
SOME PROBLEMS FROM THE AAAS OLYMPIAD PROGRAM TRAINING
SESSION

Problem 1. Find all integers n > 1 such that n divides 1n+2n+ · · ·+(n−1)n.

We begin by asking the reader to supply some ‘data’ about simple cases, then
to think about what might be going on.

1. Let S(n) =
∑n−1

k=1 k
n = 1n + 2n + · · ·+ (n− 1)n.

Compute the first few cases:

n S(n) S(n) Does n divide S(n)?
2 12 1 no
3 13 + 23 9 yes
4
5
6

2. Before reading further, form an hypothesis. Try to prove your hypothesis.
Here are some tools that might help.

4. Lemma: If n is odd, then kn + (n− k)n is a multiple of n.
Proof: Use the binomail theorem, or have someone explain this to you. It tells

you how to write out the expansion of (n − k)a, for different values of a. If you
don’t know this theorem, here are three examples:

(n− k)7 =n7 − 7n6k + 21n5k2 − 35n4k3 + 35n3k4−
− 21n2k5 + 7nk6 − k7.

(n− k)8 =n8 − 8n7k + 28n6k2 − 56n5k3 + 706n4k4−
− 56n3k5 + 28n2k6 − 8nk7 + k9.

(n− k)9 =n9 − 9n8k + 36n7k2 − 84n6k3 + 126n5k4−
− 126n4k5 + 84n3k6 − 36n2k7 + 9nk8 − k9.

We’ve computed the coefficients here, but their actual value is not important
to us. Note that the signs of the terms alternate.

How does this prove our lemma?
5. Make sure you see why this argument does not work for even n.
6. How does the lemma above prove the statement in our problem for odd

values of n?
7. For n even, the discussion gets a bit more complicated. We look first at

some numerical examples.
Suppose n contains just one factor of 2, so that n can be written as 2(2a + 1)

(examples are n = 6, 10, 14 and so on). We have 2a + 1 odd terms, and 2a even
terms. So the sum S(n) of all the terms is odd, and the even number n cannot
divide S(n).

Now suppose n contains just two factors of 2, so that n = 22(2a+ 1) (examples
are n = 4, 12, 20, etc). Then the even terms of S(n) will have 22 = 4 as a factor
(since n ≥ 2). And the number of odd factors is n

2 , which is 2(2a + 1), two more
than a multiple of 4. So S(n) will be two more than a multiple of 4. But n is itself

1



2

a multiple of 4, so any multiple of n will be a multiple of 4, and S(n) cannot be a
multiple of n.

Suppose now n has a factor of 23 in it; that is, n = 23(2a + 1) for some a
(examples are n = 8, 24, 40 and so on. Since n ≥ 3, the even terms will all be
multiples of 23 (the exponent n is at least 3).

And the number of odd factors is n
2 , which is 22(2k + 1), which is four more

than a multiple of 8. So S(n) will four more than a multiple of 8. But n is itself a
multiple of 8, so S(n) cannot be a multiple of n.

This argument generalizes easily, although the notation again obscures the
thought. Here is the generalization:

Suppose n is even. We divide out the largest power of 2 it contains by writing
n = 2a(2m + 1). Note that a < n (otherwise 2a would be much too big to divide
n). Then, in the sum S(n) there are n

2 = 2a−1(2m + 1) odd terms and one fewer

even terms. All the even terms are raised to the nth power, so they are multiples
of 2n, and so certainly multiples of 2a.

We must now show that the sum of the odd terms cannot be a multiple of 2a.
This is a bit more difficult. A typical odd term is kn = k2

a(2m+1) = k2
a · k2m+1

Now the second factor is odd, so we must show only that k2
a

cannot be a multiple
of 2a.

Let us look at the following algebraic pattern:

(k − 1)(k + 1) = k2 − 1;

(k − 1)(k + 1)(k2 + 1) = (k2 − 1)(k2 + 1) = (k4 − 1);

(k − 1)(k + 1)(k2 + 1)(k4 + 1) = (k2 − 1)(k2 + 1)(k4 − 1) = (k4 + 1)(k4 − 1) = k8 − 1;

We don’t need all the detail in the computations above. If we read the equations
from right to left, we see that k2

a−1 is always represented as a long string of factors,
each of which are even (because a power of k is odd, and one more or one less than
a power of k will be even).

