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Abstract

We consider a free lattice field (a harmonic crystal) with a hard wall
condition and a weak pinning to the wall. We prove that in a weak
sense the pinning always dominates the entropic repulsion of the hard
wall condition when the dimension is a least three. This contrasts with the
situation in dimension one, where there is a so called wetting transition, as
has been observed by Michael Fisher. The existence of a wetting transition
in the delicate two dimensional case was recently proved by Caputo and
Velenik.

1 Introduction

The so called harmonic crystal is a Gaussian random field on a d-dimensional
hypercubic lattice whose covariance operator is given by the inverse of the dis-
crete Laplacian, i.e. the standard lattice Greens function. To be precise, let A
be a finite subset of Z¢% . We denote by P4 the probability law on R4 defined
as follows:

— 1 1 2
Py(dza) = 7 exp(—@ije;ufm(a:z —z;)%)dz s (1.1)
Timgl=1

where x4 = (zi)ica dra = [[;c4 dzi, A is the outer boundary of A: 0A =
{jeZNA:3i € Awith |i—j| =1}, and z; = 0 for i € DA . Z, is the
normalizing constant
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1
Zy = / exp(—— E (z; — x4)*)dz A (1.2)
RA 8d i,jEAUBA
i jl=1

Let Vv = [-N,N]?NZ% . We usually write Py and Zy instead of Py, and
YATN

We modify this measure now, by introducing a pinning to the “hard wall”
z=0.

Pradov) = > —ep(—g; Y (@) [] (o +e'5,ds)

N,J i,jEVNUBVN j€VN
[i—j|=1

(1.3)

where 0, (dz) is the Dirac measure at 0 and J € R is a parameter regulating the
strength of the pinning. A slightly different model is obtained by defining

pN,a,b(d:cVN) = 3 1 exp(—S—ld Z (w; — mj)2 - Z P(x;)) H dz;

N,a,b i,jEVNUAVN iE€EVN JEVN
li—j|=1

(1.4)

where 9 is a symmetric function R — R of finite support, having a small dip
near 0, for instance 9 (z) = —bl[_, 4)(2) , a,b > 0, see ([6],[11]). The results we
derive here apply to both models. We discuss in details the delta-pinned case
defined by (1.3), and will give the modification needed to handled the other case
(1.4) in Section 3. The effect of this pinning force to the “wall” {z : z; = 0}
is quite marked. For all pinning parameters and for any dimension, the field
becomes localized in a very strong sense, meaning that

sup sup En 7(X?) < o0 (1.5)
N i€Vn

(X; are the coordinate mappings), and there exists §; > 0 with

sup sup E‘N,J(Xin) < exp(—dsk) (1.6)
N 15]€VN
li—j|>k

for k large enough. This had been proved for the model (1.4) in dimensions
larger or equal to 3 in [6]. In the delicate two dimensional case, (1.5) had been
first been proved in [11], and then the positivity of the mass, i.e. (1.6) has
been proved in [1], [10], and finally under rather general conditions in [13]. A
discussion of a discrete one dimensional version of this problem can be found in
[5] and [15].



The main aim of the present paper however is to discuss what happens in
the presence of a so called “hard wall” condition. This simply means that the
field is conditioned to stay positive. Let, for any set A C Vi,

O ={z eR™ :2; >0,Vie A}, Qf :=Qf _,
and
Py, =Pna(.|0F).

We recall that under the hard wall condition but without pinning, i.e. when
J = —00, or b =0, the field is repelled at height v/log N (for d > 3), log N (for
d =2), and VN (for d = 1). That is,

Viog N, d>3
Ef, _(Xo) ~ ¢ logN, d=2
VN, d=1

cf. [3], [8]- A very interesting observation first made by Michael Fisher [12] in a
slightly different model is that for d = 1, there is a transition from localization
to delocalization if the parameter J varies: If .J is large, then (1.5) and (1.6)
hold true, but if J is small, then the field delocalizes, i.e.

