

MOMENTS OF MOMENTS

EMMA BAILEY
UNIVERSITY OF BRISTOL

Joint work with Jon Keating
arXiv:1807.06605 (to appear in CMP)

Number Theoretic Motivation

Number Theoretic Motivation

Consider moments of the zeta function,

$$\frac{1}{T} \int_0^T |\zeta(\frac{1}{2} + it)|^{2\beta} dt.$$

Number Theoretic Motivation

Consider moments of the zeta function,

$$\frac{1}{T} \int_0^T |\zeta(\frac{1}{2} + it)|^{2\beta} dt.$$

Conjecture

For $\beta \in \mathbb{R}^+$,

$$\frac{1}{T} \int_0^T |\zeta(\frac{1}{2} + it)|^{2\beta} dt \sim f(\beta) c_\zeta(\beta) \left(\log \frac{T}{2\pi}\right)^{\beta^2},$$

as $T \rightarrow \infty$.

Number Theoretic Motivation

Consider moments of the zeta function,

$$\frac{1}{T} \int_0^T |\zeta(\frac{1}{2} + it)|^{2\beta} dt.$$

Conjecture

For $\beta \in \mathbb{R}^+$,

$$\frac{1}{T} \int_0^T |\zeta(\frac{1}{2} + it)|^{2\beta} dt \sim f(\beta) c_\zeta(\beta) \left(\log \frac{T}{2\pi}\right)^{\beta^2},$$

as $T \rightarrow \infty$.

- $f(\beta)$ is a known arithmetic function

Number Theoretic Motivation

Consider moments of the zeta function,

$$\frac{1}{T} \int_0^T |\zeta(\frac{1}{2} + it)|^{2\beta} dt.$$

Conjecture

For $\beta \in \mathbb{R}^+$,

$$\frac{1}{T} \int_0^T |\zeta(\frac{1}{2} + it)|^{2\beta} dt \sim f(\beta) c_\zeta(\beta) \left(\log \frac{T}{2\pi}\right)^{\beta^2},$$

as $T \rightarrow \infty$.

- $f(\beta)$ is a known arithmetic function
- $c_\zeta(\beta)$ is another function depending on β .

For $A \in \text{CUE}_N$ ($A \in \text{U}(N)$ with Haar measure) set

$$P_N(A, \theta) = \det(I - Ae^{-i\theta}).$$

For $A \in \text{CUE}_N$ ($A \in \text{U}(N)$ with Haar measure) set

$$P_N(A, \theta) = \det(I - Ae^{-i\theta}).$$

Then recall

$$\frac{1}{T} \int_0^T |\zeta(\frac{1}{2} + it)|^{2\beta} dt$$

For $A \in \text{CUE}_N$ ($A \in \text{U}(N)$ with Haar measure) set

$$P_N(A, \theta) = \det(I - Ae^{-i\theta}).$$

Instead

$$\int_{\text{U}(N)} |P_N(A, \theta)|^{2\beta} dA$$

For $A \in \text{CUE}_N$ ($A \in \text{U}(N)$ with Haar measure) set

$$P_N(A, \theta) = \det(I - Ae^{-i\theta}).$$

Keating and Snaith: for $\beta > -1/2$,

For $A \in \text{CUE}_N$ ($A \in \text{U}(N)$ with Haar measure) set

$$P_N(A, \theta) = \det(I - Ae^{-i\theta}).$$

Keating and Snaith: for $\beta > -1/2$,

$$\int_{\text{U}(N)} |P_N(A, \theta)|^{2\beta} dA = \prod_{j=1}^N \frac{\Gamma(j)\Gamma(j+2\beta)}{(\Gamma(j+\beta))^2}$$

For $A \in \text{CUE}_N$ ($A \in \text{U}(N)$ with Haar measure) set

$$P_N(A, \theta) = \det(I - Ae^{-i\theta}).$$

Keating and Snaith: for $\beta > -1/2$,

$$\int_{\text{U}(N)} |P_N(A, \theta)|^{2\beta} dA = \prod_{j=1}^N \frac{\Gamma(j)\Gamma(j+2\beta)}{(\Gamma(j+\beta))^2} \sim c_U(\beta) N^{\beta^2}$$

For $A \in \text{CUE}_N$ ($A \in \text{U}(N)$ with Haar measure) set

$$P_N(A, \theta) = \det(I - Ae^{-i\theta}).$$

Keating and Snaith: for $\beta > -1/2$,

$$\int_{\text{U}(N)} |P_N(A, \theta)|^{2\beta} dA = \prod_{j=1}^N \frac{\Gamma(j)\Gamma(j+2\beta)}{(\Gamma(j+\beta))^2} \sim c_U(\beta) N^{\beta^2}$$

where

$$c_U(\beta) = \frac{G^2(\beta+1)}{G(2\beta+1)},$$

with $G(s)$ the Barnes G -function and if $\beta \in \mathbb{N}$,

$$c_U(\beta) = \prod_{j=0}^{\beta-1} \frac{j!}{(j+\beta)!}.$$

For $A \in \text{CUE}_N$ ($A \in \text{U}(N)$ with Haar measure) set

$$P_N(A, \theta) = \det(I - Ae^{-i\theta}).$$

Keating and Snaith: for $\beta > -1/2$,

$$\int_{\text{U}(N)} |P_N(A, \theta)|^{2\beta} dA = \prod_{j=1}^N \frac{\Gamma(j)\Gamma(j+2\beta)}{(\Gamma(j+\beta))^2} \sim c_U(\beta)N^{\beta^2}$$

where

$$c_U(\beta) = \frac{G^2(\beta+1)}{G(2\beta+1)},$$

with $G(s)$ the Barnes G -function and if $\beta \in \mathbb{N}$,

$$c_U(\beta) = \prod_{j=0}^{\beta-1} \frac{j!}{(j+\beta)!}.$$

Conjecture: $c_U(\beta) = c_\zeta(\beta)$.

Short vs long intervals

Short vs long intervals

Instead

- Consider fluctuations of moments of $\zeta(1/2 + it)$ over short ranges

Short vs long intervals

Instead

- Consider fluctuations of moments of $\zeta(1/2 + it)$ over short ranges
- For a fixed short range, model by a single matrix $A \in U(N)$ where $N \sim \log t/2\pi$

Short vs long intervals

Instead

- Consider fluctuations of moments of $\zeta(1/2 + it)$ over short ranges
- For a fixed short range, model by a single matrix $A \in U(N)$ where $N \sim \log t/2\pi$
- Average fluctuations over many short intervals

Moments of Moments

Moments of Moments

MoM_N(k, β)

Set

$$\text{MoM}_N(k, \beta) := \mathbb{E}_{A \in \text{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right).$$

Moments of Moments

MoM_N(k, β)

Set

$$\text{MoM}_N(k, \beta) := \mathbb{E}_{A \in \mathcal{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right).$$

Conjecture (Fyodorov & Keating)

