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Number Theoretic Motivation

Consider moments of the zeta function,

/ I+ it)|*Pdt.
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Number Theoretic Motivation

Consider moments of the zeta function,

/ I+ it)|*Pdt.

Conjecture
For 3 € RT,
1T 28 T\%
7 [ I+ e ~ F()ec(8) (o )
as T — oo.

> f(B) is a known arithmetic function

> ¢¢(B) is another function depending on £.
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For A € CUEy (A € U(N) with Haar measure) set

Pn(A, 0) = det(l — Ae™ ).
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For A€ CUEy (A € U(N) with Haar measure) set
Pn(A,0) = det(/ — Ae™™?).

Then recall
1 T
/ IC(E + it)[*Pdt
T Jo

Gy Moments of Moments sist june 5/ 34



For A € CUEy (A € U(N) with Haar measure) set
Pn(A,0) = det(/ — Ae™™?).

Instead
| 1Pu(a o) da
U(N)
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For A € CUEy (A € U(N) with Haar measure) set
Pn(A, 0) = det(l — Ae™ ).

Keating and Snaith: for 8 > —1/2,
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For A € CUEy (A € U(N) with Haar measure) set
Pn(A,0) = det(/ — Ae™"?).

Keating and Snaith: for g > —1/2,

N . .
26 ga — T[ -0 +26)
Ju PO 0 =TT
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For A € CUEy (A € U(N) with Haar measure) set
Pn(A,0) = det(/ — Ae™"?).

Keating and Snaith: for g > —1/2,

N . .
25 4 1T FUFG +28) ~c 82
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|
For A € CUEy (A € U(N) with Haar measure) set

Pn(A, ) = det(l — Ae™).

Keating and Snaith: for 8 > —1/2,

N . .
gy TYTONG428) o
‘Aw%mw|w—p(m W(HN

L (TG+P))
where ,
R
with G(s) the Barnes G-function and if 3 € N,
B-1 |
Wm‘ﬁu%w
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For A € CUEy (A € U(N) with Haar measure) set
Pn(A, ) = det(] — Ae™ ).
Keating and Snaith: for 8 > —1/2,

rro +26) 2
[ PRA DA = HWwU(ﬂ)Nﬂ

where Gz(ﬁ 0
_|_
CU(»B) = m»

with G(s) the Barnes G-function and if g € N,

B-1 H

Conjecture: cy(B) = c¢(B).
_ Moments of Moments 21st June 5/ 34
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Short vs long intervals

Im(s)

Instead

2T © Consider fluctuations of moments of
¢(1/2 + it) over short ranges
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Short vs long intervals

Im(s)

Instead

2T © Consider fluctuations of moments of
¢(1/2 + it) over short ranges

> For a fixed short range, model by a
single matrix A € U(N) where

- N ~ logt/2m
:}2ﬂ
T s R

els

1/2 1 ’ ()

1

I
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Short vs long intervals

Im(s)

Instead

2T © Consider fluctuations of moments of
¢(1/2 + it) over short ranges

> For a fixed short range, model by a
single matrix A € U(N) where

- N ~ logt/2m
r © Average fluctuations over many short
e intervals
T N
1/2 1 > Re(s)
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Moments of Moments

MOMN(ka :3)

Set L .
MoMy(k, B) == Eacu(w) <<2w/0 |PN(A,0)|2Bd9) )
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Moments of Moments

MOMN(k’ IB)

Set L .
MoMy(k, B) == Eacu(w) <<27T/0 |PN(A,9)|2ﬁd9> )

Conjecture (Fyodorov & Keating)
As N — oo,

G(145))? k R
MoMu(k, 5) ~ 3 (s ) T —KEINK" kg2 <1
c(k, B)NK*B*—k+1 s 1,

where G(s) is the Barnes G-function and c(k, 3) is some complicated
function of k and S.

4
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G(14+8))? k 2
(‘G(41(+2(B)F(4%)7/32)> M1 — kBN kB <1

MoMy(k, B) ~
oMlk 2) {c(k,ﬁ)Nk2ﬂ2k+l kB2 > 1.
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G(1+3))? k 2
(‘G(41(+2(B)F(4%)7/32)> M1 — kBN kB <1

MoMy(k, B) ~
oMk, 5) {c(k,ﬂ)Nk252k+1 kB2 > 1.

If ke N,

1 27 27 k
MoMp(k, 8) = W/O /0 E]1Pn(A,6;)* dby - - dby.
j=1
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G N\ g kR g2
MoMy(k, B) ~ (G(1+2ﬁ)r(1—/32)> M(1—kB2)N" kB2 <1

c(k, B)NKF*—k+1 kB2 > 1.