EJ-’\},J(XO) ~VN.

Such a transition is called a wetting transition. Fisher had considered a
random walk case, but the results are the same in our Gaussian model. For
the convenience of the reader, we will include a discussion of the simple one
dimensional case in Sect. 3.

This one dimensional case raises the question if a similar wetting transition
occurs also in higher dimensions. Unfortunately, we are not able to discuss that
fully here. What we can and do show here is that for dimensions at least three,
there is always localization, at least in a somewhat weaker sense than expressed
in (1.5) and (1.6). To formulate our results, let {x be the number of zeros of
the field:

én = Z 1x;=0-

1€EVN
Then we have

Theorem 1 Assume d > 3, and let J € R be arbitrary. Then there exist
ez,ng > 0 such that

P ;(€n > es|Vi)) > 1— exp(—nsN?) (L.7)

provided N 1is large enough.



It appears overwhelmingly plausible that a statement like (1.7) should imply
(1.5) and (1.6), but this seems to be a quite delicate question which we had
not been able to settle. For large enough J such statements have actually been
proved (in a slightly different setting) by Lemberger [16] using cluster expansion
techniques. Probably his methods would carry over to our situation, but they
appear to be powerless for proving the result also for small J.

Define the two partition functions

A 1
+ _ . )2 )
Zy = /Q; exp(—@ E (zi — x5)7) I I dzj,

4,JEVNUBVN JEVN
[i—j|=1
and
. 1
Zho= [ ewgy X i—ap) I (o +ebo(ds)
QN i,jleVNluaVN JEVN
i—j|=1

then Theorem 1 is actually an easy consequence of part b) of the following result

Theorem 2 a) For any J, and any dimension

as
ZN.g
=)
ZN

1
Nd

+ — .
0 = A}gnoo log
exists and J : RU{—00} — 87 is a nonnegative conver function with 6% = 0.

b) For d >3, 63 > 0 holds true for any J.
¢) For d = 1, there exists Jy € R such that 5'}' =0 for J < Jy , and 6‘}' >0
for J > Jy .

The existence of the limit in a) is easy and has been proved for d = 2 in
[4]. The argument there (for this issue) does not depend on the dimension and
carries over essentially verbatim, so we will not prove it here. Let

1 1 ZA?\L/,J
— log —
d T
N VA

+  _
ong =

then 5 )
5‘537,1 = WEJJG,J(fN)

is the expected density of zeros of the field and
62

750k, = Vark ,(N"n) 2 0

is the (rescaled) variance. In particular this implies the convexity of §*. Also
6}L > 0 implies a positive density of “pinned” configurations, that is the effect
of J is felt at the thermodynamical level.



As remarked above, the part ¢) is essentially due to M. Fisher. We include
the simple proof here in Section 3. In dimension 1 it is actually very easy to
prove the stronger statements (1.5) and (1.6), but we leave that to the reader.

Part b) is the main result of this paper and will be proved in Section 2. Our
method gives no information in the two dimensional case. After this paper was
written, Caputo and Velenik [7] succeeded, by adapting a construction due to
Chalker, to prove the existence of a wetting transition in two dimensions.

We end this section by showing rigorously how the positivity of 6} implies
the statement of Theorem 1. First note that

1. Z, 1. Zy, 1. 7%

— log NI _ _ _— log ZN
NG, T NG ®Zy TN %y

ra o
where ZX = Py (Q}) satisfies
. 1 +
cf. [8]. On the other hand, expanding the product in (1.3) we see that
Zh Z
2= 2 IR
N ACVy N
so that an alternative definition of 6}r is given by
+

