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Abstract

Consider two independent sequences X1, -+, X, and Y3,---,Y,. Suppose that X, --, X, are
iid. px and Yy,---,Y, are i.i.d. py, where px and puy are distributions on finite alphabets ¥ x
and Yy, respectively. A score F': ¥ x X Xy — IR is assigned to each pair (X;,Y;) and the maximal
non-aligned segment score is M,, = maxOfiﬁ%’;‘A {ZkA=1 F(Xitk,Yj+r)}- The limit distribution

of M, is derived here when px and py are not too far apart and F is slightly constrained.

1. Introduction.

Our motivation derives from DNA and protein score based multiple sequence comparisons.
Consider two sequences of length n, Xi,...,X, and Y3,...,Y,, where the letters X; take values
in a finite alphabet ¥ x and the letters Y; take values in a finite alphabet Xy. A real-valued score

F(-,-) is assigned to each pair of letters (X;,Y;). The maximal segment score allowing shifts, is

A
M, = max {) F(Xipk Y}
k=1

0<i,j<n—A
A>0 =
Suppose the two sequences are independent: Xi,...,X, ii.d. following the distribution law ux
and Yi,...,Y, iid. following the distribution law py, where ux and py refer to probabilities on

Y x and Yy, respectively.
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Of primary relevance is the case where the expected score per pair is negative and there is positive

probability of attaining some positive pair score. Thus, we assume
(1) By (F) <0, pixx X iy (F > 0) >0,

in which case M,, — oo is the maximum of segmental scores of negative mean. The hypothesis (H)
is in force throughout this paper, and it is also assumed that pux and py are strictly positive on
Y. x and Xy, respectively.

It was shown in [DKZ, Theorem 1] that M, /logn converges a.s. to a positive finite constant
~v* defined in terms of appropriate relative entropies. Here, we address the problem, mentioned in
[DKZ], of evaluating limit laws for M, or equivalently, for the dual variables T, = inf{n : M,, > y}.
These are closely related to Poisson limit laws for the count

min{i,j}

Wy = Z Z Azzl 1{EkA=1 F(Xitr—n,Yj4r—a)>y}’

i<ty j<t,

with the proviso that when (7, j, A) is counted then the triplets (i,j,A’) for A’ > A and (i +k,j +
k,A’) for A’ > k > 1 are not counted (the value of ¢, is specified in Theorem 1 below). To state
our main result we need some additional notation. Let d(-,-) denote the variational norm between
the indicated distributions, and Po(A) denotes the Poisson random variable of parameter \. Let
0* and a* denote the conjugate exponent and conjugate measure, respectively, defined in [DKZ].

That is, determine 6* as the positive constant (unique, by (H)) satisfying

EMXXMY (60 F) =1
and
da* 0*F
—_ = e
d(px X py)

Let ¥ = X x x Xy be the alphabet of letter pairs, and let M;(X) denote the set of all probability

measures on . The relative entropy of v € M;(X) with respect to p € M;(X), denoted by H(v|u),
is given for ¥ = {b1,---,bn} by the formula:

v(bs)

H(v|p) = ) v(bi)log ;

; p(bi)

with 0log 0 interpreted as 0. In addition to (H), we impose throughout the assumption
(E") H(a" |px X py) > 2max(H(ax|px), H(ay|py))

where, for any v € M;(X), vx and vy denote the marginals of ¥ on ¥x and Xy, respectively. In
particular we shall use x4 to denote the product measure pux X py. Note that the condition (E’)

requires strict inequality compared to (E) of [DKZ], which permits equality.
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While in general, v* < 2/6*, it is shown in [DKZ, Theorem 4] that, under (E'), v* = 2/6*,
and that for identical alphabets, (E’) holds whenever px = py and F(z,y) = F(y, z) is not of the
form F'(z) + F(y). It is easy to check that (E’) entails o* # a% X a3-. Let

A
Rn = 0<?§EC_A{Z F(Xi+k;Y:i+k)}a (11)
TA>0 k=1

be the maximal segment score between two aligned sequences. It is shown in [KD, Theorem A]
(following [Igl]) that when F(X,Y") is non-lattice, then

lim P(R, — logn < z) = exp(—K" exp(—6*z)) , (1.2)

n—o00 g* —

while if F(X,Y) is a lattice variable then

lim exp(K™* exp(—6*z,))P(R, —

n—o0 g*

for any bounded sequence x, such that x, + %g*—n are lattice points. The constant K* is determined
from fluctuation sum series identities (see for example [KD, (1.8) and (1.11)]), and examples for
which K* is explicitly computed are given in [KD, Section 3].