If ke N,

1 27 27 k
MoMp(k, 8) = W/O /0 E]1Pn(A,6;)* dby - - dby.
j=1

( Integrand can be expressed as a Toeplitz determinant
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6”2 NN riq _ ks Wk g2
MoMy(k, B) ~ (G(1+2ﬁ)r§1252)> r(1—kp°)N kB2 < 1
c(k, BNKP ke > 1.

If ke N,

1 27 27 k
MoMp(k, 8) = W/O /0 E]1Pn(A,6;)* dby - - dby.
j=1

( Integrand can be expressed as a Toeplitz determinant

> As N — oo and when 61, ..., 0 are distinct and fixed, can use
Fisher-Hartwig

Gy Moments of Moments olst hune 8/ 34



G N\ g kR g2
MoMy(k, B) ~ (G(l+2ﬁ)r(1—/32)> M(1—kB2)N" kB2 <1

c(k, B)NKF*—k+1 kB2 > 1.

If ke N,

1 27 27 k
MoMp(k, 8) = W/O /0 E]1Pn(A,6;)* dby - - dby.
j=1

( Integrand can be expressed as a Toeplitz determinant

> As N — oo and when 61, ..., 0 are distinct and fixed, can use
Fisher-Hartwig

"> When k32 < 1, can then use Selberg to recover conjecture in this
range
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G N\ g kR g2
MoMy(k, B) ~ (G(1+2ﬁ)r(1—/32)> M(1—kB2)N" kB2 <1

c(k, B)NKF*—k+1 kB2 > 1.

If ke N,

1 27 27 k
MoMp(k, 8) = W/O /0 E]1Pn(A,6;)* dby - - dby.
j=1

( Integrand can be expressed as a Toeplitz determinant

> As N — oo and when 61, ..., 0 are distinct and fixed, can use
Fisher-Hartwig

> When k32 < 1, can then use Selberg to recover conjecture in this
range

> However, if k3> > 1, then the expression diverges - coalescence of
singularities becomes important
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Previous results

1 27 k
MoMy(k, 8) == Eacu(n) <<27T/0 |Pn(A, 9)|25d9) ) :
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Previous results

1 27 k
MoMy(k, 8) == Eacu(n) <<2W/0 |Pn(A, 9)|25d9) ) :

© k=1, > —1/2: follows from Keating and Snaith, 2000 CMP
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Previous results

1 27 k
MoMy(k, 8) == Eacu(n) <<2W/0 |Pn(A, 9)|25d9) ) :

O k=1, 8> —1/2: follows from Keating and Snaith, 2000 CMP
0 k=1, 8 € N: alternative proof from Bump and Gamburd, 2006 CMP
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Previous results

1 27 k
MoMy(k, 8) == Eacu(n) <<2W/0 |Pn(A, 9)|25d9) ) :

k=1, 8> —1/2: follows from Keating and Snaith, 2000 CMP
> k =1, B € N: alternative proof from Bump and Gamburd, 2006 CMP

 k=2and 8 € N: can be deduced from Keating, Rodgers,
Roditty-Gershon and Rudnick, 2018 Mathematische Zeitschrift
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Previous results

1 27 k
MoMy(k, 8) == Eacu(n) <<2W/0 |Pn(A, 9)|25d9) ) :

k=1, 8> —1/2: follows from Keating and Snaith, 2000 CMP
> k =1, B € N: alternative proof from Bump and Gamburd, 2006 CMP

(© k=2and 8 € N: can be deduced from Keating, Rodgers,
Roditty-Gershon and Rudnick, 2018 Mathematische Zeitschrift

(> k =2 all B: Claeys and Krasovsky establish correct powers of N, and
relate ¢(2, 3) to Painlevé, 2015 Duke
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Previous results

1 27 k
MoMy(k, 8) == Eacu(n) <<2W/0 |Pn(A, 9)|25d9) ) :

k=1, 8> —1/2: follows from Keating and Snaith, 2000 CMP
> k =1, B € N: alternative proof from Bump and Gamburd, 2006 CMP

(© k=2and 8 € N: can be deduced from Keating, Rodgers,
Roditty-Gershon and Rudnick, 2018 Mathematische Zeitschrift

(> k =2 all B: Claeys and Krasovsky establish correct powers of N, and
relate ¢(2, 3) to Painlevé, 2015 Duke

kﬁ2 small: Webb, and Nikula, Saksman and Webb get consistent
results

— EmeBy Moments of Moments STy



Results

Consider the case when k, 3 € N.
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Results

Consider the case when k, 3 € N. Then recall

1 27 k
MOMN(k,B) = EAEU(N) ((27‘(‘/0 |PN(A, 0)|2Bd0) )

1 27 o k s
(27T)k/o /0 (E‘ n(A, )] >d61 doy
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Results

Consider the case when k, 3 € N. Then recall

27 2
MoMpy(k, B) = @ / / |PN (A,0; )|2ﬁ)d91...d9k-
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Results
Consider the case when k, 3 € N. Then recall

1 27 27 k
MoMp(k, 8) = W/o /0 E(jl:[l|PN(A,«9j)\25>d61~~d9k.