As $N \rightarrow \infty$,

$$\text{MoM}_N(k, \beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^2}{G(1+2\beta)\Gamma(1-\beta^2)} \right)^k \Gamma(1-k\beta^2) N^{k\beta^2} & k\beta^2 < 1 \\ c(k, \beta) N^{k^2\beta^2-k+1} & k\beta^2 > 1, \end{cases}$$

where $G(s)$ is the Barnes G -function and $c(k, \beta)$ is some complicated function of k and β .

$$\text{MoM}_N(k, \beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^2}{G(1+2\beta)\Gamma(1-\beta^2)} \right)^k \Gamma(1-k\beta^2) N^{k\beta^2} & k\beta^2 < 1 \\ c(k, \beta) N^{k^2\beta^2-k+1} & k\beta^2 > 1. \end{cases}$$

$$\text{MoM}_N(k, \beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^2}{G(1+2\beta)\Gamma(1-\beta^2)} \right)^k \Gamma(1-k\beta^2) N^{k\beta^2} & k\beta^2 < 1 \\ c(k, \beta) N^{k^2\beta^2-k+1} & k\beta^2 > 1. \end{cases}$$

If $k \in \mathbb{N}$,

$$\text{MoM}_N(k, \beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} d\theta_1 \cdots d\theta_k.$$

$$\text{MoM}_N(k, \beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^2}{G(1+2\beta)\Gamma(1-\beta^2)} \right)^k \Gamma(1-k\beta^2) N^{k\beta^2} & k\beta^2 < 1 \\ c(k, \beta) N^{k^2\beta^2-k+1} & k\beta^2 > 1. \end{cases}$$

If $k \in \mathbb{N}$,

$$\text{MoM}_N(k, \beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} d\theta_1 \cdots d\theta_k.$$

- Integrand can be expressed as a Toeplitz determinant

$$\text{MoM}_N(k, \beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^2}{G(1+2\beta)\Gamma(1-\beta^2)} \right)^k \Gamma(1-k\beta^2) N^{k\beta^2} & k\beta^2 < 1 \\ c(k, \beta) N^{k^2\beta^2-k+1} & k\beta^2 > 1. \end{cases}$$

If $k \in \mathbb{N}$,

$$\text{MoM}_N(k, \beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} d\theta_1 \cdots d\theta_k.$$

- Integrand can be expressed as a Toeplitz determinant
- As $N \rightarrow \infty$ and when $\theta_1, \dots, \theta_k$ are distinct and fixed, can use Fisher-Hartwig

$$\text{MoM}_N(k, \beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^2}{G(1+2\beta)\Gamma(1-\beta^2)} \right)^k \Gamma(1-k\beta^2) N^{k\beta^2} & k\beta^2 < 1 \\ c(k, \beta) N^{k^2\beta^2-k+1} & k\beta^2 > 1. \end{cases}$$

If $k \in \mathbb{N}$,

$$\text{MoM}_N(k, \beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} d\theta_1 \cdots d\theta_k.$$

- Integrand can be expressed as a Toeplitz determinant
- As $N \rightarrow \infty$ and when $\theta_1, \dots, \theta_k$ are distinct and fixed, can use Fisher-Hartwig
- When $k\beta^2 < 1$, can then use Selberg to recover conjecture in this range

$$\text{MoM}_N(k, \beta) \sim \begin{cases} \left(\frac{(G(1+\beta))^2}{G(1+2\beta)\Gamma(1-\beta^2)} \right)^k \Gamma(1-k\beta^2) N^{k\beta^2} & k\beta^2 < 1 \\ c(k, \beta) N^{k^2\beta^2-k+1} & k\beta^2 > 1. \end{cases}$$

If $k \in \mathbb{N}$,

$$\text{MoM}_N(k, \beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} d\theta_1 \cdots d\theta_k.$$

- Integrand can be expressed as a Toeplitz determinant
- As $N \rightarrow \infty$ and when $\theta_1, \dots, \theta_k$ are distinct and fixed, can use Fisher-Hartwig
- When $k\beta^2 < 1$, can then use Selberg to recover conjecture in this range
- However, if $k\beta^2 \geq 1$, then the expression diverges - coalescence of singularities becomes important

Previous results

$$\text{MoM}_N(k, \beta) := \mathbb{E}_{A \in \text{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right).$$

Previous results

$$\text{MoM}_N(k, \beta) := \mathbb{E}_{A \in \text{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right).$$

- $k = 1, \beta > -1/2$: follows from Keating and Snaith, 2000 *CMP*

Previous results

$$\text{MoM}_N(k, \beta) := \mathbb{E}_{A \in \text{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right).$$

- $k = 1, \beta > -1/2$: follows from Keating and Snaith, 2000 *CMP*
- $k = 1, \beta \in \mathbb{N}$: alternative proof from Bump and Gamburd, 2006 *CMP*

Previous results

$$\text{MoM}_N(k, \beta) := \mathbb{E}_{A \in \text{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right).$$

- $k = 1, \beta > -1/2$: follows from Keating and Snaith, 2000 *CMP*
- $k = 1, \beta \in \mathbb{N}$: alternative proof from Bump and Gamburd, 2006 *CMP*
- $k = 2$ and $\beta \in \mathbb{N}$: can be deduced from Keating, Rodgers, Roditty-Gershon and Rudnick, 2018 *Mathematische Zeitschrift*

Previous results

$$\text{MoM}_N(k, \beta) := \mathbb{E}_{A \in \text{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right).$$

- $k = 1, \beta > -1/2$: follows from Keating and Snaith, 2000 *CMP*
- $k = 1, \beta \in \mathbb{N}$: alternative proof from Bump and Gamburd, 2006 *CMP*
- $k = 2$ and $\beta \in \mathbb{N}$: can be deduced from Keating, Rodgers, Roditty-Gershon and Rudnick, 2018 *Mathematische Zeitschrift*
- $k = 2$ all β : Claeys and Krasovsky establish correct powers of N , and relate $c(2, \beta)$ to Painlevé, 2015 *Duke*

Previous results

$$\text{MoM}_N(k, \beta) := \mathbb{E}_{A \in \text{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right).$$

- $k = 1, \beta > -1/2$: follows from Keating and Snaith, 2000 *CMP*
- $k = 1, \beta \in \mathbb{N}$: alternative proof from Bump and Gamburd, 2006 *CMP*
- $k = 2$ and $\beta \in \mathbb{N}$: can be deduced from Keating, Rodgers, Roditty-Gershon and Rudnick, 2018 *Mathematische Zeitschrift*
- $k = 2$ all β : Claeys and Krasovsky establish correct powers of N , and relate $c(2, \beta)$ to Painlevé, 2015 *Duke*
- $k\beta^2$ small: Webb, and Nikula, Saksman and Webb get consistent results

Results

Consider the case when $k, \beta \in \mathbb{N}$.