The analysis of [DKZ] shows that under condition (E’), the constant limits of M, /logn and
R,2/logn are the same (i.e., then v* = 2/6*). Our main result here establishes that the limit
distribution of M, is the same as that of R,,.

Theorem 1. Assume (E') and (H). If F(X,Y") is non-lattice, then

2
lim P(M, — logn < z) = exp(—K" exp(—6*z)) , (1.3)

n—oo

*

and if F(X,Y) is a lattice variable then

21
lim exp(K* exp(—8*2z,))P(My, — —2" < z,) =1 (1.4)

n—oo 9* -

for any bounded sequence x, such that x, + 2135" are lattice points. Moreover, for t, = Vite? V2,

yll’n;o d(W,,Po(tK™)) =0 (1.5)
implying that
. _1_ —K*t
yll)noloP(Ty <t,)=1l—e (1.6)

where if F(X,Y) is a lattice variable then y — oo in (1.5) and (1.6) via lattice points.
Remark 1. In deriving Theorem 1 we assume F(-,-) to be finite valued, although the possibility
of F(z,y) = —oo for some values of (z,y) is easily accommodated (see also the discussion of [DKZ,

Theorem 3]). Thus, in the special case of F(z,z) = 1 and F(z,y) = —oo for all z # y (with
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Yx = Xy), the limit (1.4) corresponds to the limit distribution of the longest segmental match
between the two sequences. In this context, condition (H) holds as soon as |¥ x| > 1, while condition
(E") reduces to

max{ Y px(i)uy (i) log py (i), > px(i)py(i)log px (i)} < %A* log A* (1.7)
1€EXx 1€EX x

where \* = e7% = 3. ux(i)puy (i) (and in this case K* = 1 — X\*, see [KD, Example 2]). For
this special case, Theorem 1 was proved earlier in [KO, Theorem 2.2] encompassing a wide class of
prozimal P-mixing stationary sequences (see [KO, (2.11)] for the technical definition of proximal
sequences). It is easy to check that for i.i.d. sequence letters (1.7) improves upon the proximality
condition of [KO, (2.11)]. For related results in the context of longest quality match see [AGW86,
AGW90.

Remark 2. Theorem 1 putatively extends to the maximal intersequence segment score involving
any subset of r out of s independent sequences, of possibly different lengths nq,---,n, provided
(H) applies for each r-subset and there is a unique dominant subset (having the maximal value of
6*) for which condition (Ey) of [DKZ, Section 5] holds with strict inequality.

Remark 3. In [DKZ, Theorem 4] it is shown that v* = 2/6* if and only if either (E’) holds, or

H(o"|px x py) = 2max(H (o |px), H(ay |py)),
in which case o = oy x aj,. For example, this latter situation occurs for identical alphabets when

px = py and F(z,y) = F(z) + F(y). In this context, M, < RX + RY  where for each fixed n,

0<i<n—A 0<j<n—A

A A
RY = max {) F(Xiw)}, Ry = max {> F(Yj)},
A>0 k=1 A>0 k=1

are two i.i.d. random variables. Assuming for simplicity that F'(X) is non-lattice, it follows from
(1.2) that

21 1 1 .
Jim, POM, — =555 <) 2 Jim PRY = =55) + (Ry = =7) < 2) = h(I"e™20%)
where

h(u) = /00 exp(—(u?/K*) exp(8*z))d[exp(—K* exp(—8*2))] = u/ooo e Ut gt > 1 5ue~2-%%,

—o0

Since K* > 0, considering z — —oo, it is clear that (1.3)-(1.6) do not hold in this case.
Remark 4. Even when (E’) does not hold, M,, may still possess a limiting extremal distribution

of type I (with a different constant 1/6* < ~* < 2/6*), and this might happen even when the
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set M of optimal measures as characterized in [DKZ, Theorem 2] is infinite. For example, let
Gy (y) = max,{F(z,y)} and

A

Ry = OS%%{A{Z Gy (Yj+x)}-
A>0 k=1

Suppose that E,, (Gy) < 0 and let 6* denote the unique positive solution of E,, (e9¥) = 1. Then

RY —logn/#* possesses a limit distribution of type I (cf. [KD, Theorem A]). Let ¥ = {(z,y) :

F(z,y) = Gy(y)} and define 8* € M1(Zy) such that j% =ef"CGv 1f

(Bv) 2H(F|uy) > _min  H(vlux x py),
vw(X)=1,vy =B*

then v* = 1/8* (see [DKZ, (1) and (13)]). Clearly, RY > M,. In Section 3 we provide a specific
example for which (Ey ) holds and show that (Ey) results with

lim P(M, =RY)=1. (1.8)

n
n—oo

Consequently, M,, possesses the same limit distribution of type I as does RY .

