LIMIT DISTRIBUTION OF MAXIMAL NON-ALIGNED TWO-SEQUENCE SEGMENTAL SCORE

Amir Dembo*

Department of Mathematics and Department of Statistics

Stanford University

Stanford, CA 94305, U.S.A.

Samuel Karlin[†]
Department of Mathematics
Stanford University
Stanford, CA 94305 U.S.A.

Ofer Zeitouni^{††}
Department of Electrical Engineering
Technion
Haifa 32000, Israel

1 January 1994; Revised: 9 February 1994

Abstract

Consider two independent sequences X_1, \dots, X_n and Y_1, \dots, Y_n . Suppose that X_1, \dots, X_n are i.i.d. μ_X and Y_1, \dots, Y_n are i.i.d. μ_Y , where μ_X and μ_Y are distributions on finite alphabets Σ_X and Σ_Y , respectively. A score $F: \Sigma_X \times \Sigma_Y \to \mathbb{R}$ is assigned to each pair (X_i, Y_j) and the maximal non-aligned segment score is $M_n = \max_{0 \le i, j \le n - \Delta} \{\sum_{k=1}^{\Delta} F(X_{i+k}, Y_{j+k})\}$. The limit distribution of M_n is derived here when μ_X and μ_Y are not too far apart and F is slightly constrained.

1. Introduction.

Our motivation derives from DNA and protein score based multiple sequence comparisons. Consider two sequences of length n, X_1, \ldots, X_n and Y_1, \ldots, Y_n , where the letters X_i take values in a finite alphabet Σ_X and the letters Y_i take values in a finite alphabet Σ_Y . A real-valued score $F(\cdot, \cdot)$ is assigned to each pair of letters (X_i, Y_j) . The maximal segment score allowing shifts, is

$$M_n = \max_{\substack{0 \le i, j \le n - \Delta \\ \Delta \ge 0}} \{ \sum_{k=1}^{\Delta} F(X_{i+k}, Y_{j+k}) \}.$$

Suppose the two sequences are independent: X_1, \ldots, X_n i.i.d. following the distribution law μ_X and Y_1, \ldots, Y_n i.i.d. following the distribution law μ_Y , where μ_X and μ_Y refer to probabilities on Σ_X and Σ_Y , respectively.

- * Partially supported by NSF DMS92-09712 grant and by a US-ISRAEL BSF grant.
- † Partially supported by grants NIH 5R01GM10452-29, 8R01HG00335-04 and NSF DMS86-06244.
- ‡ Partially supported by a US-ISRAEL BSF grant and Fund for promotion of research at the Technion.

Key Words: Large deviations, Chen-Stein method, sequence matching, large segmental sums. AMS (1991) subject classifications: Primary: 60F10; Secondary: 60G70

Of primary relevance is the case where the expected score per pair is negative and there is positive probability of attaining some positive pair score. Thus, we assume

(H)
$$E_{\mu_X \times \mu_Y}(F) < 0$$
, $\mu_X \times \mu_Y(F > 0) > 0$,

in which case $M_n \to \infty$ is the maximum of segmental scores of negative mean. The hypothesis (H) is in force throughout this paper, and it is also assumed that μ_X and μ_Y are strictly positive on Σ_X and Σ_Y , respectively.

It was shown in [DKZ, Theorem 1] that $M_n/\log n$ converges a.s. to a positive finite constant γ^* defined in terms of appropriate relative entropies. Here, we address the problem, mentioned in [DKZ], of evaluating limit laws for M_n , or equivalently, for the dual variables $T_y = \inf\{n : M_n > y\}$. These are closely related to Poisson limit laws for the count

$$ar{W}_y = \sum_{i \leq t_y} \sum_{j \leq t_y} \sum_{\Delta=1}^{\min\{i,j\}} 1_{\{\sum_{k=1}^{\Delta} F(X_{i+k-\Delta}, Y_{j+k-\Delta}) > y\}},$$