Results

Consider the case when $k, \beta \in \mathbb{N}$. Then recall

$$\begin{aligned}\text{MoM}_N(k, \beta) &= \mathbb{E}_{A \in \mathcal{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right) \\ &= \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \mathbb{E} \left(\prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} \right) d\theta_1 \cdots d\theta_k.\end{aligned}$$

Results

Consider the case when $k, \beta \in \mathbb{N}$. Then recall

$$\text{MoM}_N(k, \beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \mathbb{E} \left(\prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} \right) d\theta_1 \cdots d\theta_k.$$

Results

Consider the case when $k, \beta \in \mathbb{N}$. Then recall

$$\text{MoM}_N(k, \beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \mathbb{E} \left(\prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} \right) d\theta_1 \cdots d\theta_k.$$

Also $k\beta^2 > 1$ so we expect $\text{MoM}_N(k, \beta) \sim c(k, \beta) N^{k^2\beta^2 - k + 1}$.

Results

Consider the case when $k, \beta \in \mathbb{N}$. Then recall

$$\text{MoM}_N(k, \beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \mathbb{E} \left(\prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} \right) d\theta_1 \cdots d\theta_k.$$

Also $k\beta^2 > 1$ so we expect $\text{MoM}_N(k, \beta) \sim c(k, \beta)N^{k^2\beta^2-k+1}$.

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then $\text{MoM}_N(k, \beta)$ is a polynomial in N .

Results

Consider the case when $k, \beta \in \mathbb{N}$. Then recall

$$\text{MoM}_N(k, \beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \mathbb{E} \left(\prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} \right) d\theta_1 \cdots d\theta_k.$$

Also $k\beta^2 > 1$ so we expect $\text{MoM}_N(k, \beta) \sim c(k, \beta)N^{k^2\beta^2-k+1}$.

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then $\text{MoM}_N(k, \beta)$ is a polynomial in N .

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then for $c(k, \beta)$, an explicit function of k, β ,

$$\text{MoM}_N(k, \beta) = c(k, \beta)N^{k^2\beta^2-k+1} + O(N^{k^2\beta^2-k}).$$

MoM_N(k, β)

MoM_N(k, β)

Polynomial

Power of N

The diagram shows the expression MoM_N(k, β) in the center. Two red curved arrows point downwards from the word 'Polynomial' on the left and the phrase 'Power of N' on the right towards the expression.

$$\text{MoM}_N(k, \beta)$$

Polynomial

Power of N

The diagram shows the expression $\text{MoM}_N(k, \beta)$ in the center. Two red arrows point downwards from the text "Polynomial" on the left and "Power of N" on the right towards the expression.

Combinatorial sum

Complex analysis

$$\text{MoM}_N(k, \beta)$$

Polynomial

Power of N

A central text box contains the mathematical expression $\text{MoM}_N(k, \beta)$. Two red curved arrows point downwards from the text "Polynomial" on the left and "Power of N" on the right towards the central expression.

Combinatorial sum

- Conrey, Farmer, Keating, Rubinstein and Snaith

Complex analysis

$$\text{MoM}_N(k, \beta)$$

Polynomial

Power of N

A central text box contains the mathematical expression $\text{MoM}_N(k, \beta)$. Two red curved arrows point downwards from the word 'Polynomial' on the left and the phrase 'Power of N' on the right towards the central text box.

Combinatorial sum

- Conrey, Farmer, Keating, Rubinstein and Snaith
- L'Hôpital

Complex analysis

$$\text{MoM}_N(k, \beta)$$

Polynomial

Power of N

Combinatorial sum

- Conrey, Farmer, Keating, Rubinstein and Snaith
- L'Hôpital
- Bump and Gamburd SSYT

Complex analysis

$$\text{MoM}_N(k, \beta)$$

Polynomial Power of N

Combinatorial sum

- Conrey, Farmer, Keating, Rubinstein and Snaith
- L'Hôpital
- Bump and Gamburd SSYT

Complex analysis

- Exact representation of $\mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta}$

$$\text{MoM}_N(k, \beta)$$

Polynomial Power of N

Combinatorial sum

- Conrey, Farmer, Keating, Rubinstein and Snaith
- L'Hôpital
- Bump and Gamburd SSYT

Complex analysis

- Exact representation of $\mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta}$
- Multiple contour integrals

$$\text{MoM}_N(k, \beta)$$

Polynomial Power of N

Combinatorial sum

- Conrey, Farmer, Keating, Rubinstein and Snaith
- L'Hôpital
- Bump and Gamburd SSYT

Complex analysis

- Exact representation of $\mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta}$
- Multiple contour integrals
- Leading order analysis

Aside

Representation-theoretic approach

Aside

Representation-theoretic approach

Partition

A *partition* λ is a sequence $(\lambda_1, \dots, \lambda_k)$ of positive integers satisfying $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k$.

Aside

Representation-theoretic approach

Partition

A *partition* λ is a sequence $(\lambda_1, \dots, \lambda_k)$ of positive integers satisfying $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k$.

Take the partition $\lambda = (6, 4, 2, 2)$. Then λ corresponds to the Young diagram

SSYT

For λ a partition, a *semistandard Young tableau* (SSYT) of shape λ is an array $T = (T_{ij})_{1 \leq i \leq \ell(\lambda), 1 \leq j \leq \lambda_i}$ of positive integers such that $T_{i,j} \leq T_{i,j+1}$ and $T_{i,j} < T_{i+1,j}$. It is common to write SSYTs in a Young diagram; e.g.

1	1	2	3	3	7
2	3	3	4		
4	4				
6	7				

is a SSYT of shape $(6, 4, 2, 2)$.

SSYT

For λ a partition, a *semistandard Young tableau* (SSYT) of shape λ is an array $T = (T_{ij})_{1 \leq i \leq \ell(\lambda), 1 \leq j \leq \lambda_i}$ of positive integers such that $T_{i,j} \leq T_{i,j+1}$ and $T_{i,j} < T_{i+1,j}$. It is common to write SSYTs in a Young diagram; e.g.

1	1	2	3	3	7
2	3	3	4		
4	4				
6	7				

is a SSYT of shape $(6, 4, 2, 2)$. T has *type* $t = (t_1, t_2, \dots)$ if T has t_i parts equal to i . The SSYT above has type $(2, 2, 4, 3, 0, 1, 2)$.

SSYT

For λ a partition, a *semistandard Young tableau* (SSYT) of shape λ is an array $T = (T_{ij})_{1 \leq i \leq \ell(\lambda), 1 \leq j \leq \lambda_i}$ of positive integers such that $T_{i,j} \leq T_{i,j+1}$ and $T_{i,j} < T_{i+1,j}$. It is common to write SSYTs in a Young diagram; e.g.

1	1	2	3	3	7
2	3	3	4		
4	4				
6	7				

is a SSYT of shape $(6, 4, 2, 2)$. T has *type* $t = (t_1, t_2, \dots)$ if T has t_i parts equal to i . The SSYT above has type $(2, 2, 4, 3, 0, 1, 2)$.

It is common to use the multivariate notation

$$x^T = x_1^{t_1(T)} x_2^{t_2(T)} \dots,$$

so for the example SSYT above,

$$x^T = x_1^2 x_2^2 x_3^4 x_4^3 x_6 x_7^2.$$

Schur functions

The combinatorial definition of *Schur functions* is as follows:

For a partition λ , the Schur function in the variables x_1, \dots, x_r indexed by λ is a multivariable polynomial defined by

$$s_\lambda(x_1, \dots, x_r) := \sum_T x^T = \sum_T x_1^{t_1(T)} \cdots x_r^{t_r(T)},$$

where the sum is over all SSYTs T whose entries belong to the set $\{1, \dots, r\}$ (i.e. $t_i(T) = 0$ for $i > r$).