Remark 5. In comparison with the recent works of [AW] and [Neu], we allow for a general score
F(-,-) but accommodate neither insertions nor deletions. Note however that in [AW] only the
growth order of M, is found, while in [Neu| the Poisson approximation is established under an

additional assumption of a limited number of insertions/deletions.

2. Proof of Theorem 1.

Since {W,, # 0} = {T,, < t,} = {M,, >y} for n = [t,], (1.3) and (1.6) are direct consequences
of (1.5) while (1.4) holds provided (1.5) applies to any bounded ¢ = #(y). Hence, Theorem 1
amounts to proving that (1.5) holds for any bounded ¢ = t(y). We start with an outline of the
main steps in proving this result.

The large deviations analysis of [DKZ| allows us to concentrate on segments of length not
exceeding c;y whose empirical measure is near a*. Hence, partitioning both sequences into disjoint
blocks of size £, such that eV > £, > y, the probability P(Wy # W,) approaches 0 as y — oo,
where Wy, = >, . . I j ¢ and the indicator ; j ¢ equals one if there exists a segmental score exceeding
y involving the i-th block of the X-sequence, the j-th block of the Y-sequence and a relative shift
(alignment) & between the indices of the X-letters and the corresponding Y-letters. Adapting the
arguments of [KD] and [Igl], we see in Lemma 1 that |E[W,] —tK*| — 0 as y — co. Applying the
Chen-Stein method we show that d(W,,Po(tK*)) — 0 from which (1.5) follows. The main task
is in bounding the correlation terms E(I; j ¢l o ¢), where large deviations estimates are again
decisive, and where the condition (E’) and the restriction to an empirical measure near a* are

needed (see Lemma 2 below).



Turning now to the detailed proof, let || - || denote the variational norm between distributions
on ¥ and G, = {v € My(3) : ||v — a*|| < n} denote the corresponding open ball of radius n > 0,
centered at o*. Let T°X = (Xit1, Xit2, ), T?Y = (Yj11,Yj42,---), and define the empirical
measure

A
TiX,TiY 1
LY O DL RNt
k=1

For U € M;(X) let

A o
MY =max{)_ F(Xizr,Yjek) :0< A<, ij<n—ALY TV evy,
k=1
i.e. MY is the maximal score among segments with letter pairs having empirical measure in the
set U. It is shown in [DKZ, Theorem 3] that if U is a closed set such that a* ¢ U then a.s.
limsup MY /logn < 2/6* .

n—oo

Let
A o s

MY = max{)  F(Xitr, Yj4r) :0< A <cologn, i,j<n—ALY " ev}, (21)
k=1

be the maximal score among segments of length not exceeding ¢ologn and letter pairs having

empirical measure in the set U. It follows from [DKZ, Lemma 1] that for ¢q large enough

P(MY #MY) < o .
n=1
Consequently, for all n > 0
lim P(MSn #+ M,) = 0. (2.2)
n— oo

In particular, for ¢; large enough and all > 0, suffices to prove (1.5) with the count W, restricted
to triplets (¢, 7, A) for which A < ¢y and Lgi_AX’Tj_AY) € Gy. Now let £, > 3c1y be a sequence
of integers such that log/,/y — 0 and y?/{, — 0 as y — oo. Set m, = t,/{,. Obviously,
my — oo0. Since d(Po(A),Po(X)) < |A — )|, we may assume without loss of generality that
m, (and hence t,) are integers. Partition the sequence (X1,...,Xy,) into blocks of £, letters
each, such that the i-th block is X¢ = (Xé,X{',...,Xéy_l) where X = X4 tp4+1. Similarly,
partition the sequence (Y71,...,Y; ) into blocks of £, letters each. For j = 0,...,m, — 1 and
£=0,1,...,4,—1,let V3¢ = (V{4 Y74 .. ,Yg;i ,) denote the &-cyclically-shifted j-th block, such
that Y = Yjg, 414 (e4k)moas, - Lot