Also k3% > 1 so we expect MoMy(k, B) ~ C(k75)/\/k2627k+1_
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R
Results

Consider the case when k, 5 € N. Then recall

1 2 27 k
MoMN(k,B):W/O /0 E(jl:[l|PN(A,«9j)|25>d91-~~d9k.

Also k3% > 1 so we expect MoMy(k, B) ~ c(k,B)Nk252_k+1.

Theorem [B.-Keating (2018)]
Let k, 5 € N. Then MoMy(k, ) is a polynomial in N. J

Gy Moments of Moments Ty



Results

Consider the case when k, 3 € N. Then recall

1 27 27 k
MoMp(k, 8) = W/o /o E(H\PN(A,HJ)\Z'B)dQl~~d6k.

Also k/3?> > 1 so we expect MoMy(k, B) ~ C(k’ﬁ)/\/k2ﬁ2*k+1_

Theorem [B.-Keating (2018)]
Let k, B € N. Then MoMy(k, 3) is a polynomial in N.

Theorem [B.-Keating (2018)]
Let k, B € N. Then for c(k, 3), an explicit function of k, 3,

MoMy(k, B) = c(k, B)NKB*—k+1 L O(NK*F*~K).
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<&@ MoMw(k, 8) 4,
0
N S
5 °.
o z
Combinatorial sum Complex analysis
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<&@ MoMw(k, 8) 4,
0
N S
5 °.
o z
Combinatorial sum Complex analysis

 Conrey, Farmer, Keating,
Rubinstein and Snaith
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<&@ MoMw(k, 8) 4,
0
N S
5 °.
o z
Combinatorial sum Complex analysis

 Conrey, Farmer, Keating,
Rubinstein and Snaith

C L'Hopital
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AN Vo)
06\\3 MOMN(ku B) Oe/
< &
s / \g
0 z

Combinatorial sum Complex analysis

 Conrey, Farmer, Keating,
Rubinstein and Snaith

C L'Hopital
© Bump and Gamburd SSYT

Gy Moments of Moments olst June 11734



& MoMu(k,8) %,

S %,
5 o,
0 z

Combinatorial sum Complex analysis
 Conrey, Farmer, Keating, (© Exact representation of
Rubinstein and Snaith ETT/, [Pn(A, 6))2

C L'Hopital

© Bump and Gamburd SSYT
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Combinatorial sum Complex analysis
 Conrey, Farmer, Keating, (© Exact representation of
Rubinstein and Snaith ETT/, [Pn(A, 6))2
C L'Hopital  Multiple contour integrals

© Bump and Gamburd SSYT
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Combinatorial sum

 Conrey, Farmer, Keating, O
Rubinstein and Snaith

© L'Hopital O
C Bump and Gamburd SSYT O

Gy Moments of Moments

Complex analysis

Exact representation of

k
ETT: [Pn(A, 6;)1
Multiple contour integrals

Leading order analysis
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Aside

Representation-theoretic approach
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Aside

Representation-theoretic approach

Partition

A partition A is a sequence (A1,

..., A\k) of positive integers satisfying
AL > A > 2> A
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N
Aside

Representation-theoretic approach

Partition

A partition A is a sequence (A1, ..., Ax) of positive integers satisfying
A1 > Ao > 2> Ak

Take the partition A = (6,4,2,2). Then X corresponds to the Young
diagram
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SSYT

For \ a partition, a semistandard Young tableau (SSYT) of shape A is an
array T = (T,'j)]_g,‘ggo\%lsjs)\i of positive integers such that T;; < T; 1
and Tj; < Tiyq1;. It is common to write SSYTs in a Young diagram; e.g.

2[3]3]7]

|
~N| B Wi

is a SSYT of shape (6,4,2,2).
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|
SSYT

For \ a partition, a semistandard Young tableau (SSYT) of shape A is an
array T = (T,'j)]_g,‘ggo\%lsjs)\i of positive integers such that T;; < T; 1
and Tj; < Tiyq1;. It is common to write SSYTs in a Young diagram; e.g.

2[3]3]7]

AW
w
N

AN

7

is a SSYT of shape (6,4,2,2). T has type t = (t1, to,...) if T has t; parts
equal to i. The SSYT above has type (2,2,4,3,0,1,2).
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|
SSYT

For \ a partition, a semistandard Young tableau (SSYT) of shape A is an
array T = (T,'j)]_g,‘ggo\%lsjs)\i of positive integers such that T;; < T; 1
and Tj; < Tiyq1;. It is common to write SSYTs in a Young diagram; e.g.