Schur functions

The combinatorial definition of *Schur functions* is as follows:

For a partition λ , the Schur function in the variables x_1, \dots, x_r indexed by λ is a multivariable polynomial defined by

$$s_\lambda(x_1, \dots, x_r) := \sum_T x^T = \sum_T x_1^{t_1(T)} \cdots x_r^{t_r(T)},$$

where the sum is over all SSYTs T whose entries belong to the set $\{1, \dots, r\}$ (i.e. $t_i(T) = 0$ for $i > r$).

Take $\lambda = (2, 1) \vdash 3$.

Schur functions

The combinatorial definition of *Schur functions* is as follows:

For a partition λ , the Schur function in the variables x_1, \dots, x_r indexed by λ is a multivariable polynomial defined by

$$s_\lambda(x_1, \dots, x_r) := \sum_T x^T = \sum_T x_1^{t_1(T)} \cdots x_r^{t_r(T)},$$

where the sum is over all SSYTs T whose entries belong to the set $\{1, \dots, r\}$ (i.e. $t_i(T) = 0$ for $i > r$).

Take $\lambda = (2, 1) \vdash 3$. Then to calculate $s_\lambda(x_1, x_2, x_3)$:

$\begin{array}{ c c } \hline 1 & 1 \\ \hline 2 & \\ \hline \end{array}$	$\begin{array}{ c c } \hline 1 & 1 \\ \hline 3 & \\ \hline \end{array}$	$\begin{array}{ c c } \hline 1 & 2 \\ \hline 2 & \\ \hline \end{array}$	$\begin{array}{ c c } \hline 1 & 2 \\ \hline 3 & \\ \hline \end{array}$	$\begin{array}{ c c } \hline 1 & 3 \\ \hline 2 & \\ \hline \end{array}$	$\begin{array}{ c c } \hline 1 & 3 \\ \hline 3 & \\ \hline \end{array}$	$\begin{array}{ c c } \hline 2 & 2 \\ \hline 3 & \\ \hline \end{array}$	$\begin{array}{ c c } \hline 2 & 3 \\ \hline 3 & \\ \hline \end{array}$
---	---	---	---	---	---	---	---

Schur functions

The combinatorial definition of *Schur functions* is as follows:

For a partition λ , the Schur function in the variables x_1, \dots, x_r indexed by λ is a multivariable polynomial defined by

$$s_\lambda(x_1, \dots, x_r) := \sum_T x^T = \sum_T x_1^{t_1(T)} \cdots x_r^{t_r(T)},$$

where the sum is over all SSYTs T whose entries belong to the set $\{1, \dots, r\}$ (i.e. $t_i(T) = 0$ for $i > r$).

Take $\lambda = (2, 1) \vdash 3$. Then to calculate $s_\lambda(x_1, x_2, x_3)$:

So,

$$s_\lambda(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2.$$

Theorem (Bump & Gamburd 2006)

For $\beta \in \mathbb{N}$

$$\mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta} = s_{\langle N^\beta \rangle}(1^{2\beta})$$

Theorem (Bump & Gamburd 2006)

For $\beta \in \mathbb{N}$

$$\mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta} = s_{\langle N^\beta \rangle}(1^{2\beta})$$

Corollary (Bump & Gamburd 2006)

For $\beta \in \mathbb{N}$

$$\mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta} = \prod_{j=0}^{N-1} \frac{j!(j+2\beta)!}{(j+\beta)!^2}$$

Theorem (Bump & Gamburd 2006)

For $\beta \in \mathbb{N}$

$$\mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta} = s_{\langle N^\beta \rangle}(1^{2\beta})$$

Corollary (Bump & Gamburd 2006)

For $\beta \in \mathbb{N}$

$$\mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta} = \prod_{j=0}^{N-1} \frac{j!(j+2\beta)!}{(j+\beta)!^2}$$

This also gives the interpretation that, for $\beta \in \mathbb{N}$, as $N \rightarrow \infty$

$$\mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta} \sim \frac{g_\beta}{\beta^2!} N^{\beta^2}$$

where g_β is the number of ways of filling a $\beta \times \beta$ array with the integers $1, 2, \dots, \beta^2$ in such a way that the numbers increase along each row and down each column.

Proof of polynomial structure

Proof of polynomial structure

Recall

Theorem

Let $k, \beta \in \mathbb{N}$. Then $\text{MoM}_N(k, \beta)$ is a polynomial in N .

Proof of polynomial structure

Recall

Theorem

Let $k, \beta \in \mathbb{N}$. Then $\text{MoM}_N(k, \beta)$ is a polynomial in N .

Proposition (Bump and Gamburd)

$$\mathbb{E}_{A \in \mathcal{U}(N)} \left(\prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} \right) = \frac{s_{\langle N^{k\beta} \rangle} \left(e^{i\theta} \right)}{\prod_{j=1}^k e^{iN\beta\theta_j}},$$

where $s_\nu(x_1, \dots, x_n)$ is the Schur polynomial in n variables with respect to

the partition ν . Here $\langle N^{k\beta} \rangle = \overbrace{(N, \dots, N)}^{k\beta}$, and

$$e^{i\theta} = (\overbrace{e^{i\theta_1}, \dots, e^{i\theta_1}}^{\beta}, \dots, \overbrace{e^{i\theta_k}, \dots, e^{i\theta_k}}^{\beta}, \overbrace{e^{i\theta_1}, \dots, e^{i\theta_1}}^{\beta}, \dots, \overbrace{e^{i\theta_k}, \dots, e^{i\theta_k}}^{\beta}).$$

Overview of proof of first theorem

Hence for $k, \beta \in \mathbb{N}$,

$$\begin{aligned}\text{MoM}_N(k, \beta) &= \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \sum_T e^{i\theta_1(\tau_1 - N\beta)} \cdots e^{i\theta_k(\tau_k - N\beta)} \prod_{j=1}^k d\theta_j \\ &= \sum_{\tilde{T}} 1,\end{aligned}$$

Overview of proof of first theorem

Hence for $k, \beta \in \mathbb{N}$,

$$\begin{aligned}\text{MoM}_N(k, \beta) &= \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \sum_T e^{i\theta_1(\tau_1 - N\beta)} \cdots e^{i\theta_k(\tau_k - N\beta)} \prod_{j=1}^k d\theta_j \\ &= \sum_{\tilde{T}} 1,\end{aligned}$$

where the sum is now over \tilde{T} , **restricted** SSYT

Overview of proof of first theorem

Hence for $k, \beta \in \mathbb{N}$,

$$\begin{aligned}\text{MoM}_N(k, \beta) &= \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \sum_T e^{i\theta_1(\tau_1 - N\beta)} \cdots e^{i\theta_k(\tau_k - N\beta)} \prod_{j=1}^k d\theta_j \\ &= \sum_{\tilde{T}} 1,\end{aligned}$$

where the sum is now over \tilde{T} , **restricted** SSYT - require $N\beta$ entries from each of the sets $\{2\beta(j-1) + 1, \dots, 2j\beta\}$, for $j \in \{1, \dots, k\}$.