my—1my—14,—1

Wy= > > Y ILje, (2.3)

i=0 j=0 £=0
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where

e = { 1 ifmax{Y ATV R(XE YY) 4y —A>r>0, qy>A>0, LY e G >y
’ 0 otherwise,

and
r+A 1

’i,j,é',f‘ —
LA - A Z 6 Xz YJ§

For k < cyy let £1(k) be the event of a score exceeding y in at least one of the segments of length &
which cross the block boundaries in either the X-sequence or the Y-sequence. Similarly, let £5(k)
be the event of a score exceeding y in at least one of the segments of length & in which the £-shift
in Y9¢ causes a gap in the Y-letters. It is easy to check that at most 2t,m,(k — 1) segments are

contributing to &;(k) for ¢ = 1,2, and therefore by the union of events bound

k
(U &® U &®) < 2tymy(ay)?sup PQY_F(X;,Yi) > y) .-
k<ciy k<ciy k>1 =1
Because E[e! F(*:Y)] = 1 and independence
k k
P(> F(X.,Y:) > y) < Blexp(Y 0°F(X,, Yi)))e "V = e~
i=1 =1
and since by definition ¢, = Vte? ¥/2 we obtain that
P(Ué'l UEz (Cly) -0 as y—

0
k<ciy k<ciy Y

Let &5(3, 4, &) be the event that there are A <r and r + A’ < ¢’ </, such that

7

r
Y F(XLY) >y, Y FXLY >

k=r—A+1 k=r'—A’41

Since R, is monotone in n (see (1.1)), it follows by conditioning on {X,i,Y,f’g,k < r} that
P(&5(i,5,€)) < P(Ry, > y)?. Consequently, by the union of events bound
.. 2 2 ey 2
P(U 53(Za.77§)) < myEyP(RZy > y) = tTP(ng > y)
i€ Y

Hence, the next lemma implies that P(U; ;¢£3(4,5,£)) — 0 as y — oo.

Lemma 1.
e’y
lim ——P(R,, >y)=K".

y—oo L



It is not hard to check that

W, #w,3c |J &k | &k [ &,4,6).

kscly kscly i’jag

Consequently, in order to prove (1.5), it suffices to show that

d(Wy,Po(tK ))yjooo (2.4)
Proof of Lemma 1: Following [KD], divide the realization of S, = >, F(X;,Y;) into successive

nonnegative excursions:
Ky=0, K, =min{k:k>K,_1+1, Sy — Sk, , <0}, v=1,2,...

with excursions extremes

Q. = Kqulnﬁa‘k}!iKu(Sk - SK,,,l)-

Note that @, are i.i.d. random variables, with common distribution function denoted G(y). Thus,
P(Rg,, > y) =1—[G(y)]™. Fix § > 0 arbitrarily small and define next my = y4¢,/E(K;) with
E(K;) < oo due to E,(F) < 0, where vy > (1+ ) and y— < (1 — ) are chosen as the minimal
(maximal) values such that my (and m_, respectively) are integers (as y — oo we have vy — 14§
and y- — (1 —4)). Using

lim (1 — G(y))e’ ¥ = E(K,)K*,

Yy—ro0

which is provided by [KD, Lemma A] and the identification of K* in [KD, below (1.12)] (see also
[Igl]), one sees that

- — lm & n— v+ly/E(K1)] _ *
s 7 P(Rk,., >y)= lim 7 [1—G(y)"*+™ ]= (140K, (2.5)
and
eV
lim —P(Rgk,, >y)=(1-90)K" (2.6)
y—oo £y

Since R, is monotone in n,

P(Ry

m_

>y) = P(Km_ > {y) < P(Ry, >y) < P(Rg,, >y)+P(Em, <ly). (2.7)

Let g(0) = —6 + ](;(;(‘i)) log E(e%1). Note that, for each m, K,, is a sum of i.i.d. positive random

variables. Hence, using Chebycheff’s bound,

< 3 —Oly 0K1 m_ < 3 g(O)Zy .
P(Kp,_>14,) < ;121%{6 E(e"f1)m-1 < ;121% e
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Note that for Ag > 0 such that A(\g) = log E(e*F(X1:¥1)) < 0 ()\q exists due to the boundedness
of F and (H), see [DKZ, proof of Lemma 1]) we have

P(K, >n) < P()_F(X;,Y;) >0) < emh)
i=1
Therefore, g(6) < oo for all  in a small enough neighborhood of 0. It follows that ¢'(0) = —6 < 0,
leading to
e?"y .