2[3]3]7]

Wi
w
S~

AN

7

is a SSYT of shape (6,4,2,2). T has type t = (t1, to,...) if T has t; parts
equal to i. The SSYT above has type (2,2,4,3,0,1,2).
It is common to use the multivariate notation

T _ t(T) t(T)
x'=x"" % e

so for the example SSYT above,

xT = X12X22X§X2X6X72.
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Schur functions

The combinatorial definition of Schur functions is as follows:
For a partition A, the Schur function in the variables x;,
is a multivariable polynomial defined by

(XL, ey Xr) —Zx Zth(T Xr T)7

where the sum is over all SSYTs T whose entries belong to the set
{1,...,r} (i.e. ti(T)=0fori>r).

., Xy indexed by A
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Schur functions

The combinatorial definition of Schur functions is as follows:
For a partition A, the Schur function in the variables xi, ..., x, indexed by A
is a multivariable polynomial defined by

(XL, ey Xr) —Zx Zth(T X/ )7

where the sum is over all SSYTs T whose entries belong to the set
{1,...,r} (i.e. ti(T)=0fori>r).
Take A = (2,1) F 3.
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Schur functions

The combinatorial definition of Schur functions is as follows:
For a partition A, the Schur function in the variables xi, ..., x, indexed by A
is a multivariable polynomial defined by

(XL, ey Xr) —Zx Z a7 )7

where the sum is over all SSYTs T whose entries belong to the set
{1,...,r} (i.e. ti(T)=0fori>r).
Take A = (2,1) F 3. Then to calculate s)(x1, x2, x3):

1[1] [1]1] [1]2] [1]2] [1]3] [1]3] [2]2] [2]3]
2 3 2 3 2 3 3 3
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Schur functions

The combinatorial definition of Schur functions is as follows
For a partition A, the Schur function in the variables xi, ..., x, indexed by A
is a multivariable polynomial defined by

(X1, ey Xr) —Zx Zx x, 7)

where the sum is over all SSYTS T whose entries belong to the set
{1,..,r} (i.e. t;(T)=0fori>r).
Take \ =

)

(2,1) F 3. Then to calculate sy(x1, x2, x3):

101] [1]1] [1]2] [1]2] [1]3] [1]3] [2]2] [2]3]
230 2] 3] [2]  [3] 3 3
So,

sa(x1, X2, X3) = xPx2 + X x3 + X106 + 2x1x0x3 + X165 + XG53 + X205

Moments of Moments
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Theorem (Bump & Gamburd 2006)

For 5 € N
Eacun|Pn(A, 0)*° = sysy (177)

Gy Moments of Moments olst June 15 /34



[
For 3 € N
IEAeU(N)|PN(A,9)|2ﬁ - 5<Nﬁ>(125)
For € N
IEAeU(N)|PN(A 9)|2B H )

G+ 25)!
G+or




Theorem (Bump & Gamburd 2006)

For 5 € N
Eacun|Pn(A, 0)*° = sysy (177)

Corollary (Bump & Gamburd 2006)
For 5 € N

28 _ S+ 28)!
Eacum)|Pn(A,0)] 111) T

This also gives the interpretation that, for 5 € N, as N — oo
8 2
Eacu(n)|Pn(A, 0)?° ~ ﬁTﬁ!’Vﬁ

where gg is the number of ways of filling a 8 x 3 array with the integers
1,2,..., 3% in such a way that the numbers increase along each row and
down each column.

Gy Moments of Moments T



Proof of polynomial structure
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Proof of polynomial structure

Recall

Theorem

Let k, 5 € N. Then MoMy(k, ) is a polynomial in N. J
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Proof of polynomial structure

Recall

Theorem

Let k, 5 € N. Then MoMy(k, ) is a polynomial in N.

Proposition (Bump and Gamburd)

()
Encuy | [T1PV(A 0D ) = 0
jl;Il Hjlle e/NBY;

where s,(x1, ..., Xp) is the Schur polynomial in n variables with respect to

kB
. —
the partition v. Here (N%%) = (N, ..., N), and

>

3 8 3
91 ..

i0c i i0 i0 i0
.., e% e e ek ek,

4
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Overview of proof of first theorem

Hence for k, 5 € N,

27 27 ) ) k
|\/|0|\/|N(k7 ﬂ) = (27];)1( /0 .. /0 Z e/ (m=NpB) | oi0k(r—NB) H dej
T

j=1
=21
T
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Overview of proof of first theorem

Hence for k, 5 € N,

27 27 ) ) k
|\/|O|\/|N(k7 ﬂ) = (27];)1( /0 .. /0 Z e/ (m=NpB) | oi0k(r—NB) H dej
T

j=1

where the sum is now over f restricted SSYT

Gy Moments of Moments T



Overview of proof of first theorem

Hence for k, 3 € N,

1 27 27 0 o k
MOMN(k,ﬁ):W/O /0 2691(1 NB) ... gifk(T« Nﬁ)Hdgj
T j=1

where the sum is now over T, restricted SSYT - require N3 entries from
each of the sets {25(j — 1) +1,...,2j3}, for j € {1,..., k}.