1 7N, J|a®| Z
+ — 3 _ 1) — = J|A | A +
07 th N log Zn A}lm - log ACEV Pa ().
N

Next, let € > 0. By expanding again the product in (1.3), we get

. 8| Z
PN,J(&N < E|VN|,Q—"J\}) = Z €J|A |A—APA(Q4A_)
ACvy 2N,
[A]>(1—¢)[ V|

Z Z
< 2N Z A% 24

ZN’J ACVnN ZN
|A|>(1—€)|Vn]

On the other hand

N 7Z o Z
Paa(f) = 22 5 IZ—APA(Q*A;).
ZN”] ACVn N

If 67 > 0, (1.7) follows therefore easily, once we have proved



1 4 ZA
lim lim sup — lo eJ|A |24 _ 0. 1.8
e—0 N—»oop Nd & A;N ZN ( )
[A|>(1—e)|VN|

Using the fact proved in [4, Lemma 2.3.1 (a)] (note that the argument given
there extends to all d),

exp(—e(Vwl - 14]) < 4 <1, (19)
N

for some constant ¢ > 0, (1.8) follows from the estimate

c elVN| el
Bl ()7 e
ACVy: |AY < e[|} <! ~ ~E

ﬁ{ N | | | N|} = (ElVND' /727TE|VN|

by Stirling’s formula.

2 Proof of Theorem 2 b)

The strategy of the proof is to construct enough “pinning” configurations for
which a lower bound on the probability of the hard wall conditioning can be
found. The pinning configurations we construct are rather regular, and form
a small perturbation of a regular sub-grid of Vv of step A. The desired lower
bound then follows by a change of measure argument, which, as in [3] and
[9], needs first a variance reduction step in order to be tight. In this change
of measure the transience of simple random walk in dimension d > 3 plays a
crucial role, for it allows to push the Gaussian field high enough even in the
immediate vicinity of a pinned point without too large a penalty.

Turning to our construction, fix A > 0, independent of N, and let lﬁ, =

A
{zi}y;"ll denote a finite collection of points z; € Vi, such that for each y €
Vn N AZ there is ezactly one z € I5 such that |z —y| < A/10. Note
that the number of different possible configurations 5 is bounded below by
(8)1ED)" = exp((P5E)H(dlog A + co)). Let A = Viy \ I§. Our main
technical estimate is the following:

Proposition 3 Assume d > 3, and let t > 0. Then there exists a constant

c1 = ¢1(t) > 0 such that, for all A integer large enough,

dlog A loglog A
Ad + Ad

N 1 .
lgriglof {1l%f} aN 1) log PAzg (Xi>ti€An)>—

By choosing A large enough (depending on J) and ¢ = 0, and using (1.9),
it is evident that this estimate proves §7 > 0 for all J € R, i.e. part b) of
Theorem 2 follows.



Proof of Proposition 3. Fix a > d independent of N, such that A® is an
integer, and fix a particular configuration I5. All our constants below will be
independent of the particular configuration 5.

For k € Z% let V*) = Vaa+kA®, and let V( L= {ie TR - dist(i, (V)0 >
1}, and 8V} = CS,’“&\ ViR,

Vaa = {k: VI ¢ Vv, dist(VR, 0V) > A}

The strategy of the proof is to cover Viy with disjoints boxes {Va(”“g} and estimate
from below the probability of the event &, := {X; > t,i € Asa} using FKG

on each box V( A- In doing so, we will be able to use entropy inequalities on
these boxes, Wthh were chosen such that on the one hand, the probability of &,
restricted to a single box, after the change of measure is close to 1 (this forces
the box not to be too large), while on the other hand the loss due to imposing
zero boundary conditions on the boxes is negligible.

Note that |Vy,al = L(2N+1 14(1 + o(1)), where throughout this proof o(1),
O(1) etc. are taken with respect to N — oo.