$$\text{MoM}_N(k, \beta) = \sum_{\tilde{T}} 1 < \sum_T 1 = \text{Poly}_N(k^2\beta^2).$$

Overview of proof of first theorem

Overview of proof of first theorem

Conrey, Farmer, Rubinstein, Keating and Snaith give that

$$\mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} = \prod_{j=k\beta+1}^{2k\beta} \omega_j^{-N} \sum_{\sigma \in \Xi_{k\beta}} \frac{(\omega_{\sigma(k\beta+1)} \omega_{\sigma(k\beta+2)} \cdots \omega_{\sigma(2k\beta)})^N}{\prod_{l \leq k\beta < q} (1 - \omega_{\sigma(l)} \omega_{\sigma(q)}^{-1})}$$

Overview of proof of first theorem

Conrey, Farmer, Rubinstein, Keating and Snaith give that

$$\mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} = \prod_{j=k\beta+1}^{2k\beta} \omega_j^{-N} \sum_{\sigma \in \Xi_{k\beta}} \frac{(\omega_{\sigma(k\beta+1)} \omega_{\sigma(k\beta+2)} \cdots \omega_{\sigma(2k\beta)})^N}{\prod_{l \leq k\beta < q} (1 - \omega_{\sigma(l)} \omega_{\sigma(q)}^{-1})}$$

where $\Xi_{k\beta}$ is the set of $\binom{2k\beta}{k\beta}$ permutations $\sigma \in S_{2k\beta}$ such that $\sigma(1) < \sigma(2) < \cdots < \sigma(k\beta)$ and $\sigma(k\beta+1) < \cdots < \sigma(2k\beta)$, and

$$\omega = (\underbrace{e^{i\theta_1}, \dots, e^{i\theta_1}}_{\beta}, \dots, \underbrace{e^{i\theta_k}, \dots, e^{i\theta_k}}_{\beta}, \underbrace{e^{i\theta_1}, \dots, e^{i\theta_1}}_{\beta}, \dots, \underbrace{e^{i\theta_k}, \dots, e^{i\theta_k}}_{\beta}).$$

Examples

Examples

$$\text{MoM}_N(k, \beta) = \mathbb{E}_{A \in \text{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right)$$

Examples

$$\text{MoM}_N(k, \beta) = \mathbb{E}_{A \in \text{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right)$$

$$\text{MoM}_N(1, 1) = N + 1$$

Examples

$$\text{MoM}_N(k, \beta) = \mathbb{E}_{A \in \mathcal{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right)$$

$$\text{MoM}_N(1, 1) = N + 1$$

$$\text{MoM}_N(2, 1) = \frac{1}{6}(N+3)(N+2)(N+1)$$

Examples

$$\text{MoM}_N(k, \beta) = \mathbb{E}_{A \in \mathcal{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right)$$

$$\text{MoM}_N(1, 1) = N + 1$$

$$\text{MoM}_N(2, 1) = \frac{1}{6}(N+3)(N+2)(N+1)$$

$$\text{MoM}_N(3, 1) = \frac{1}{2520}(N+5)(N+4)(N+3)(N+2)(N+1)(N^2 + 6N + 21)$$

Examples

$$\text{MoM}_N(k, \beta) = \mathbb{E}_{A \in \mathcal{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right)$$

$$\text{MoM}_N(1, 1) = N + 1$$

$$\text{MoM}_N(2, 1) = \frac{1}{6}(N+3)(N+2)(N+1)$$

$$\text{MoM}_N(3, 1) = \frac{1}{2520}(N+5)(N+4)(N+3)(N+2)(N+1)(N^2 + 6N + 21)$$

$$\begin{aligned} \text{MoM}_N(4, 1) &= \frac{1}{778377600}(N+7)(N+6)(N+5)(N+4)(N+3)(N+2) \\ &\quad \times (N+1)(7N^6 + 168N^5 + 1804N^4 + 10944N^3 + \\ &\quad + 41893N^2 + 99624N + 154440) \end{aligned}$$

Examples

$$\text{MoM}_N(k, \beta) = \mathbb{E}_{A \in \mathcal{U}(N)} \left(\left(\frac{1}{2\pi} \int_0^{2\pi} |P_N(A, \theta)|^{2\beta} d\theta \right)^k \right)$$

$$\text{MoM}_N(1, 1) = N + 1$$

$$\text{MoM}_N(2, 1) = \frac{1}{6}(N + 3)(N + 2)(N + 1)$$

$$\text{MoM}_N(3, 1) = \frac{1}{2520}(N + 5)(N + 4)(N + 3)(N + 2)(N + 1)(N^2 + 6N + 21)$$

$$\begin{aligned} \text{MoM}_N(4, 1) &= \frac{1}{778377600}(N + 7)(N + 6)(N + 5)(N + 4)(N + 3)(N + 2) \\ &\quad \times (N + 1)(7N^6 + 168N^5 + 1804N^4 + 10944N^3 + \\ &\quad + 41893N^2 + 99624N + 154440) \end{aligned}$$

$$\text{MoM}_N(1, 2) = \frac{1}{12}(N + 1)(N + 2)^2(N + 3).$$

Examples

$$\begin{aligned}\text{MoM}_N(2, 2) = & \frac{1}{163459296000} (N+7)(N+6)(N+5)(N+4) \\ & \times (N+3)(N+2)(N+1)(298N^8 + 9536N^7 + 134071N^6 \\ & + 1081640N^5 + 5494237N^4 + 18102224N^3 + 38466354N^2 \\ & + 50225040N + 32432400).\end{aligned}$$

Examples

$$\text{MoM}_N(2, 3) = \frac{(N+1)(N+2)(N+3)(N+4)(N+5)(N+6)(N+7)(N+8)(N+9)(N+10)(N+11)}{1722191327731024154944441889587200000000} \\ \times \left(12308743625763N^{24} + 1772459082109872N^{23} + 121902830804059138N^{22} + \right. \\ + 5328802119564663432N^{21} + 166214570195622478453N^{20} + 3937056259812505643352N^{19} \\ + 73583663800226157619008N^{18} + 1113109355823972261429312N^{17} + 13869840005250869763713293N^{16} \\ + 144126954435929329947378912N^{15} + 1259786144898207172443272698N^{14} \\ + 9315726913410827893883025672N^{13} + 58475127984013141340467825323N^{12} \\ + 311978271286536355427593012632N^{11} + 1413794106539529439589778645028N^{10} \\ + 5427439874579682729570383266992N^9 + 17564370687865211818995713096848N^8 \\ + 47561382824003032731805262975232N^7 + 106610927256886475209611301000128N^6 \\ + 194861499503272627170466392014592N^5 + 284303877221735683573377603640320N^4 \\ + 320989495108428049992898521600000N^3 + 266974288159876385845370793984000N^2 \\ \left. + 148918006780282798012340305920000N + 43144523802785397500411904000000 \right)$$

Overview of proof of second theorem

Overview of proof of second theorem

Recall,

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then

$$\text{MoM}_N(k, \beta) = c(k, \beta)N^{k^2\beta^2-k+1} + O(N^{k^2\beta^2-k}),$$

where $c(k, \beta)$ is an explicit function of k, β .