MoMpy(k, 8) = Zl<21—Pon (k%52).
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Overview of proof of first theorem
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Overview of proof of first theorem

Conrey, Farmer, Rubinstein, Keating and Snaith give that

2k Wo (kA1) Wo(kf+2) * ** Wa(2ka))
E|||PNA9|5— [T <" . -1
jkarl | oem Hl§k5<q( ~ Wo(l)Wo(q))
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Overview of proof of first theorem

Conrey, Farmer, Rubinstein, Keating and Snaith give that

2k Wo (kA1) Wo(kf+2) * ** Wa(2ka))
IE|||P,\,A9|5— [T <" . -1
jkarl | oem Hl§k5<q( ~ Wo(l)Wo(q))

where =3 is the set of ( ) permutations o € Syxs such that
o(l)<o(2)<--- < U(kﬁ) and o(kp +1) < --- < o(2kp), and

i0 i0 i0, i0 i0 i0 i0 i0
w= (e, . .. e e ek e el eR L e,
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Examples
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Examples

1 2T k
MOMN(k,,B) = ]EAGU(N) ((271_/0 ‘PN(A,0)|2/Bd0> >
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Examples

1 2T k
MOMN(k,,B) = ]EAGU(N) ((271_/0 ‘PN(A,0)|2/Bd0> >

MoMp(1,1) = N + 1
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Examples

1 2T k
MOMN(k,ﬂ) = EAGU(N) ((271_/0 ‘PN(A,0)|2/Bd0> >

MoMp(1,1) = N + 1
MoMpy(2,1) = %(/v +3)(N 4+ 2)(N + 1)
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Examples

1 2T k
MOMN(k,ﬂ) = EAGU(N) <<271’/0 ‘PN(A,9)|2Bd0> >

MoMp(1,1) = N + 1
MoMpy(2,1) = %(/v +3)(N 4+ 2)(N + 1)

MoMy(3,1) = ﬁ(/\/ +5)(N + 4)(N +3)(N + 2)(N + 1)(N? + 6N + 21)
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Examples

1 2T k
MOMN(k,ﬂ) = EAGU(N) <<271’/0 ‘PN(A,H)‘25d0> >

MoMp(1,1) = N + 1
MoMpy(2,1) = %(/v +3)(N 4+ 2)(N + 1)

MoMy(3,1) = ﬁ(/\/ +5)(N + 4)(N +3)(N + 2)(N + 1)(N? + 6N + 21)

x (N +1)(7TN® + 168N° + 1804N* 4 10944 N3+

+ 41893N2 + 99624 N + 154440)
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Examples

1 2T k
MOMN(k,ﬂ) = EAGU(N) <<271’/0 ‘PN(A,H)‘2Bd0> >

MoMp(1,1) = N + 1
MoMpy(2,1) = %(/v +3)(N 4+ 2)(N + 1)

MoMy(3,1) = ﬁ(/\/ +5)(N + 4)(N +3)(N + 2)(N + 1)(N? + 6N + 21)

x (N +1)(7TN® + 168N° + 1804N* 4 10944 N3+
+ 41893N2 + 99624 N + 154440)

MoMpy(1,2) = %(N + 1)(N +2)*(N +3).
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Examples

x (N 4+ 3)(N 4 2)(N 4 1)(298N® 4 9536 N7 4 134071 N°
+ 1081640N° + 5494237 N* + 18102224 N3 + 38466354 N>

+ 50225040 + 32432400).
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Examples

(N+1)(N+2)(N+3)(N+4) (N+5)(N+6)(N+7)(N+8) (N+9)(N+10)(N+11)
MoMy (2 3) 1722191327731024154944441889587200000000

x (12308743625763 N24 +1772450082100872N23 1121902830804050138N22 1
15328802119564663432N21 1+ 166214570105622478453N20 1 3937056250812505643352 12
173583663800226157619008/18 1 1113100355823072261420312 17 1 13869840005250869763713203 /16
+144126054435920320947378912N15 +1250786144808207172443272698 N 14
19315726013410827893883025672N 13+ 58475127984013141340467825323 12
+311078271286536355427593012632N11 +1413794106539529439589778645028 V10
15427430874579682720570383266092N 1 17564370687865211818995713006848 N8
+47561382824003032731805262075232N 7 +106610027256886475209611301000128 /O
1104861499503272627170466392014502 V5 +284303877221735683573377603640320N%
1320089495108428049992898521600000/V3 +266974288159876385845370793984000N 2