with the proviso that when (i, j, Δ) is counted then the triplets (i, j, Δ') for $\Delta' > \Delta$ and $(i + k, j + k, \Delta')$ for $\Delta' \geq k \geq 1$ are not counted (the value of t_y is specified in Theorem 1 below). To state our main result we need some additional notation. Let $d(\cdot, \cdot)$ denote the variational norm between the indicated distributions, and $Po(\lambda)$ denotes the Poisson random variable of parameter λ . Let θ^* and α^* denote the conjugate exponent and conjugate measure, respectively, defined in [DKZ]. That is, determine θ^* as the positive constant (unique, by (H)) satisfying

$$E_{\mu_X \times \mu_Y}(e^{\theta^* F}) = 1$$

and

$$\frac{d\alpha^*}{d(\mu_X \times \mu_Y)} = e^{\theta^* F}.$$

Let $\Sigma = \Sigma_X \times \Sigma_Y$ be the alphabet of letter pairs, and let $M_1(\Sigma)$ denote the set of all probability measures on Σ . The relative entropy of $\nu \in M_1(\Sigma)$ with respect to $\mu \in M_1(\Sigma)$, denoted by $H(\nu|\mu)$, is given for $\Sigma = \{b_1, \dots, b_N\}$ by the formula:

$$H(
u|\mu) = \sum_{i=1}^N
u(b_i) \log rac{
u(b_i)}{\mu(b_i)},$$

with $0 \log 0$ interpreted as 0. In addition to (H), we impose throughout the assumption

$$(\mathbf{E}') \qquad \qquad H(\alpha^*|\mu_X \times \mu_Y) > 2\max(H(\alpha_X^*|\mu_X), H(\alpha_Y^*|\mu_Y))$$

where, for any $\nu \in M_1(\Sigma)$, ν_X and ν_Y denote the marginals of ν on Σ_X and Σ_Y , respectively. In particular we shall use μ to denote the product measure $\mu_X \times \mu_Y$. Note that the condition (E') requires strict inequality compared to (E) of [DKZ], which permits equality.

While in general, $\gamma^* \leq 2/\theta^*$, it is shown in [DKZ, Theorem 4] that, under (E'), $\gamma^* = 2/\theta^*$, and that for identical alphabets, (E') holds whenever $\mu_X = \mu_Y$ and F(x, y) = F(y, x) is not of the form F(x) + F(y). It is easy to check that (E') entails $\alpha^* \neq \alpha_X^* \times \alpha_Y^*$. Let

$$R_n = \max_{\substack{0 \le i \le n - \Delta \\ \Delta > 0}} \{ \sum_{k=1}^{\Delta} F(X_{i+k}, Y_{i+k}) \},$$
(1.1)

be the maximal segment score between two aligned sequences. It is shown in [KD, Theorem A] (following [Igl]) that when F(X,Y) is non-lattice, then

$$\lim_{n \to \infty} P(R_n - \frac{\log n}{\theta^*} \le x) = \exp(-K^* \exp(-\theta^* x)), \qquad (1.2)$$

while if F(X,Y) is a lattice variable then

$$\lim_{n \to \infty} \exp(K^* \exp(-\theta^* x_n)) P(R_n - \frac{\log n}{\theta^*} \le x_n) = 1$$

for any bounded sequence x_n such that $x_n + \frac{\log n}{\theta^*}$ are lattice points. The constant K^* is determined from fluctuation sum series identities (see for example [KD, (1.8) and (1.11)]), and examples for which K^* is explicitly computed are given in [KD, Section 3].

The analysis of [DKZ] shows that under condition (E'), the constant limits of $M_n/\log n$ and $R_{n^2}/\log n$ are the same (i.e., then $\gamma^*=2/\theta^*$). Our main result here establishes that the limit distribution of M_n is the same as that of R_{n^2} .