In other words, k2
a − 1 can be factored into a + 1 (count them!) even factors,

which means that k2
a

1 is a multiple of 2a+1, so certainly of 2a. Or, we can say that
k2

a

is one more than a multiple of 2a.
Now there are n

2 odd terms in S(n), each of which is one more than a multiple
of 2a. hence the sum of the odd terms is n

2 more than a multiple of 2a, and so
cannot itself be a multiple of 2a. This proves our assertion.

Note: It is entirely possible to solve this problem without congruences nor
Euler’s theorem. All that is needed is repeated use of the factorization

yN − xN = (y − x)

N−1∑
k=0

xkyN−1−k

(or rather of the fact that y − x divides yN − xN ) and a proof that 2a | k2a − 1 for
fixed odd k and all integers a ≥ 0, which is easy to prove by induction (or otherwise

immediately seen from the factorization k2
a − 1 = (k− 1)

∏a−1
b=0 (k2

b

+ 1) into a+ 1
even factors).

Problem 3. Prove or disprove that there exists a positive integer N having
the following properties:
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(1) N is divisible by 22012;
(2) N contains only the digits 1 and 2.

Solution to Problem 3. We give a formal ‘official’ solution, then some details
about how to think about the problem.

Formal Solution. Proceeding inductively, we construct a sequence of deci-
mal digits a0, a1, . . . , ak, . . . in {1, 2} such that 2k+1 divides the number Ak =
akak−1 . . . a1a0 for k = 0, 1, 2, . . . .

Set a0 = 2 and, for k ≥ 0, let

ak+1 =

{
1, if 2k+2does not divideAk;

2, if 2k+2dividesAk.

We prove by induction on n that 2n+1 | An. This is true for n = 0 since A0 =
a0 = 2. Assume it true for n = k. Let qk = Ak/2k+1, an integer (by the inductive
hypothesis). Note that 2k+2 | Ak if and only if qk is even, and ak+1 is chosen so as
to have opposite parity to qk. Now, Ak+1 = 10k+1ak+1 + Ak = 2k+1(5k+1ak+1 +
qk). Since 5k+1 is odd, the choice of ak+1 is exactly that which makes the factor
5k+1ak+1 + qk even, hence Ak+1 divisible by 2k+1 · 2 = 2(k+1)+1. This completes
the inductive step of the proof.

Now here is some insight into the thinking behind the proof. We start on a
very elementary level.

Lemma I. For any positive integer n, 10n is divisible by 2n, and 10n leaves a
remainder of 1 when divided by 2n+1.

Proof. (a) The key is thinking of all these numbers as products of primes. We
have 10n = (2 · 5)n = 2n · 5n, which is clearly divisible by 2n. But there are not
enough powers of the prime number 2 in the factorization of 10n to make it divisible
by 2n+1. So 10n must leave a remainder, and that remainder can only be 1.

Lemma II. For any positive integer n, 2 · 10n is divisible by 2n+1. ft
Proof. We have 2 · 10n = 2 · 2n · 5n = 2n+1 · 10n. By Lemma I, 10n contains n

factors of 4, so 10n+1 is divisible by 2n+1.
Now to the problem itself. Because 10n > 2n for n ≥ 1, we can try ‘building

up’ our number N one digit at a time. We will do this by repeatedly appending
digits 1 or 2 to the left of our number.

Let us look at some numbers which contain only the digits 1 and 2. Let n be
the number of digits in the number we are looking at. We exclude odd numbers,
because we want high powers of 2 to divide the number N we construct.

For n = 1 we have 21 = 2 divides 2.
For n = 2 we have 22 = 4 divides 12. The other possibility, 22, is not divisible

by 4.
For n = 3 we have four choices: 112, 122, 212, 222. We can quickly see that

23 = 8 divides 112. (In fact 24 = 16 also divides 112, but never mind that.) And
in fact we can get the three-digit number 112 by appending a 1 to the two-digit
number 12 we’ve just found. Our plan is working.

For n = 4, we can continue our plan, by trying out 1112 and 2112. We find
that 24 = 16 divides 2112. (So does 25 = 32, but never mind that.)

For n = 5 we try out 12112 and 22112. We find that 25 = 32 divides 22112.
So it looks like we can always append a 1 or a 2 to the left of an n-digit number

that is divisible by 2n to get an (n + 1)-digit number that is divisible by 2n+1.
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Using this process, we can build all the way up to n = 2012 to get a number N of
the required form.