Throughout, we let {X.} denote the free Gaussian field, of covariance o(z, 2'),
and let {X°} denote the free Gaussian field on Z? pinned at the points lﬁ,’a =
I8 UVE Uy BV(k). That is, {X°} is a zero mean Gaussian field with X? = 0
for z € 1 ’a, whose covarlance oo(a,b) for a,b € Vi \ lA % equals that of X.

conditioned on o(X, : z € l ’*). By the usual random walk representation, c.f.
[17], [2], we have that

=E, (; 1{%:,,}) (2.1)

where w? is a simple random walk on Z? starting from a, and 7 = min{n :
wy, € l}%’a}. Here and in the sequel, we denote probabilities related to wg by
P.(-),E.(-), etc. Because of (2.1), og(a,b) > 0, and hence, due to the FKG
property,

P o= P (Xi2ti€ Ag) (22)
> H P(X0>t,ze VI \IR)- 11 P(X: 21)
k€Vo, A ZEAlﬁ\ngva A Voff%
I[I P&x.>0.

zeU, oV

Because E(X,) = 0 and Var(X,) > 1 for any z € A,ﬁ, we have that P(X, >
t) > ¢y, for any such z. Hence,

P>e 4dA°‘(2N+1)d ! H P(X°>tz2€V (k) 2\ IR)- (2.3)
k€EVa, A



Next, fix a box VDEQ, denoted hereafter as V,. On each box V, we estimate
the probability of the repulsion following the approach of [9, Section 4]: we
decompose X% = Y. + Z., where Y., Z. are independent, zero mean Gaussian
fields, with Y, = Z, = 0 on a € lﬁ, U Vg, such that Z. has exponenentially
decaying correlations while Y. exhibits long range dependence but is “small”.
More precisely, for a,b € V,, \ I,

00,(a,b) := E(Y,Y,) = oo(a,b) — (00_1 +&%)7a,b),
E(Z,Zy) = (05" +&*) 7 a,b).

Here, with L* denoting the space of functions f € L*(Z%) with fl;a y.e = 0,
oy ! is the operator on L? determined by o5 ' f = g if f = 00g, and an explicit
expression for o, Lis oy ' = I —Qo, where Q is the transition matrix of simple
random walk killed when hitting 15 U V.S, & = £(A) is taken as ¢ = (log A)~™Y
for some v large enough (whose precise value will become clearer in the course
of the proof).

The idea of [9] is to lift the field Y at a certain height. In our case, we have
to take special care around the obstacle ¢4 (this is where transience will be
crucial). More precisely, fix 1 > 8 > 0 (the precise value of 8 will also become
clearer in the course of the proof), and let R = A®, where 3 is chosen such that
AP is an integer.

For each z; € V, N l%, define b; = {2z € Z? : dist(z;,2) < R}, and let
b= Uiz, evania i

We let  denote a fixed constant (eventually, we take x = 2do — cgl—"]go%’ié,
where ¢, = ¢4(a, 8,7) > 0. The logarithmic correction term can be best under-
stood as coming from the factor 1/z in (2.5) below). Let v(-) : Z? — R denote
the oy !_harmonic function, solution of the problem

ootlv=0 onb\Ig,
v=20 on (I5 NaV,)
v=1 on V, \ b.

This harmonic function is used below to perform a Gaussian change of measure,
while controling the associated relative entropy. The following lemma plays a
crucial role in our proof:

Lemma 4 There exists €1 > 0, independent of A, a, 3, 7y, such that

min v(z) > &1.
z€b\I% (2) 2 &

Proof. By the transience of the simple random walk w? m



Returning to the proof of the Proposition, we compute
P(X?>t2€Vy\I%)
=P(Y,+Z.>t,z€V, \I%)
> P(Y. + Z. > t,Y. > v(2)\/zlog A,z € Va \ 1Y) (2:4)
> P(Z, >t —v(2)\/zlogA,Y, > v(z)\/zlog A,z € Vo \ 1)
= P(Z. >t —v(2)/zlog A, z € Va \IR)P(Y, > v()/zlog &, z € Vi \ 13)

due to the independence of the fields Z. and Y.. Note that the covariance of
Z. corresponds to the Green function of simple random walk, killed at rate £2.
Hence, the entries of the covariance are positive, and by the FKG property, using
that Var(Z.) < ao(z,2) < 0(z,2) = 0, and denoting ®(z) = [~ e~%"/2d6/\/2x,