R —c(8)e, 6%y

7 P(K, >t,)<e ve ijOO (2.8)
for some constant ¢(d) > 0. A similar computation yields

ey

—P(K\y, <ty) — 0 (2.9)

Z, y—+00
Substituting (2.5)-(2.6) and (2.8)-(2.9) into (2.7) and taking § — 0 yields the lemma. 1
For the objective of proving (2.4) we employ a version of the Chen-Stein method given in [AGG].
Let a = (i,7,€) and let B, = {(i',5',¢') : i =i’ or j = j'} denote the associated neighborhood of
dependence. With this definition, note that I, is independent of {I,, : v ¢ B,}. Thus, from [AGG]
(see also [DK92, inequalities (2.4) and (2.7)]), one has

* (1 B e_)\y) *
d(Wy,Po(tK™)) < (b1 + b2))\7 + [y — tK*|
Yy

where A\, = E(W,), and
bi=Y_ Y P(I,=1)P(s=1)

a BEBa

by=> Y P.=1Iz=1)

a BeBy
B#a

(in the notations of [AGG], b3 = 0). Let

A . .
Ry =max{Y  F(Xipr,Yipr) :0<i <L —A0< A<y, LRYTY eG,)
k=1

and p, = P RE" > 4). Note that for an a, P(I, =1) = p,, and |B,| < 2m,Z,. Therefore,
y ¢, ~Y y y yty

p *
Ay =milyp, = t(g—y)ee v, (2.10)
Y
and
2 2 2 2)\32/
bl =Py Z |BO£‘ < 2my£ypy(my£y) = m—
a Y

Since Ry, > RZ", it follows that
P(Ry, >y) > py > P(R;" = Ry,|Re, > y)P(Ry, > ) .
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The strong laws of [DK91, Theorems 1 and 2] imply that P(RZ" = Ry, |Re, > y) — 1 for every
n > 0, and hence by (2.10) and Lemma 1

lim
y—)‘OO

Ay — tK*| zygn;ot\(%)ee*y—K*| =0 (2.11)
Y

(recall that ¢t = t(y) is bounded). In particular, (2.11) implies that by — 0, and (2.4) thus follows

from the next lemma, completing the proof of Theorem 1.

Lemma 2. For all n > 0 small enough, by - 0 as y — oo.

Proof of Lemma 2: Using Iy to abbreviate (g ,0) let Qo(y) = eo*y/QP(I(LO,O) = 1|I, = 1),
* L, —

Qi(y) =€* y/zp(f(o,l,o) = 1|Ip = 1), and Q2(y) = 25":11 P(I,0,6y = 1|Ip = 1). By the symmetry

of the problem,

b= py >, Pls=1l=1)

a B€EB(0,0,0)

B8#(0,0,0)
| Wl
< pym2lymy by [P(I(1,00y = 1/Io = 1) + P(I(g1,0) = 1[Io = 1) + my b Z P(I,0,e) = 1|1p = 1)]
=1
= ay(Qo(y) + Q1(y)) + @y Q2(y) (2.13)

where a, = %mgﬁze_o*ym is such that |a, — t3/2K*| — 0 as y — oo (see (2.11)), and &, =
a,e®"¥/? /0, m,, is such that |a, —tK*| — 0 as y — co. Proving Lemma 2 thus requires showing that
Qi(y) = 0,i=0,1,2 as y — 0o. Due to the symmetric roles played by ux and uy, it is enough to
consider only ¢ =1 and 7 = 2.

It is now useful to decompose the events Iy, I(g,1,0) and I(g0,¢). Thus, let

k—1
1 Z

vak’V = {w : E 5(Xw+ij:v+£y+]') =vc GU’ kEV(F) > y}’
Jj=0

withaz =1,...,4, —k+1, k < ¢y and v ranges over all possible k-types (v € M1(X) with kv(7)

an integer for all i € X); thus, the range of the pair (k,v) is of cardinality at most (c;y + 1)*I.