+148918006780282798012340305920000/N+-4314452380278539750041 1904000000)
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Overview of proof of second theorem
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Overview of proof of second theorem

Recall,

Theorem [B.-Keating (2018)]
Let k, 3 € N. Then

MoMp(k, B) = c(k, B)NKF—k+1 L O(NKF k),

where c(k, /3) is an explicit function of k, 3.
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Overview of proof of second theorem

Recall,

Theorem [B.-Keating (2018)]
Let k, 3 € N. Then

MoMp(k, B) = c(k, B)NKF—k+1 L O(NKF k),

where c(k, /3) is an explicit function of k, 3.

Proof ingredients:
 Expand IEHjlle |Pn(A, 0,)|? as a multiple contour integral
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Overview of proof of second theorem

Recall,

Theorem [B.-Keating (2018)]
Let k, 3 € N. Then

MoMp(k, B) = c(k, B)NKF—k+1 L O(NKF k),

where c(k, /3) is an explicit function of k, 3.

Proof ingredients:
 Expand IEHjlle |Pn(A, 0,)|? as a multiple contour integral

(> Deform and manipulate the integrals
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Overview of proof of second theorem

Recall,

Theorem [B.-Keating (2018)]
Let k, 3 € N. Then

MoMp(k, B) = c(k, B)NKF—k+1 L O(NKF k),

where c(k, /3) is an explicit function of k, 3.

Proof ingredients:
 Expand IEHjlle |Pn(A, 0,)|? as a multiple contour integral
(> Deform and manipulate the integrals
(> Analyse the result asymptotically as N — oc.

Gy Moments of Moments Ty



Overview of proof of second theorem
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Overview of proof of second theorem

Define
k

/kﬁ(ela""ek) :EAEU(N) H|PN(A791)|2IB )
j=1
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Overview of proof of second theorem

Define
k
/kﬁ(ela""ek) :EAEU(N) H|PN(A791)|2,8 )
j=1
SO
2T 2T
MOMN(k ﬂ / / Ikﬁ 91,..., )d@l-'~d9k.
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Overview of proof of second theorem

Define
k
lk,8(01; -, 0k) = Eacu(n) (HPN(A»ej)zﬁ) ;
j=1
SO
2T 2T
MOMN(k ﬂ / / Ikﬁ 91,..., )d91~~~d9k.

Theorem [CFKRS]
For k, 8 € N,

1)kBe™ iBY
Ik,5(0) = ((27” 2kB((kB)1)2 74 ?{

—N(Zkg+1+ +szﬁ)A(zl, .. szﬂ)del s dZ2k6
2k '
Hm§k6<n( — eZn— Zm) H ﬁ n— 1(Zm + /9 )2ﬂ
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Overview of proof of second theorem
Manipulation of MCI

1)kBe—iB X
/kﬁ(a) ((27r)l ng( k/B)l j{ %

_N(zkﬁ“—’— +Z2’<5)A(Z]_, . 22k5)2d21 s dZQkﬁ
z —Z 2k k . .
Hm§k6<n( —ew m) H B nzl(zm + Ign)z’g
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Overview of proof of second theorem
Manipulation of MCI

1)kBe—iB X
/kﬁ(a) ((27r)l ng( k/B)l j{ %

_N(zkﬁ“—’— +Z2kf3)A(Z]_, . 22k5)2d21 s dZQkB
z —Z 2k k . .
Hm§k6<n( —ew m) H /8 nzl(zm + Ign)2’6

(> Deform the contours
(' Change of variables

_ Carefully analyse remaining integrals
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Overview of proof of second theorem

Leading order

MoMp(k, B) ~ c(k, B)N<*&*~k+1
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Overview of proof of second theorem

Leading order

MoMu(k, B) ~ c(k, B)N**7*~k+1

where
25 k—1
c(k,B) = Z CL(kvﬂ)((k_1)ﬁ_Z/J')f(k’ﬁ’l)Pk,ﬁ(ll""7/k—1)7
hyeoslk1=0 j=1
(1)
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Overview of proof of second theorem

Leading order

MoMu(k, B) ~ c(k, B)N**7*~k+1

where
25 k—1
c(k,B) = Z CL(kvﬂ)((k_1)ﬁ_Z/J')f(k’ﬁ’l)Pk,ﬁ(ll""7/k—1)7
Bl 1=0 =1
(1)
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Overview of proof of second theorem