But can we prove that it always works? Well, for some number n, suppose An

is an n-digit number divisible by 2n. If An is divisible by 2n+1, we use Lemma II,
which tells us that 2 ·10n is a multiple of 2n+1. Then 2 ·10n +An is just the number
An with the digit 2 appended to the left. Since it is the sum of two multiples of
2n+1, it must itself be a multiple of 2n+1, and gives us a number of the required
form.

It’s a bit tougher if An is a multiple of 2n but not of 2n+1. But not much
tougher. What is the remainder when An is divided by 2n+1. Well, we can write
An = 2n · k for some integer k, so An

2n+1 = An

2n ·
1
2 , which is some integer An

2 divided
by 2. The only possible remainder is 1.

Now we look at An +10n. What is its remainder upon division by 2n+1? We’ve
just seen that An leaves a remainder of 1. And 10n also leaves a remainder of 1.
So (because 1 + 1 = 2) An + 10n is in fact divisible by 2n+1.

These comments motivate the inductive proof given above.
Problem 4. Let x, y, z be integers such that (x−y)2+(y−z)2+(z−x)2 = xyz.

Prove that x3 + y3 + z3 is divisible by x + y + z + 6.
Solution 1. Expanding, we find that

(x− y)2 + (y − z)2 + (z − x)2 = 2(x2 + y2 + z2 − xy − yz − zx)

. Also,

x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 − xy − yz − zx).

But we are given that (x−y)2 + (y− z)2 + (z−x)2 = xyz. Therefore x3 +y3 + z3−
3xyz = xyz

2 (x + y + z) This means that x3 + y3 + z3 = xyz
2 (x + y + z + 6). Notice

that at least one of x, y, z is even, because if x, y, z are all odd, the left-hand side
of the original equality is even while the right-hand side is odd, a contradiction.
Therefore xyz

2 is in fact an integers, and x3 + y3 + z3 is divisible by x + y + z + 6.
Solution 2. We note that the condition

(x− y)2 + (y − z)2 + (z − x)2 = xyz

is non-homogeneous: Each term of the left hand side has degree 2, but the right
hand side (xyz) has degree 3. Similarly, the linear expression x + y + z + 6 is
inhomogeneous (it includes a mixture of terms of degrees 0 and 1).

This suggests introducing a new variable w to make all expressions homoge-
neous. To be precise, we will prove the stronger statement (of which the case w = 1
settles the original question):

If w, x, y, z are integers such that w(x − y)2 + w(y − z)2 + w(z − x)2 = xyz,
then x3 + y3 + z3 is divisible by x + y + z + 6w.

Note that xyz = w(x− y)2 + w(y − z)2 + w(z − x)2 = w
(
(x− y)2 + (y − z)2 +

(z−x)2
)

= 2w(x2 +y2 + z2−xy−xz−yz)). Moreover, x3 +y3 + z3 is independent
of w, but x + y + z + 6w is not. Since 6w = 3(2w), this suggests multiplying We
conclude that the divisibility required by the problem statement holds. Moreover,
if x + y + z + 6w 6= 0, the quotient is x2 + y2 + z2 − xy − xz − yz.

Solution. Let S(n) =
∑n−1

k=1 k
n = 1n + 2n + · · ·+ (n− 1)n.
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It looks like the statement might be true for all odd n, and for no even n. Let
us try to prove this. We will first give a proof using only algebra, then show how
the problem relates to some classical results in number theory.

Solution1. (A formal solution)
If n = 2m + 1 is odd then (n− k)n ≡ (−k)n = −kn (mod n), so

S(n) =

2m∑
k=1

kn =

m∑
k=1

(kn + (n− k)n) ≡
m∑

k=1

(kn − kn) = 0 (mod n),

and n | S(n).
Assume now that n is even, say n = 2a(2m + 1) with a > 1. Note that

a < n, so 2a | 2n. If k = 2l is even, then 2n | (2l)n = kl, hence 2a | kl. If

k is odd, then k2
a−1 ≡ 1 (mod 2a) (by Euler’s Theorem or induction on a), so

kn = k2
a(2m+1) = (k2

a−1

)2(2m+1) ≡ 12(2m+1) = 1 (mod 2a). Hence,

S(n) ≡ 1 + 0 + 1 + 0 + 1 + · · ·+ 0 + 1︸ ︷︷ ︸
n − 1 terms

=
n

2
= 2a−1(2m + 1) ≡ 2a−1 (mod 2a).

Hence 2a|S(n).
Since 2a divides n, we conclude that n does not divide S(n).