Similarly, define

k'—1

> 01 Vst imas,) = V' € G KB (F) > 4}
j=0

1

Jor ke ={w: o

with ' =1,...,4, — k' + 1, ¥’ < c1y, v’ ranges over all possible k'-types, and £ =0,1,...,¢, — 1.
(1) Starting with @1(y), note that

P(I(O,l,O) = 1|IO = 1) = P( U Ja:,k,u' U Ja:’,k’,u’,O) < Z Z P(Ja:,k,u|Ja:’,k’,V’,0)-

z,k,v z! k' v z,k,v k'
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There are two distinct classes of four-tuples e = (z,2', k, k') to consider, e € &, if [zr,z + k— 1] N

[#',2' + k' — 1] = 0 and e € &, otherwise. For e € &,,
P(Je k| Jar r,01,0) = P(Jakw) < P(lo,1,0 = 1) = py (2.14)
Since the only connection between the conditioning event and J, . is through the X-sequence

sup P(Jw,k,V|Jw’,k’,u’,0) = sup P(Jw,k,u|J1,k’,u’,0)

e€&E,v,v’ k,k" v,
1<z<k’

< sup P(Jm,k,u|Xa: =aj,... aXm+k—1 = ak)

(a1yeensar)
kL kp1<e<k’
PS80k, v, = V)
k j=1 (XJA,J)
= SupP Z (X;,Ye,+ = Z(sx = Vx) = sup A (215)
ko ] . i Yey+7) J —~ i kv P(%Ej:l(sz :VX)

Using simple combinatorial bounds (see, e.g. [DKZ, (3) and (4)]), one sees that

1Nk —
sup Pl 2 00,0 = V) < sup(cyy + 1) EleHH @M —Hvxux)] (2.16)

k,v P(%E";:l 5Xj = Vx) o k,v

By (E') and the continuity in a of H(a|b), for n > 0 small enough
Bn) = inf {H(v|p) — 2max[H (vx|ux), H(vy|py)]} > 0
vely

Thus, for v € G, such that kE, (F) > y, one has that H(v|u) > 2H (vx|ux)+06(n) while kH(v|p) >
6*y. Hence, using (2.14)-(2.16) and (2.11),

Q1(y) =e*¥/2P(I(0,1,0) = 1|To = 1)
See*y/z[ﬂz(cly + 1)3|E|6—9*y/2e—ﬁ(n)y/2IIF||oo +py(c1y + 1)2|E|g§] y__)mo 0.

(2) It remains to deal with @Q2(y). As in the above computation, note that,

—PUJmku,g U Je' k' v',0),

x,k,v x' k', v
and one has
2,—1 £y—1
Qy) = Y Plpoe =1 =1)=> P(|J Jepwe U Jorrr0)/py
é=1 é=1 z,k,v z' kv’
P(Jw k.6 J:c' k' v’ 0)
S 2 Z yvy ¥y k) i) y (2‘17)
&,x,k,v Py
ml, I<k ,VI



For any five-tuple e = (§,z,2',k, k'), let Ax (Ay) denote the set of X; (Y;) letters occurring in
the definition of J; ., ¢ which do not occur in the definition of J, s,/ . Three distinct cases are
possible:

(a) |[Ax|V|Ay| > (1 —n)k (denoted e € &,).

(b) (1 —n)k > |Ax|V|Ay| > dy (denoted e € &).

(c) |Ax|V |Ay| < dy (denoted e € &,).

Here, § is a small fixed constant which depends on 7 and will be chosen below. We analyze the
three cases separately. The argument for |Ax| > |Ay| being the same as for |Ax| < |Ay|, we may
assume the latter in subsequent computations.

Case (a) To simplify the notations we assume that nk is an integer (otherwise replace nk by its
integer part), and let L,, = Z?il dy,/nk, L1_, = Zz —nk+10v;/(1—n)k. Note that, after re-labeling

the random variables involved, since v € G, for n <1/2

P(Jo kvl Jar krwr0) < sup Z5Y =vy|Y1 =b1,Y2 = ba,..., Yo = byp)
(bl,bz,...,bnk) i=1
= sup P((1—n)Li—p+nLy, =vy|Y1 =b1,Ys = b, ..., Yy = by)
(b1,b2 sk
< sup P(Li—, = ¢v)
¢€G4n

With a3, # py, one may find an 7 small enough such that p(n) = infseq,, H(dy|uy) > 0. Choosing
n at least that small, by the combinatorial upper bound of [DZ, Lemma 2.1.9]

sup P(Li_, = ¢y) < e (A=memk < o=(=m)p(my/|IFle
9€EGan

(recall that kE, (F) > y). Since py > P(Jy x,,7,0), We are led to the conclusion that, for all e € &,,

P(Ja:,k,u,ﬁa Jw’,k’,u’,O)
Py

< P(Jg kel Jar k0 0) < e~ @=me(my/||Flleo (2.18)

Note that in both cases (b) and (c), since the overlap between the sequences involved in the
definition of J; k¢ and Jgr g0 is at least of one symbol whereas £, > 3ciy > 3k, one may
re-label the sequences such that ' = 1, x may assume both positive and negative values and the
modulus operation is omitted from the definition of J, 1, ¢. We will henceforth work with this
re-labeling without further mentioning it.