Leading order

MoMu(k, B) ~ c(k, B)N**7*~k+1

where
25 k—1
c(k,B) = Z C[(kﬂﬁ)((k_1)ﬁ_Z/J')f(k’ﬁ’l)Pk,ﬁ(ll""7/k—1)7
hyeoslk1=0 j=1
(1)
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Overview of proof of second theorem

Leading order

MoMu(k, B) ~ c(k, B)N**7*~k+1

where
25 k—1
c(k,B) = Z CL(kvﬁ)((k_1)5_Z/j)f(kﬁ,!)Pkﬁ(lh'"7/k—1)7
hyeoslk1=0 =1
(1)
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Overview of proof of second theorem

Leading order

MoMu(k, B) ~ c(k, B)N**7*~k+1

where
25 k—1
c(k,B) = Z CL(kvﬂ)((k_1)ﬁ_Z/J')f(k’ﬁ’l)’pkﬁ(/l’"'7/k—1)7
hyeoslk1=0 j=1
(1)
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Overview of proof of second theorem

Leading order

MoMp(k, 8) ~ c(k, B)N<&~k+1

where
28 k—1
c(k,B)y= > alkB)((k—1)8 =D 1) CEDp s, . 1),
hyeoiyle—1=0 j=1
(1)
and
2
Pes(l) = Yocr IS7<r] / ek I m<n (Vo = vi)®
k7
g (27” 2k/8 lo lo Hm<k6<n(Vn ~ Vm) Hfrfﬁl r2nﬁ
k—1 2kB
X wk,ﬁ,[(((k 1 Z H dvm.
j=1
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Overview of proof of second theorem

Leading order

So for k, 5 € N we have

MoMy(k, B) ~ c(k, B)NKF*—k+1,
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Overview of proof of second theorem

Leading order

So for k, 5 € N we have
MoMy(k, B) ~ c(k, B)NKF*—k+1,

The theorem follows if one can show that c(k, 3) # 0. A lengthy
computation shows that this is the case - in fact c(k, 5) > 0.
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Another alternative approach
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Another alternative approach

One can recover the same asymptotic result using Gelfand-Tsetlin patterns.

Theorem [Assiotis-Keating (2019)]
Let k, 8 € N. Then,

MoMp(k, B) = c(k, B)N¥F~k+1 L o(NKF k),

where c(k, 3) can be written explicitly as a volume of a certain region
involving continuous Gelfand-Tsetlin patterns with constraints.
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Translating to Number Theory
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-
Translating to Number Theory

Analogue of MoMy(k, 8):

2T /4 o k
MoMS (k < ¢(1/2 2ﬁd) d
oM (k, B) = / /0 (1/2+i(t +7)2Pdv ) de
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-
Translating to Number Theory

Analogue of MoMy(k, 8):
1 (2T /1 f2r . k
MoMS,(k, 5) ::T/T <27T/ ]((1/2+/(t+'y))]26d*y) dt

2 or 2T k
277/ // H\C(1/2+/(t+fy, |25dtHd71.

Conjecture Fyodorov & Keating
For k3% > 1, MoMS(k, B) ~ ¢'(k, B)(log L)< #*—k+1, J
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-
Translating to Number Theory

Conjectured expression for integrand (CFKRS):

T T A
7{ 7{ GC 21, 228)0%(z1, . . ., 228)

25 23
J 1%

Lot
X ez log 5= 7 474 dzy - - - dzopdt + o(1).
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-
Translating to Number Theory

Conjectured expression for integrand (CFKRS):

1 /T _ 1 /T (=1 1
P leaszsiortan= 3 [ G o
7{ %GC 21, ., 25)A%(z1, - -, 225)

25 23
J 1%

Lot
X e2 3 108 5 21T gy dzpdt + o(1).

where

B
G((Zla - 7225) = Aﬁ(zl, e 225) H C(]. +zi — Zﬁ+j)7
ij=1
and Ag(z) is an Euler product whose local factors are polynomials in p~!
and p~ &
_ Moments of Moments 21st June 29 / 34



-
Symplectic, Orthogonal, and L-functions
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-
Symplectic, Orthogonal, and L-functions

(' Relationship between families of L-functions and other random matrix
families
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-
Symplectic, Orthogonal, and L-functions
(' Relationship between families of L-functions and other random matrix

families
(> Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc

Gy Morments of Moments i e 8002



-
Symplectic, Orthogonal, and L-functions
(' Relationship between families of L-functions and other random matrix

families
(> Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc
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-
Symplectic, Orthogonal, and L-functions

(' Relationship between families of L-functions and other random matrix
families
(> Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc

USp(2N) = {M € U2N) : M'QM = Q}, Q= < y ’8’) ,
—IN

N
det(/ — Ms) = H(l — es)(1 — i),

n=1
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-
Symplectic, Orthogonal, and L-functions

