G_{\zeta}(z_1, \dots, z_{2\beta}) \Delta^2(z_1, \dots, z_{2\beta})}{\prod_{j=1}^{2\beta} z_j^{2\beta}} \\ &\times e^{\frac{1}{2} \log \frac{t}{2\pi} \sum_{j=1}^{\beta} z_j - z_{\beta+j}} dz_1 \cdots dz_{2\beta} dt + o(1). \end{aligned}$$

where

$$G_{\zeta}(z_1,\ldots,z_{2\beta})=A_{\beta}(z_1,\ldots,z_{2\beta})\prod_{i,j=1}^{\beta}\zeta(1+z_i-z_{\beta+j}),$$

and $A_{\beta}(\underline{z})$ is an Euler product whose local factors are polynomials in p^{-1} and p^{-z_i} .

Emma Bailey

Emma	

(日) (同) (三) (三)

 \bigcirc Relationship between families of L-functions and other random matrix families

- \bigcirc Relationship between families of L-functions and other random matrix families
- Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc

• = • •

- \bigcirc Relationship between families of L-functions and other random matrix families
- Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc

• = • •

- \bigcirc Relationship between families of *L*-functions and other random matrix families
- Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc

Emma Bailey	Moments of Moments	21st June

< ロ > < 同 > < 回 > < 回 > < 回 > <

30 / 34

- \bigcirc Relationship between families of *L*-functions and other random matrix families
- Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc

$$\mathsf{JSp}(2N) = \{M \in U(2N) : M^t \Omega M = \Omega\}, \quad \Omega = \begin{pmatrix} 0 & I_N \\ -I_N & 0 \end{pmatrix},$$

 $\det(I - Ms) = \prod_{n=1}^N (1 - e^{i\theta_n}s)(1 - e^{-i\theta_n}s).$

$$egin{aligned} \mathsf{SO}(2\mathsf{N}) &= \{ O \in O(2\mathsf{N}) : \mathsf{det}(O) = 1 \}, \ \mathsf{det}(\mathsf{I} - O\mathsf{s}) &= \prod_{m=1}^{\mathsf{N}} (1 - e^{i heta_m} \mathsf{s})(1 - e^{-i heta_m} \mathsf{s}). \end{aligned}$$

ι

Emma Bailev

(日) (同) (三) (三)

Theorem [Assiotis-B.-Keating (2019)]

Let $k, \beta \in \mathbb{N}$. Then $MoM_{USp(2N)}(k, \beta)$ is a polynomial in N and further

 $\mathsf{MoM}_{\mathsf{USp}(2N)}(k,\beta) = c_{\mathsf{USp}}(k,\beta)N^{k\beta(2k\beta+1)-k} + O(N^{k\beta(2k\beta+1)-k-1}).$

Emma	

イロト 不得下 イヨト イヨト 二日

Theorem [Assiotis-B.-Keating (2019)]

Let $k, \beta \in \mathbb{N}$. Then $MoM_{USp(2N)}(k, \beta)$ is a polynomial in N and further

 $\mathsf{MoM}_{\mathsf{USp}(2N)}(k,\beta) = c_{\mathsf{USp}}(k,\beta)N^{k\beta(2k\beta+1)-k} + O(N^{k\beta(2k\beta+1)-k-1}).$

Theorem [Assiotis-B.-Keating (2019)]

Let $k, \beta \in \mathbb{N}$. Then $MoM_{SO(2N)}(k, \beta)$ is a polynomial in N. Further

$$MoM_{SO(2N)}(1,1) = 2(N+1),$$

otherwise

$$\mathsf{MoM}_{\mathsf{SO}(2N)}(k,\beta) = c_{\mathsf{SO}(2N)} N^{k\beta(2k\beta-1)-k} + O(N^{k\beta(2k\beta-1)-k-1}).$$

(日) (同) (三) (三)