Case (b) Let here

+
L, k& — Z 5Xe,Ye+g7
I=g¢

?r'ln—l

and

1
A
Lz,k,§ = k _ |A | Z 5X5,Y£+§.
Y1 grtclote,ore+k—1\Ay
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Note that now,

P(Ja ks J1,k101,0) = P(Lapg = v, Lipio = V') < P(Lg ke = v, Ly ¢ & Gan)
+ ¢S'Llé) P(La,,’k’ﬁ = ¢, L17k/’0 = I/I,Lﬁk’g € ng) = A1 + Ag
€Gy

Turning our attention to A;, note that, by combining [DZ, (2.1.32) and (2.1.34)],
P(LA, e =Y Lope=v) < (k+ 1)2(Z+) = (k=|Av DH([V)
Hence, for v € G, such that kE,(F) >y

A .
p—l < P(LSy ¢ & GanlLa g = v) < (k+ 1)25F ek infuecs, HEW) 10
y .
< (cry + 1)3IBHDevn*/20IFlle

where we have used in the last inequality the relation (see [DZ, Exercise 6.2.17])

H(ylg) = llv - ¢l%/2. (2.20)

To evaluate A, let LAY denote the empirical measure of the Y; letters in the set Ay, and note
that, denoting va = |Ay|/k,
P(Lopge=0,Lsye € Gonllipo=7")<(cy+ 1P sup  PwaL® +(1—va)y = ¢y)
PEG,,YEG2y,
< (ery + DPIP(ILAY = af || < 3ean/d).

Therefore, using again (2.20) and the combinatorial upper bound from [DZ, Lemma 2.1.9], and
choosing § = é(n) not too small such that 3¢1n/d < ||} — py||/2 (this is always possible for small

since o5 v ), one obtains
Y 9

A *
22 < (cry + 1)2IE|e—5y||ay—uy|I2/8 . (2.21)

y
Note that one may have both 1 small and § = é(n) small (for example, by choosing d = d(n) = \/n
and taking 7 small enough). Combining (2.19) and (2.21), one obtains that for any e € &, and

every 1 > 0 small enough,
P(Jw,k,u,ga Jw’,k’,u’,O)

< gi(y)e MY (2.22)
Py

where g (y) is independent of e and of 7, y~!log g:(y) — 0 with y, and x(n) > 0.
Case (c) Note that since k > k' and |Ax| < |Ay| < dy, necessarily k — k' < dy, and & < 2dy. Let
now Z; = ((Zi)x,(Z;)y) denote the following (relabeled) random variables:

(Zi)X = Xw—1+i§a (ZZ)Y = Y:c—1+(i+1)£7 ,0=0,1,..., ([_] - 1)

13



k k
E]v"w(z[z]_l)a

etc, up to ¢ = [%]5 — 1. Complete this construction up to ¢ = k in such a way that the empirical

(Zi)x = Xw+(i—[%])§’ (Zi)y = Yz+(i—[§]+1)g, i=

measure of (Z1,...,Zy) is Ly p.¢. Define next the empirical measure

k—
Z 2:Zia € Mi(3?).
i=0

?r'lr—l

For any 0 e Ml(EX X Yy X Ux X Ey), let

(0)1 = 5 0(-, -, x2,y2) € M1 (X)
22€Xx
y2€Xy

(0)2 = E 9($1’y1a ) ) € MI(E)
1€EXx
y1€Xy

and

@)r2= Y 6(x1,-,y2) € My(Z).
T1€EXX
y2€3y

Note that (Lk)g = Lw,k,ﬁa ||(Lk)1—L k, (Lk)IZ_Ll,k’,O
126||F||co- Hence, with € = 1 + 12§||F||, for all large y

< (46 +40y)/k < 128y/k <

P(Jw k,u,6> Jl NN 0) (Cly + ) |2| o Soqu P((Lk)l - 91’ (Lk)12 - 927 (Lk)2 = V) - (223)
1,02€Ge