Theorem 1. Assume (E') and (H). If F(X,Y) is non-lattice, then

$$\lim_{n \to \infty} P(M_n - \frac{2\log n}{\theta^*} \le x) = \exp(-K^* \exp(-\theta^* x)), \qquad (1.3)$$

and if F(X,Y) is a lattice variable then

$$\lim_{n \to \infty} \exp(K^* \exp(-\theta^* x_n)) P(M_n - \frac{2\log n}{\theta^*} \le x_n) = 1$$
(1.4)

for any bounded sequence x_n such that $x_n + \frac{2\log n}{\theta^*}$ are lattice points. Moreover, for $t_y = \sqrt{t}e^{\theta^*y/2}$,

$$\lim_{y \to \infty} d(\bar{W}_y, \text{Po}(tK^*)) = 0 \tag{1.5}$$

implying that

$$\lim_{y \to \infty} P(T_y \le t_y) = 1 - e^{-K^* t} \tag{1.6}$$

where if F(X,Y) is a lattice variable then $y \to \infty$ in (1.5) and (1.6) via lattice points.

Remark 1. In deriving Theorem 1 we assume $F(\cdot, \cdot)$ to be finite valued, although the possibility of $F(x, y) = -\infty$ for some values of (x, y) is easily accommodated (see also the discussion of [DKZ, Theorem 3]). Thus, in the special case of F(x, x) = 1 and $F(x, y) = -\infty$ for all $x \neq y$ (with

 $\Sigma_X = \Sigma_Y$), the limit (1.4) corresponds to the limit distribution of the longest segmental match between the two sequences. In this context, condition (H) holds as soon as $|\Sigma_X| > 1$, while condition (E') reduces to

$$\max\{\sum_{i\in\Sigma_X}\mu_X(i)\mu_Y(i)\log\mu_Y(i),\sum_{i\in\Sigma_X}\mu_X(i)\mu_Y(i)\log\mu_X(i)\}<\frac{1}{2}\lambda^*\log\lambda^*$$
(1.7)

where $\lambda^* = e^{-\theta^*} = \sum_i \mu_X(i)\mu_Y(i)$ (and in this case $K^* = 1 - \lambda^*$, see [KD, Example 2]). For this special case, Theorem 1 was proved earlier in [KO, Theorem 2.2] encompassing a wide class of proximal ψ -mixing stationary sequences (see [KO, (2.11)] for the technical definition of proximal sequences). It is easy to check that for i.i.d. sequence letters (1.7) improves upon the proximality condition of [KO, (2.11)]. For related results in the context of longest quality match see [AGW86, AGW90].

Remark 2. Theorem 1 putatively extends to the maximal intersequence segment score involving any subset of r out of s independent sequences, of possibly different lengths n_1, \dots, n_s provided (H) applies for each r-subset and there is a unique dominant subset (having the maximal value of θ^*) for which condition (E_{λ}) of [DKZ, Section 5] holds with strict inequality.

Remark 3. In [DKZ, Theorem 4] it is shown that $\gamma^* = 2/\theta^*$ if and only if either (E') holds, or

$$H(\alpha^*|\mu_X \times \mu_Y) = 2\max(H(\alpha_X^*|\mu_X), H(\alpha_Y^*|\mu_Y)),$$

in which case $\alpha^* = \alpha_X^* \times \alpha_Y^*$. For example, this latter situation occurs for identical alphabets when $\mu_X = \mu_Y$ and F(x,y) = F(x) + F(y). In this context, $M_n \leq R_n^X + R_n^Y$, where for each fixed n,

$$R_n^X = \max_{\substack{0 \le i \le n - \Delta \\ \Delta > 0}} \{ \sum_{k=1}^{\Delta} F(X_{i+k}) \}, \quad R_n^Y = \max_{\substack{0 \le j \le n - \Delta \\ \Delta > 0}} \{ \sum_{k=1}^{\Delta} F(Y_{j+k}) \},$$

are two i.i.d. random variables. Assuming for simplicity that F(X) is non-lattice, it follows from (1.2) that

$$\lim_{n \to \infty} P(M_n - \frac{2\log n}{\theta^*} \le x) \ge \lim_{n \to \infty} P((R_n^X - \frac{\log n}{\theta^*}) + (R_n^Y - \frac{\log n}{\theta^*}) \le x) = h(K^* e^{-\theta^* x/2}),$$

where

$$h(u) = \int_{-\infty}^{\infty} \exp(-(u^2/K^*) \exp(\theta^* z)) d[\exp(-K^* \exp(-\theta^* z))] = u \int_{0}^{\infty} e^{-u(t+1/t)} dt \ge 1.5ue^{-2.5u}.$$

Since $K^* > 0$, considering $x \to -\infty$, it is clear that (1.3)-(1.6) do not hold in this case.