Overview of proof of second theorem

Recall,

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then

$$\text{MoM}_N(k, \beta) = c(k, \beta) N^{k^2\beta^2 - k + 1} + O(N^{k^2\beta^2 - k}),$$

where $c(k, \beta)$ is an explicit function of k, β .

Proof ingredients:

- Expand $\mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta}$ as a multiple contour integral

Overview of proof of second theorem

Recall,

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then

$$\text{MoM}_N(k, \beta) = c(k, \beta) N^{k^2\beta^2 - k + 1} + O(N^{k^2\beta^2 - k}),$$

where $c(k, \beta)$ is an explicit function of k, β .

Proof ingredients:

- Expand $\mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta}$ as a multiple contour integral
- Deform and manipulate the integrals

Overview of proof of second theorem

Recall,

Theorem [B.-Keating (2018)]

Let $k, \beta \in \mathbb{N}$. Then

$$\text{MoM}_N(k, \beta) = c(k, \beta) N^{k^2\beta^2 - k + 1} + O(N^{k^2\beta^2 - k}),$$

where $c(k, \beta)$ is an explicit function of k, β .

Proof ingredients:

- Expand $\mathbb{E} \prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta}$ as a multiple contour integral
- Deform and manipulate the integrals
- Analyse the result asymptotically as $N \rightarrow \infty$.

Overview of proof of second theorem

Overview of proof of second theorem

Define

$$I_{k,\beta}(\theta_1, \dots, \theta_k) = \mathbb{E}_{A \in \mathcal{U}(N)} \left(\prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} \right),$$

Overview of proof of second theorem

Define

$$I_{k,\beta}(\theta_1, \dots, \theta_k) = \mathbb{E}_{A \in \mathcal{U}(N)} \left(\prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} \right),$$

so

$$\text{MoM}_N(k, \beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} I_{k,\beta}(\theta_1, \dots, \theta_k) d\theta_1 \cdots d\theta_k.$$

Overview of proof of second theorem

Define

$$I_{k,\beta}(\theta_1, \dots, \theta_k) = \mathbb{E}_{A \in \mathcal{U}(N)} \left(\prod_{j=1}^k |P_N(A, \theta_j)|^{2\beta} \right),$$

so

$$\text{MoM}_N(k, \beta) = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} I_{k,\beta}(\theta_1, \dots, \theta_k) d\theta_1 \cdots d\theta_k.$$

Theorem [CFKRS]

For $k, \beta \in \mathbb{N}$,

$$I_{k,\beta}(\underline{\theta}) = \frac{(-1)^{k\beta} e^{-i\beta \sum_{j=1}^k \theta_j}}{(2\pi i)^{2k\beta} ((k\beta)!)^2} \oint \cdots \oint \frac{e^{-N(z_{k\beta+1} + \cdots + z_{2k\beta})} \Delta(z_1, \dots, z_{2k\beta})^2 dz_1 \cdots dz_{2k\beta}}{\prod_{m \leq k\beta < n} (1 - e^{z_n - z_m}) \prod_{m=1}^{2k\beta} \prod_{n=1}^k (z_m + i\theta_n)^{2\beta}}.$$

Overview of proof of second theorem

Manipulation of MCI

$$I_{k,\beta}(\underline{\theta}) = \frac{(-1)^{k\beta} e^{-i\beta \sum_{j=1}^k \theta_j}}{(2\pi i)^{2k\beta} ((k\beta)!)^2} \oint \cdots \oint$$
$$\frac{e^{-N(z_{k\beta+1} + \cdots + z_{2k\beta})} \Delta(z_1, \dots, z_{2k\beta})^2 dz_1 \cdots dz_{2k\beta}}{\prod_{m \leq k\beta < n} (1 - e^{z_n - z_m}) \prod_{m=1}^{2k\beta} \prod_{n=1}^k (z_m + i\theta_n)^{2\beta}}.$$

Overview of proof of second theorem

Manipulation of MCI

$$I_{k,\beta}(\underline{\theta}) = \frac{(-1)^{k\beta} e^{-i\beta \sum_{j=1}^k \theta_j}}{(2\pi i)^{2k\beta} ((k\beta)!)^2} \oint \cdots \oint \frac{e^{-N(z_{k\beta+1} + \cdots + z_{2k\beta})} \Delta(z_1, \dots, z_{2k\beta})^2 dz_1 \cdots dz_{2k\beta}}{\prod_{m \leq k\beta < n} (1 - e^{z_n - z_m}) \prod_{m=1}^{2k\beta} \prod_{n=1}^k (z_m + i\theta_n)^{2\beta}}.$$

- Deform the contours
- Change of variables
- Carefully analyse remaining integrals

Overview of proof of second theorem

Leading order

$$\text{MoM}_N(k, \beta) \sim c(k, \beta) N^{k^2 \beta^2 - k + 1}$$

Overview of proof of second theorem

Leading order

$$\text{MoM}_N(k, \beta) \sim c(k, \beta) N^{k^2 \beta^2 - k + 1}$$

where

$$c(k, \beta) = \sum_{\substack{l_1, \dots, l_{k-1}=0 \\ (\dagger)}}^{2\beta} c_{\underline{l}}(k, \beta) \left((k-1)\beta - \sum_{j=1}^{k-1} l_j \right)^{f(k, \beta, \underline{l})} P_{k, \beta}(l_1, \dots, l_{k-1}),$$

Overview of proof of second theorem

Leading order

$$\text{MoM}_N(k, \beta) \sim c(k, \beta) N^{k^2 \beta^2 - k + 1}$$

where

$$c(k, \beta) = \sum_{\substack{l_1, \dots, l_{k-1} = 0 \\ (\dagger)}}^{2\beta} c_{\underline{l}}(k, \beta) \left((k-1)\beta - \sum_{j=1}^{k-1} l_j \right)^{f(k, \beta, \underline{l})} P_{k, \beta}(l_1, \dots, l_{k-1}),$$

Overview of proof of second theorem

Leading order

$$\text{MoM}_N(k, \beta) \sim c(k, \beta) N^{k^2 \beta^2 - k + 1}$$

where

$$c(k, \beta) = \sum_{\substack{l_1, \dots, l_{k-1}=0 \\ (\dagger)}}^{2\beta} \underline{c_l}(k, \beta) \left((k-1)\beta - \sum_{j=1}^{k-1} l_j \right)^{f(k, \beta, l)} P_{k, \beta}(l_1, \dots, l_{k-1}),$$

Overview of proof of second theorem

Leading order

$$\text{MoM}_N(k, \beta) \sim c(k, \beta) N^{k^2 \beta^2 - k + 1}$$

where

$$c(k, \beta) = \sum_{\substack{l_1, \dots, l_{k-1}=0 \\ (\dagger)}}^{2\beta} c_{\underline{l}}(k, \beta) ((k-1)\beta - \sum_{j=1}^{k-1} l_j)^{f(k, \beta, \underline{l})} P_{k, \beta}(l_1, \dots, l_{k-1}),$$