Emma	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Again we have a number of forms for the matrix average:

$$\mathbb{E}_{\mathsf{USp}(2N)}\left(\prod_{j=1}^{k} |\det(I - Ae^{-i\theta})|^{2\beta}\right)$$
$$= \sum_{\mathcal{P}\in\mathsf{SP}_{\langle N^{k\beta} \rangle}} w(\mathcal{P}) \quad (\mathsf{BG} \ 2006)$$

→ 3 → 4 3

Again we have a number of forms for the matrix average:

$$\mathbb{E}_{\text{USp}(2N)} \left(\prod_{j=1}^{k} |\det(I - Ae^{-i\theta})|^{2\beta} \right)$$

= $\sum_{\mathcal{P} \in \text{SP}_{\langle N^{k\beta} \rangle}} w(\mathcal{P})$
= $\sum_{\varepsilon \in \{\pm 1\}^{2k\beta}} \frac{\prod_{j=1}^{2k\beta} x_j^{N(1-\varepsilon_j)}}{\prod_{i \leq j} (1 - x_i^{\varepsilon_i} x_j^{\varepsilon_j})}$ (CFKRS 2002)

A B F A B F

Again we have a number of forms for the matrix average:

$$\mathbb{E}_{\text{USp}(2N)}\left(\prod_{j=1}^{k} |\det(I - Ae^{-i\theta})|^{2\beta}\right)$$

$$= \sum_{\mathcal{P}\in\text{SP}_{\langle N^{k\beta}\rangle}} w(\mathcal{P})$$

$$= \sum_{\varepsilon\in\{\pm 1\}^{2k\beta}} \frac{\prod_{j=1}^{2k\beta} x_j^{N(1-\varepsilon_j)}}{\prod_{i\leq j} (1 - x_i^{\varepsilon_i} x_j^{\varepsilon_j})}$$

$$= \frac{(-1)^{k\beta(2k\beta-1)} 2^{2k\beta}}{(2\pi i)^{2k\beta} (2k\beta)!} e^{-Ni \sum_{j=1}^{2k\beta} \theta_j} \quad \text{(CFRKS 2002)}$$

$$\times \oint \cdots \oint \frac{\Delta(z_1^2, \dots, z_{2k\beta}^2)^2 \prod_{j=1}^{2k\beta} z_j e^{Nz_j} dz_j}{\prod_{l\leq m} (1 - e^{-z_m - z_l}) \prod_{m,n=1}^{2k\beta} (z_m - i\theta_n)(z_m + i\theta_n)}$$

Emm	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

○ CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 - k + 1$ (in line with FK conjecture).

A B F A B F

- CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 k + 1$ (in line with FK conjecture).
- \bigcirc We recover a formula for the leading coefficient in this case.

(B)

- CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 k + 1$ (in line with FK conjecture).
- \bigcirc We recover a formula for the leading coefficient in this case.
- \bigcirc Similar results are found for SO(2*N*) and USp(2*N*)

(3)

- CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 k + 1$ (in line with FK conjecture).
- \bigcirc We recover a formula for the leading coefficient in this case.
- \bigcirc Similar results are found for SO(2*N*) and USp(2*N*)
- O The polynomials can be explicitly computed.

• = • •

- CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 k + 1$ (in line with FK conjecture).
- \odot We recover a formula for the leading coefficient in this case.
- \bigcirc Similar results are found for SO(2*N*) and USp(2*N*)
- The polynomials can be explicitly computed.
- \bigcirc Techniques carry over (under conjecture) to $\zeta(1/2 + it)$ and other *L*-functions.

• = • •

- CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 k + 1$ (in line with FK conjecture).
- \bigcirc We recover a formula for the leading coefficient in this case.
- \bigcirc Similar results are found for SO(2*N*) and USp(2*N*)
- \bigcirc The polynomials can be explicitly computed.
- \bigcirc Techniques carry over (under conjecture) to $\zeta(1/2 + it)$ and other *L*-functions.
- \bigcirc Proved the growth of certain representation theoretic sums.

→ 3 → 4 3

Emn	na B	4

・ロト ・聞ト ・ヨト ・ヨト