For any v, it follows from the Markov structure of the chain {(Z;Z;,1)};, that

P(Ly = v) < e~ FHEIxuxxpuy) (2.24)

(see [CCC, Lemma 3], or [DZ, Exercise 3.1.21]). Using (2.23) and (2.24), one obtains that

P(vakvy)é.’ Jm’,k’,y’,o)
Py

< 92(y) exp(—keiengé(H(G)I(G)l X px X py) — H((0)2lux X py))),

where O, = {6 € M;(%?) : (8)1,(8)2, ()12 € G} and y~'logga(y) — 0 with y, independently of
e € & and of 7.
It is easy to check that for all § € M;(X?)

H(6|(0)1 x px X py) — H((0)2|nx X py) = H(6]|(0)1 x (8)2) >0, (2.25)

with equality iff 8 = (6)1 x (f)2. Equality cannot be achieved in (2.25) when (6)1 = ()2 = (0)12 =
a* since by (E'), (a* x a*)12 = a¥% X o} # o*. In view of the continuity of 8 — H(8|(0)1 x (0)2)
and the compactness of M;(%?), it follows that for all € = n + 126||F||o, small enough

B(e) = jimf {H(6I(0)1 x nx x py) — H((O)zlux x py) } > 0.

14



This in turn implies, for 7, small enough (again, the choice § = /7 with 7 small enough will do)
and 8= '(¢)/||F||c > 0, that for each e € &,

P(Ja k0,5 Ja kv 0)
Dy

< galy)e. (226)
Combining now (2.18), (2.22) and (2.26), one sees that lim,_,, Q2(y) = 0 (see (2.17)), completing
the proof of the lemma. |

3. Proof of (1.8) and an example satisfying (Ey).

Proof of (1.8): By (Ey) and the continuity of H(-|ux X pty) there exists a relatively open subset

U of {v: v(X) =1} such that Uy = {vy : v € U} is an open neighborhood of 5* and

—

-9
1+

sup {H(v|px xvy) — H(vy|py)} < H(B*|py) ,

(=9

for some § > 0. Let I, = {A : |H(B*|py)A/logn — 1| <} and set A,, j, < n — A, to be such

that RY = Zﬁ;l Gy (Y}, +k). Note that M,, = R} if for some i = 0,...,[n/A,] — 1 the empirical
AnX Tiny

n

measure Lz of the pairings (X;a, +k, Yj,+k) is supported on . By [DKZ, Theorem 2],

n = P(An € I, LYY € Uy) —poo 1.
For n large enough, every A, € I, and all 4,
P(in:"XaTj"Y e U|An,jn,L£]:Y eUy) > (A, + 1)—(|E|—1)€—An(1—5)H(/3*|uy)/(1+6) =p(A,)

see [DKZ, (3) and (5)]). For some ¢ > 0 and all n large enough, infacs [n/A]p(A) > en®/2. Hence,
(see [ g g €l

by the independence of (X;a, +1,---, XiA,+A,)s

5/2

P(Mn = R:) Z dn Auelf {]- - (1 _p(A))[n/A]} Z Qn(l - e—cn ) —)n—mo 1. I

The following example satisfies (Ey) for ¥x = Xy = {0,1,2}. Let px (i) = 1/3,7=0,1,2,
py (0) = py (1) = 1/6 and consider the symmetric score F(z,y) = 1 for z + y < 2 while F(z,y) =
—oo otherwise (so F(z,y) # F(z) + F(y)). Here, E,,.(Gy) = —o0 and & = {(0,0), (0, 1), (1,0)},
with 8* = H(8*|uy) = log3, 3*(0) = $*(1) = 1/2 and E,(F) = 1 as soon as v(X) = 1. Thus, (Ey)
holds since H (v|ux X py) < 2log 3 for v((0,1)) = 1/2, v((0,0)) = v((1,0)) = 1/4. In this particular
example, 8* = log 6 hence 1/6* < v* < 2/6*, while M = {v: v((0,1)) = 1/2,v((0,0)) + »((1,0)) =
1/2} is the set of limit points of the empirical measure of pairings (X; s, Y;4¢) over the segment
where M, is achieved (cf. [DKZ, Theorem 2]). In particular, |M| = oo, a* ¢ M and (E') fails
while M,, possesses a limit distribution of type I (up to lattice effects as in (1.4)).
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