Overview of proof of second theorem

Leading order

$$\text{MoM}_N(k, \beta) \sim c(k, \beta) N^{k^2 \beta^2 - k + 1}$$

where

$$c(k, \beta) = \sum_{\substack{l_1, \dots, l_{k-1}=0 \\ (\dagger)}}^{2\beta} c_{\underline{l}}(k, \beta) \left((k-1)\beta - \sum_{j=1}^{k-1} l_j \right)^{f(k, \beta, \underline{l})} P_{k, \beta}(l_1, \dots, l_{k-1}),$$

Overview of proof of second theorem

Leading order

$$\text{MoM}_N(k, \beta) \sim c(k, \beta) N^{k^2 \beta^2 - k + 1}$$

where

$$c(k, \beta) = \sum_{\substack{l_1, \dots, l_{k-1} = 0 \\ (\dagger)}}^{2\beta} c_{\underline{l}}(k, \beta) \left((k-1)\beta - \sum_{j=1}^{k-1} l_j \right)^{f(k, \beta, \underline{l})} P_{k, \beta}(l_1, \dots, l_{k-1}),$$

and

$$\begin{aligned} P_{k, \beta}(\underline{l}) &= \frac{(-1)^{\sum_{\sigma < \tau} |S_{\sigma < \tau}^-|}}{(2\pi i)^{2k\beta} ((k\beta)!)^2} \int_{\Gamma_0} \cdots \int_{\Gamma_0} \frac{e^{-\sum_{m=k\beta+1}^{2k\beta} v_m \prod_{\substack{m < n \\ \alpha_m = \alpha_n}} (v_n - v_m)^2}}{\prod_{\substack{m \leq k\beta < n \\ \alpha_m = \alpha_n}} (v_n - v_m) \prod_{m=1}^{2k\beta} v_m^{2\beta}} \\ &\times \Psi_{k, \beta, \underline{l}} \left(((k-1)\beta - \sum_{j=1}^{k-1} l_j) \underline{v} \right) \prod_{m=1}^{2k\beta} dv_m. \end{aligned}$$

Overview of proof of second theorem

Leading order

So for $k, \beta \in \mathbb{N}$ we have

$$\text{MoM}_N(k, \beta) \sim c(k, \beta) N^{k^2\beta^2 - k + 1}.$$

Overview of proof of second theorem

Leading order

So for $k, \beta \in \mathbb{N}$ we have

$$\text{MoM}_N(k, \beta) \sim c(k, \beta) N^{k^2\beta^2 - k + 1}.$$

The theorem follows if one can show that $c(k, \beta) \neq 0$. A lengthy computation shows that this is the case - in fact $c(k, \beta) > 0$.

Another alternative approach

Another alternative approach

One can recover the same asymptotic result using Gelfand-Tsetlin patterns.

Theorem [Assiotis-Keating (2019)]

Let $k, \beta \in \mathbb{N}$. Then,

$$\text{MoM}_N(k, \beta) = c(k, \beta)N^{k^2\beta^2-k+1} + O(N^{k^2\beta^2-k}),$$

where $c(k, \beta)$ can be written explicitly as a volume of a certain region involving continuous Gelfand-Tsetlin patterns with constraints.

Translating to Number Theory

Translating to Number Theory

Analogue of $\text{MoM}_N(k, \beta)$:

$$\begin{aligned}\text{MoM}_T^\zeta(k, \beta) &:= \frac{1}{T} \int_T^{2T} \left(\frac{1}{2\pi} \int_0^{2\pi} |\zeta(1/2 + i(t + \gamma))|^{2\beta} d\gamma \right)^k dt \\ &= \frac{1}{T(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \int_T^{2T} \prod_{j=1}^k |\zeta(1/2 + i(t + \gamma_j))|^{2\beta} dt \prod_{j=1}^k d\gamma_j.\end{aligned}$$

Translating to Number Theory

Analogue of $\text{MoM}_N(k, \beta)$:

$$\begin{aligned}\text{MoM}_T^\zeta(k, \beta) &:= \frac{1}{T} \int_T^{2T} \left(\frac{1}{2\pi} \int_0^{2\pi} |\zeta(1/2 + i(t + \gamma))|^{2\beta} d\gamma \right)^k dt \\ &= \frac{1}{T(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \int_T^{2T} \prod_{j=1}^k |\zeta(1/2 + i(t + \gamma_j))|^{2\beta} dt \prod_{j=1}^k d\gamma_j.\end{aligned}$$

Conjecture Fyodorov & Keating

For $k\beta^2 > 1$, $\text{MoM}_T^\zeta(k, \beta) \sim c'(k, \beta) (\log \frac{T}{2\pi})^{k^2\beta^2 - k + 1}$.

Translating to Number Theory

Conjectured expression for integrand (CFKRS):

$$\begin{aligned} \frac{1}{T} \int_0^T |\zeta(1/2 + it)|^{2\beta} dt &= \frac{1}{T} \int_0^T \frac{(-1)^\beta}{(\beta!)^2} \frac{1}{(2\pi i)^{2\beta}} \\ &\quad \times \oint \cdots \oint \frac{G_\zeta(z_1, \dots, z_{2\beta}) \Delta^2(z_1, \dots, z_{2\beta})}{\prod_{j=1}^{2\beta} z_j^{2\beta}} \\ &\quad \times e^{\frac{1}{2} \log \frac{t}{2\pi} \sum_{j=1}^\beta z_j - z_{\beta+j}} dz_1 \cdots dz_{2\beta} dt + o(1). \end{aligned}$$

Translating to Number Theory

Conjectured expression for integrand (CFKRS):

$$\begin{aligned} \frac{1}{T} \int_0^T |\zeta(1/2 + it)|^{2\beta} dt &= \frac{1}{T} \int_0^T \frac{(-1)^\beta}{(\beta!)^2} \frac{1}{(2\pi i)^{2\beta}} \\ &\quad \times \oint \cdots \oint \frac{G_\zeta(z_1, \dots, z_{2\beta}) \Delta^2(z_1, \dots, z_{2\beta})}{\prod_{j=1}^{2\beta} z_j^{2\beta}} \\ &\quad \times e^{\frac{1}{2} \log \frac{t}{2\pi} \sum_{j=1}^\beta z_j - z_{\beta+j}} dz_1 \cdots dz_{2\beta} dt + o(1). \end{aligned}$$

where

$$G_\zeta(z_1, \dots, z_{2\beta}) = A_\beta(z_1, \dots, z_{2\beta}) \prod_{i,j=1}^\beta \zeta(1 + z_i - z_{\beta+j}),$$

and $A_\beta(z)$ is an Euler product whose local factors are polynomials in p^{-1} and p^{-z_i} .