(' Relationship between families of L-functions and other random matrix
families
(> Katz-Sarnak; Conrey, Farmer, Keating, Rubinstein, and Snaith etc

USp(2N) = {M € UQ2N) : MtQM = Q}, Q= < 0/ ’8’) ,
—IN

N

det(/ — Ms) = [J(1 — €™ s)(1 — e~"s).

n=1

SO(2N) = {0 € O(2N) : det(0) = 1},
N

det(/ — Os) = [[ (1 — e®s)(1 — e~ ).

m=1

Gy Moments of Moments olst une 30/ 34



-
Symplectic, Orthogonal, and L-functions

Gy Moments of Moments olst June 31734



-
Symplectic, Orthogonal, and L-functions

Theorem [Assiotis-B.-Keating (2019)]
Let k, 3 € N. Then MoMysy(2n)(k, B) is a polynomial in N and further

MoMuyspany(k, B) = cusp(k, B)NKPRKETI=k | O(NHKARKAFT)—k=1)
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-
Symplectic, Orthogonal, and L-functions

Theorem [Assiotis-B.-Keating (2019)]
Let k, 3 € N. Then MoMysy(2n)(k, B) is a polynomial in N and further

MoMuyspany(k, B) = cusp(k, B)NKPRKETI=k | O(NHKARKAFT)—k=1)

v

Theorem [Assiotis-B.-Keating (2019)]
Let k, 3 € N. Then MoMsg o) (k, 3) is a polynomial in N. Further

MOMSO(2N)(17 1) = 2(N + 1)7

otherwise

MoMso(any (k. B) = cso(any N PEKI=D =k 1 O(NHkARKE=D—k=1)

— EmeBy Moments of Moments
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A word on the proof
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A word on the proof

Again we have a number of forms for the matrix average:

k
Eysp2n) < H | det(/ — Ae—i9)|2ﬁ)

Jj=1

= Y w(P) (BG2006)

PESP(/\,kB)
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A word on the proof

Again we have a number of forms for the matrix average:

k
Eysp2n) ( H | det(/ — Ae*ff’),%)
j=1

= >, wP

PGSP(NkB)

N(1—¢;)

I

S Ty (CPKRS 2002
i<j i 7

ce{£1}248 j
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A word on the proof

Again we have a number of forms for the matrix average:

k
Eysp2n) ( H | det(/ — Ae*l'@)‘m)

j=1
= Z w(P)
PESP(,VkB)
H2k,3 N(1-¢))

= 2 )

ee{£1}2kP 1 _X XJ
—1)kB(RkB—1)p2kB 2B .
- (27)ri)2kﬁ(2kﬂ)| e MR (CFRKS 2002)
2k [z
7{ 7{ A, Z22kﬁ) ]._[j BZJ N4 dz;
H/<m (1— e—2m—21) ank,ﬁ:l(zm —i0,)(zm + i605)
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Summary
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Summary

(> CUE: The integer k moments of the integer 8 moments are
polynomials in N of degree k3% — k +1 (in line with FK conjecture).
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Summary

(> CUE: The integer k moments of the integer 8 moments are
polynomials in N of degree k3% — k +1 (in line with FK conjecture).

(> We recover a formula for the leading coefficient in this case.
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Summary

(> CUE: The integer k moments of the integer 5 moments are
polynomials in N of degree k3% — k +1 (in line with FK conjecture).

(> We recover a formula for the leading coefficient in this case.
> Similar results are found for SO(2N) and USp(2N)

Gy Moments of Moments Ty



Summary

(> CUE: The integer k moments of the integer 5 moments are
polynomials in N of degree k3% — k +1 (in line with FK conjecture).

(> We recover a formula for the leading coefficient in this case.
> Similar results are found for SO(2N) and USp(2N)

(> The polynomials can be explicitly computed.
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Summary

(> CUE: The integer k moments of the integer 5 moments are
polynomials in N of degree k3% — k +1 (in line with FK conjecture).

(> We recover a formula for the leading coefficient in this case.
> Similar results are found for SO(2N) and USp(2N)
(> The polynomials can be explicitly computed.

(> Techniques carry over (under conjecture) to ((1/2 + it) and other
L-functions.
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Summary

(> CUE: The integer k moments of the integer 5 moments are
polynomials in N of degree k3% — k +1 (in line with FK conjecture).

(> We recover a formula for the leading coefficient in this case.
> Similar results are found for SO(2N) and USp(2N)
(> The polynomials can be explicitly computed.

(> Techniques carry over (under conjecture) to ((1/2 + it) and other
L-functions.

(_ Proved the growth of certain representation theoretic sums.
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