P(Z,>t—wv(z)\/xlogA,z € Vo \ IR)
> H P(Z, >t —v(2)y/zlog A)

2€Va\l&
> H (1 —d((v(z)/zlog A — t)/\/Var(Zz)))
2€VL\IS

e Tlog AJ20 N\ Val efs%zlogA/&T 1
>l- — 1-——)
- ( cm/arlogA> ( cov/zlog A )
where we used Lemma 4 and the inequality, valid for all 2 > 1,

e—w2/2

®(z) < (2.5)

C3T

With |V, = (2A + 1)2? and |b] = c,Al@~D4AP? we conclude that, for all A
large enough,

Afa:/ZO' ad
P(Z,>t—v(z)\xlogA,z € Vo \I§) > exp (—Qﬁ) (2.6)

as soon as 3 < g1 (recall that z < 2do?!).

We next turn to the evaluation of the second term in (2.4). Let Y, =
Y, +v(2)vz'log A, where Va' = \/z + (log A)~2 and let P denote the law of
{V:}.cza. Clearly,

where H(P| Q) denotes the relative entropy of P with respect to (). The fol-
lowing lemma is crucial in the evaluation of (2.6).

Lemma 5 There exists a x = x(a, 8,7) > 0 such that

(2A@ + 1)4

(v, 5'0_’;'[)>Zd <(e7t+ATX) Ad



Proof of Lemma 5. We write
(U,&a;v)zd = (v, (6[;; — 05 )z + (v, 00 o)ga =T+ II. (2.7
Note that

-1
__ _ 1. O© 1, -
(v, (‘70,; — 0o Dv)za = <‘70 Lo, 60—2”> = 6_2<‘70 171;‘70 ‘o)z (2.8)

We next claim that

_ 1 c
Z ) 1’U(Z) < E + Rd—6—2 (29)
2€0b;
and that
_ C,
D (0 'v(2))* < Rf_z. (2.10)
Z€E0b;

Indeed, with 7 = min{n > 1: w? € (0b;Ux;) } and 8 € Z? such that 6 = 2 —z;,
it holds that

UJIU(Z) =P, (wi =u2;) = Pg(u}?_ =0)

where 7 = min{n > 1: |w,| = 0 or |w,,| = R} (note that the definition of 7
is the same for any starting point of the random walk w;,). But, introducing
or(z,y) = B [D,% o lwz—y] where 7g = inf{n > 0: [w9| = R}, we have in view
of [14] (1.38)

doootuz) = Y Po(wl=0)
2€0b; 0:/6|=R
= Z Z]P’g(i-:n,ngO)
0:16|=R n
= Z ZIP’O(uﬁ:H,?:n)
6:/6|=R n
= Y Po(jwp| =R, 7 =n)
1 1 Cg
- P O —R)=— <=
0(|wr| ) O'R(0,0) =g + Rd72’

for some constant cg, where in last inequality we have used og(0,0) > ¢(0,0) —
crR? 4 cf. [14] Prop. 1.5.9. To see (2.10), note that

Z (09 v(2))? < max oy v(2) Z oy tu(2).
ZEBb; 2€0b; 2€8b;

But,

0,2 — ;) Co
0(0,0) — Rd-2’

0y v(z) < P,(w? hits z;) = 7

10



and (2.10) follows (increasing cg if necessary, and using (2.9)).
Similarly, for z € dV,, we have that

ogtv(z) <1— (%)2.