Symplectic, Orthogonal, and L -functions

Symplectic, Orthogonal, and L -functions

- Relationship between families of L -functions and other random matrix families

Symplectic, Orthogonal, and L -functions

- Relationship between families of L -functions and other random matrix families
- Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc

Symplectic, Orthogonal, and L -functions

- Relationship between families of L -functions and other random matrix families
- Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc

Symplectic, Orthogonal, and L -functions

- Relationship between families of L -functions and other random matrix families
- Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc

$$\mathrm{USp}(2N) = \{M \in U(2N) : M^t \Omega M = \Omega\}, \quad \Omega = \begin{pmatrix} 0 & I_N \\ -I_N & 0 \end{pmatrix},$$

$$\det(I - Ms) = \prod_{n=1}^N (1 - e^{i\theta_n} s)(1 - e^{-i\theta_n} s).$$

Symplectic, Orthogonal, and L -functions

- Relationship between families of L -functions and other random matrix families
- Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc

$$\mathrm{USp}(2N) = \{M \in U(2N) : M^t \Omega M = \Omega\}, \quad \Omega = \begin{pmatrix} 0 & I_N \\ -I_N & 0 \end{pmatrix},$$

$$\det(I - Ms) = \prod_{n=1}^N (1 - e^{i\theta_n} s)(1 - e^{-i\theta_n} s).$$

$$\mathrm{SO}(2N) = \{O \in O(2N) : \det(O) = 1\},$$

$$\det(I - Os) = \prod_{m=1}^N (1 - e^{i\theta_m} s)(1 - e^{-i\theta_m} s).$$

Symplectic, Orthogonal, and L -functions

Symplectic, Orthogonal, and L -functions

Theorem [Assiotis-B.-Keating (2019)]

Let $k, \beta \in \mathbb{N}$. Then $\text{MoM}_{\text{USp}(2N)}(k, \beta)$ is a polynomial in N and further

$$\text{MoM}_{\text{USp}(2N)}(k, \beta) = c_{\text{USp}}(k, \beta) N^{k\beta(2k\beta+1)-k} + O(N^{k\beta(2k\beta+1)-k-1}).$$

Symplectic, Orthogonal, and L -functions

Theorem [Assiotis-B.-Keating (2019)]

Let $k, \beta \in \mathbb{N}$. Then $\text{MoM}_{\text{USp}(2N)}(k, \beta)$ is a polynomial in N and further

$$\text{MoM}_{\text{USp}(2N)}(k, \beta) = c_{\text{USp}}(k, \beta) N^{k\beta(2k\beta+1)-k} + O(N^{k\beta(2k\beta+1)-k-1}).$$

Theorem [Assiotis-B.-Keating (2019)]

Let $k, \beta \in \mathbb{N}$. Then $\text{MoM}_{\text{SO}(2N)}(k, \beta)$ is a polynomial in N . Further

$$\text{MoM}_{\text{SO}(2N)}(1, 1) = 2(N + 1),$$

otherwise

$$\text{MoM}_{\text{SO}(2N)}(k, \beta) = c_{\text{SO}(2N)} N^{k\beta(2k\beta-1)-k} + O(N^{k\beta(2k\beta-1)-k-1}).$$

A word on the proof

A word on the proof

Again we have a number of forms for the matrix average:

$$\begin{aligned} \mathbb{E}_{\text{USp}(2N)} \left(\prod_{j=1}^k |\det(I - A e^{-i\theta})|^{2\beta} \right) \\ = \sum_{\substack{\mathcal{P} \in \text{SP} \\ \langle N^{k\beta} \rangle}} w(\mathcal{P}) \quad (\text{BG 2006}) \end{aligned}$$

A word on the proof

Again we have a number of forms for the matrix average:

$$\begin{aligned} \mathbb{E}_{\text{USp}(2N)} \left(\prod_{j=1}^k |\det(I - Ae^{-i\theta})|^{2\beta} \right) \\ = \sum_{\mathcal{P} \in \text{SP}_{\langle N^{k\beta} \rangle}} w(\mathcal{P}) \\ = \sum_{\varepsilon \in \{\pm 1\}^{2k\beta}} \frac{\prod_{j=1}^{2k\beta} x_j^{N(1-\varepsilon_j)}}{\prod_{i \leq j} (1 - x_i^{\varepsilon_i} x_j^{\varepsilon_j})} \quad (\text{CFKRS 2002}) \end{aligned}$$

A word on the proof

Again we have a number of forms for the matrix average:

$$\begin{aligned} & \mathbb{E}_{\text{USp}(2N)} \left(\prod_{j=1}^k |\det(I - A e^{-i\theta})|^{2\beta} \right) \\ &= \sum_{\substack{\mathcal{P} \in \text{SP} \\ \langle N^{k\beta} \rangle}} w(\mathcal{P}) \\ &= \sum_{\varepsilon \in \{\pm 1\}^{2k\beta}} \frac{\prod_{j=1}^{2k\beta} x_j^{N(1-\varepsilon_j)}}{\prod_{i \leq j} (1 - x_i^{\varepsilon_i} x_j^{\varepsilon_j})} \\ &= \frac{(-1)^{k\beta(2k\beta-1)} 2^{2k\beta}}{(2\pi i)^{2k\beta} (2k\beta)!} e^{-Ni \sum_{j=1}^{2k\beta} \theta_j} \quad (\text{CFRKS 2002}) \\ &\times \oint \cdots \oint \frac{\Delta(z_1^2, \dots, z_{2k\beta}^2)^2 \prod_{j=1}^{2k\beta} z_j e^{Nz_j} dz_j}{\prod_{l \leq m} (1 - e^{-z_m - z_l}) \prod_{m,n=1}^{2k\beta} (z_m - i\theta_n)(z_m + i\theta_n)} \end{aligned}$$

Summary

Summary

- CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 - k + 1$ (in line with FK conjecture).

Summary

- CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 - k + 1$ (in line with FK conjecture).
- We recover a formula for the leading coefficient in this case.

Summary

- CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 - k + 1$ (in line with FK conjecture).
- We recover a formula for the leading coefficient in this case.
- Similar results are found for $\mathrm{SO}(2N)$ and $\mathrm{USp}(2N)$

Summary

- CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 - k + 1$ (in line with FK conjecture).
- We recover a formula for the leading coefficient in this case.
- Similar results are found for $\mathrm{SO}(2N)$ and $\mathrm{USp}(2N)$
- The polynomials can be explicitly computed.

Summary

- CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 - k + 1$ (in line with FK conjecture).
- We recover a formula for the leading coefficient in this case.
- Similar results are found for $\mathrm{SO}(2N)$ and $\mathrm{USp}(2N)$
- The polynomials can be explicitly computed.
- Techniques carry over (under conjecture) to $\zeta(1/2 + it)$ and other L -functions.

Summary

- CUE: The integer k moments of the integer β moments are polynomials in N of degree $k^2\beta^2 - k + 1$ (in line with FK conjecture).
- We recover a formula for the leading coefficient in this case.
- Similar results are found for $\mathrm{SO}(2N)$ and $\mathrm{USp}(2N)$
- The polynomials can be explicitly computed.
- Techniques carry over (under conjecture) to $\zeta(1/2 + it)$ and other L -functions.
- Proved the growth of certain representation theoretic sums.