Hence, since the contribution to (2.8) comes only from z € dbU 9V, we have

that
1A+ 1) [ ¢ 1] 1\*1? o i1
while
2A% +1)1¢ /1 i 1\??
1< [%] . (; + RZ:) +|1- (ﬁ) ] 2d(2A%* + 1)1,

Lemma, 5 follows as soon as o« > d. m

We remark that while (2.10) is not sharp the estimate in Lemma 5 is sharp
as the reverse inequality holds true to the leading order (see [9] for a similar
remark).

Equipped with Lemma 5, let us complete the proof of the Proposition. Note
first that

PV, > v(2)Vzlog A,z € Vo \ IR)
>1- Y P(V() < o(e)v/oTogh)

2€VL\IR
>1- Y PY(2) < o(2)(VE - Va) Viog B)
2EVL\IR
€1
e (- Ve

Note that Var(Y;) = G0,c(4,7) < cr2e = cr2(log A)~7, and choosing v large
enough, we have that

A 1
P(Y, > v(z)\/zlogA,z € Vo \I§) > 1 — A (2.11)

We continue by an application of a specific entropy inequality (cf. e.g. [3,
p. 421))

P(Y, > v(z)Vzlog A,z € V, \ IR) S H(P|P)4et

P(Y, > v(z)Vzlog A,z € Vo \18) — PV, > v(2)VzlogA,z € Vo \I1X)
Using (2.11) and Lemma 5, we see that

P(Y, > v(2)v/zlog A,z € V, \ IR)

i a d
> cgexp (—% (1 + %) logA(o™! + AX)@AA%I)).

11



Using now (2.3), (2.4), (2.6) and the above, we obtain that

A—dAad (Al‘l)d
P > exp(-00V*) exp (~ax g Qo ) )|

1 ATXY (24 4+ 1)4
X[csexp<—d(1+z)(logA)<l+ 5 )( Aj ) )
2A% +1)¢
X exp(;—i(log log A)(Aij))

2N+4+1 \d
SASTT)

a d (
X eXp (cm%(A_X + A Y log A)]

The claim follows at once, by choosing ¢,/20 < 1/2. m

3 The square potential case

In this section we briefly show how the argument of the previous section should
be adapted to the so called square potential case. More precisely, for b,a > 0
consider the square potential

¢($) = _b]-[fa,a](m)a reR

Next, denote by PN,b,a and p;\?’bw the corresponding measures and let
En = Z L1 x;1<a
ieVn
be the number of sites with values in the interval [—a, a].

Theorem 6 Assume d > 3, and let b,a > 0 be arbitrary. Then there exist
€b,a; Mb,a > 0 such that,

131'\',",,’(1(&\: > epaNY) > 1 —exp(—mp,oNY) (3.1)
provided N is large enough.

Actually, we will see that €, and 1, , depend only on the strength S(a,b) =
((2a) A1)(e? —1). Thus, if we let a \, 0 and b 1 0o such that J = log S(a,b) € R
is kept fixed, then, with respect to the weak convergence of measures,

‘FA)J—VF,I),LL = 131-\?.]7

so that in some sense we could view Theorem 1 as a Corollary of Theorem 6.
Proof. Let us show that we can find £ > 0 such that

1 N
lim sup i log Pnpa(én <eN? QL) <0 (3.2)

N—oo

12



The main idea in proving Theorem 6 is to write

exp( Z bl\wilfa) = H (ebllzi\ga + 1|a:,'\>a) = H ((eb - 1)1|m|§a + 1)

i€EVN i€EVN i€EVN
and therefore
ZN

Ppal) = e 3 (¢ = )Py (Q,0(@) P ( - |20 (a)
0,6 ACVy

where Q40(a) = {z € R~ : |z;| < a,i € A®}. Note that Py ( - [ 40(a)) being
a conditioning on 2 ,6(a) = N;c 40y (a) satisfies FKG, cf. §. 6 of [10], and
therefore

R Z A0
Proa(@) = 570 3 (= 1) Py(0(@) P (2 [240()
0,8 ACVN
ZN

(e = 1) 4" Pr (@40 () Py (0 [ 240 (@) P (95 [9240())

v

ZN:bva ACVy
Using again the FKG property of Py ( - |Q a0(a)), we know that
Py (0% [Q0(a)) > [T Pv(Xi > 0[Q40(a) = exp (— log2|A°]).
i€ Al
An application of Lemma 6.2 of [10] shows that
Pn(2; [Q40(a)) > Pn(Xi > a,i€ A|X; = 0,5 € A%) = Pyo(X; > a,i € A).

Next, note that for d > 3, the variance of X; remains bounded, thus in view of
Lemmas 6.4 and 6.5 of [10], there exists a constant ¢ > 0 such that

Pn(|Xi| < a,i € A%) > (c((2a) A 1), (3.3)

Putting things together, we see that
ZN

pN,b,a(Qﬁ) > = Z €JI‘A0‘PA0 (X;>a,i€ A
ZN,b,a ACVN

where J' = log c+log((2a)A1)—log 2+log(e® —1) = log S(a,b)+logc—log2 € R.
On the other hand, note that

Pr(Q40(a)) < (2a) A1) A"

This follows simply from the estimate, valid for i € Vi \ A,

sup Pn(1Xi| <a|Xj,j#1) < (2a) A1
Xj,j#i

13



since Py (X; € - |X j»J # %) is the normal distribution with variance 1 and mean
1
55 Zj:|i—j|:1 X;. Thus

Prpa(En <eN% QL)

VA
=N > e A% Py (Q 40 (@)) Py ({1X5] > a5 € A} N |2 40(a))
ZN’bva ACVN,|A0|<ENd

S ,\ZN ((2&) A 1)€Nd€EbNdﬁ {A - VN . AC < ENd} .

ZN,b,a

That is, with e/ = ((2a) A 1)e®,

eeJNdﬂ{A CVn: AL < sNd}

Pnpa(én <eN? QL) < : .
( %) S acvy €A Py(X; > a,i € A)

and the result follows from Stirling formula and Proposition 3. m

4 The one dimensional case

In this section we prove part ¢) of Theorem 2. If |A%| = k, AC = {zy, 20, ..., 24},
—N<z <29 <--- <1z, <N, and [, =z + N+ 1, lzzwz—.’ﬂl,...,lkz
T — Tp—1, g1 = N —xp + 1, then

k+1 k+1
Za =[] 2, Pa@h) = [I »if,
j=1 j=1
where
1 =1
zZ| =
Z[l,lfl]a l> 17
and
pl+ _ 1 =1
F)[lal_l](ﬂa,lfl])’ [ >1.
Evidently
ey
="
Vi
We will also use the fact that
i =1/L. (4.1)
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We postpone the proof of this. Collecting these facts, we see that

VA
ON = Z eJ‘AO‘Z—APA(Qj)
ACVy N
2N+1 k+1
=3 evpen 3 S
k=0 I, 5l lk+1

l;=2N+2

If t > 0, we conclude that

[es) o] k , o0 k
Z ON __ paN+2 _ —J Z( e’ ) (Z tlp+(l)> _
Noo V2N +2 k=1 2/m =1 Vi
For t = 1 and J < log(2y/7) +log(3";2, (l)) this is convergent, and it follows

that 67 = 0. On the other hand, if J > log(2y/7) + log(> 12, (l)) then
t2N+2

% N=0 m is divergent for some ¢t < 1 sufficiently close to 1, as follows

from the continuity of £#'p* (I)/v/I on [0,1]. From that it is evident that 6 > 0.
We therefore see that the critical value Jy is

o +(l) o0 B
Jo = log(2y/m) +1 P —1ogaym) +1 132
o =log Og(; ﬂ> 0g og;

We finally complete the proof of (4.1). Let &;,...,& be a random vector,
whose joint distribution is the law of i.i.d. Gaussian random variables of zero
mean and unit variance, conditioned on 22:1 & = 0. We use the fact that
this distribution is invariant under permutations, and in particular under cyclic
permutations, and that almost surely, » , ;& # 0 for any strict subset I of
{1,...,1}. Let

(e+Bymod 1
7 = i i -
L2

Then, the minimum in the definition of Z is achieved at exactly one pair (a, 3).
Let & = £y pymod > and define y7 = = & =2 §(ita+pmod; Then
yj > 0 for j # 1 and yj = 0, a.s., while for any other cyclic shift, i.e. for any
sequence y;-y =37, .f(i +mmodi such that v # (a+ @)mod , there exists some j
with y;’ < 0. It thus follows that, with 8 denoting a random variable distributed
uniformly on {1,...,1},

t

t
PO _&>0t=1,....,1) = B(P(Q_ & pymods = 0t =1,...,1)
i=1

i=1

=P((a+p)=1)=1/I.

(4.1) follows at once.
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Remark 7 [t is actually easy to see that for J < Jo (1.6) and (1.5) are satisfied,
and that for J > Jo the rescaled field

ﬁX[Nt]a -1<t<1,

converges to a Brownian excursion on [—1,1]. We leave that to the reader.

References

[1] E. Bolthausen and D. Brydges, “Gaussian surface pinned by a weak pote-
nial”, Preprint (1998).

[2] E. Bolthausen and J. D. Deuschel, “Critical large deviations for Gaussian
fields in the phase transition regime”, Annals Probab. 21 (1994), pp. 1876—
1920.

[3] E. Bolthausen, J. D. Deuschel and O. Zeitouni, “Entropic repulsion for the
lattice free field”, Comm. Math. Phys. 170 (1995), pp. 417-443.

[4] E. Bolthausen and D. Ioffe, “Harmonic crystal on the wall: a microscopic
approach”, Comm. Math. Phys. 187 (1997), pp. 523-566.

[6] T. W. Burkhardt, “Localisation-delocalisation transition in a solid-on-solid
model with pinning potential”, J. Phys. A: Math. Gen. 14 (1981), pp.
L63-L68.

[6] D. Brydges, J. Frohlich and T. Spencer, “The random walk representation
of classical spin systems and correlation inequalities”, Comm. Math. Phys.
83 (1982), pp. 123-150.

[7] P. Caputo and Y. Velenik, “A note on wetting transition for gradient fields”,
Preprint (1999).

[8] J. D. Deuschel, ”Entropic repulsion for the lattice free field II, the 0-
boundary case” Comm. Math. Phys. 181 (1996), pp. 647-665.

[9] J. D. Deuschel and G. Giacomin, “Entropic repulsion for the free field:
pathwise characterization in d > 3”, to appear in Comm. Math. Phys.
(1999).

[10] J. D. Deuschel and Y.Velenik, “Non-Gaussian surface pinned by a weak
potential”, Preprint (1998).

[11] F. Dunlop, J. Magnen, V. Rivasseau and P.Roche, “Pinning of an interface
by a weak potential”, J. Stat. Phys. 66 (1992), pp. 71-97.

[12] M. E. Fisher, “Walks, walls, wetting, and melting”, J. Stat. Phys. 34
(1984), pp. 667-729.

16



[13] D. Ioffe and Y. Velenik, “A note on the decay of correlations under 6-
pinning”, Preprint (1998).

[14] G. F. Lawler, Intersections of random walks, Birkhduser, Boston (1991).

[15] J. M. J. van Leeuwen and H. J. Hilhorst, “Pinning of a rough interface by
an external potential”, Physica A 107 (1981), pp. 319-329.

[16] P. Lemberger, “Large field versus small field expansions and Sobolev in-
equalities”, J. Stat. Phys. 79 (1995), pp. 525-568.

[17] F. Spitzer, Principles of random walk, Springer, Berlin (1976).

17