Remark 4. Even when (E') does not hold, M_n may still possess a limiting extremal distribution of type I (with a different constant $1/\theta^* < \gamma^* < 2/\theta^*$), and this might happen even when the

set \mathcal{M} of optimal measures as characterized in [DKZ, Theorem 2] is infinite. For example, let $G_Y(y) = \max_x \{F(x,y)\}$ and

$$ar{R}_n^Y = \max_{\substack{0 \leq j \leq n-\Delta \ \Delta > 0}} \{ \sum_{k=1}^{\Delta} G_Y(Y_{j+k}) \}$$
 .

Suppose that $E_{\mu_Y}(G_Y)<0$ and let $\bar{\theta}^*$ denote the unique positive solution of $E_{\mu_Y}(e^{\theta G_Y})=1$. Then $\bar{R}_n^Y-\log n/\bar{\theta}^*$ possesses a limit distribution of type I (cf. [KD, Theorem A]). Let $\bar{\Sigma}=\{(x,y):F(x,y)=G_Y(y)\}$ and define $\beta^*\in M_1(\Sigma_Y)$ such that $\frac{d\beta^*}{d\mu_Y}=e^{\bar{\theta}^*G_Y}$. If

$$(E_Y) \qquad \qquad 2H(\beta^*|\mu_Y) > \min_{\nu:\nu(\bar{\Sigma})=1,\nu_Y=\beta^*} \quad H(\nu|\mu_X\times\mu_Y) \;,$$

then $\gamma^* = 1/\bar{\theta}^*$ (see [DKZ, (1) and (13)]). Clearly, $\bar{R}_n^Y \geq M_n$. In Section 3 we provide a specific example for which (E_Y) holds and show that (E_Y) results with

$$\lim_{n \to \infty} P(M_n = \bar{R}_n^Y) = 1. \tag{1.8}$$

Consequently, M_n possesses the same limit distribution of type I as does \bar{R}_n^Y .

Remark 5. In comparison with the recent works of [AW] and [Neu], we allow for a general score $F(\cdot,\cdot)$ but accommodate neither insertions nor deletions. Note however that in [AW] only the growth order of M_n is found, while in [Neu] the Poisson approximation is established under an additional assumption of a limited number of insertions/deletions.

2. Proof of Theorem 1.

Since $\{\bar{W}_y \neq 0\} = \{T_y \leq t_y\} = \{M_n > y\}$ for $n = [t_y]$, (1.3) and (1.6) are direct consequences of (1.5) while (1.4) holds provided (1.5) applies to any bounded t = t(y). Hence, Theorem 1 amounts to proving that (1.5) holds for any bounded t = t(y). We start with an outline of the main steps in proving this result.

The large deviations analysis of [DKZ] allows us to concentrate on segments of length not exceeding c_1y whose empirical measure is near α^* . Hence, partitioning both sequences into disjoint blocks of size ℓ_y such that $e^{\theta^*y} \gg \ell_y \gg y$, the probability $P(\bar{W}_y \neq W_y)$ approaches 0 as $y \to \infty$, where $W_y = \sum_{i,j,\xi} I_{i,j,\xi}$ and the indicator $I_{i,j,\xi}$ equals one if there exists a segmental score exceeding y involving the i-th block of the X-sequence, the j-th block of the Y-sequence and a relative shift (alignment) ξ between the indices of the X-letters and the corresponding Y-letters. Adapting the arguments of [KD] and [Igl], we see in Lemma 1 that $|E[W_y] - tK^*| \to 0$ as $y \to \infty$. Applying the Chen-Stein method we show that $d(W_y, \text{Po}(tK^*)) \to 0$ from which (1.5) follows. The main task is in bounding the correlation terms $E(I_{i,j,\xi}I_{i',j',\xi'})$, where large deviations estimates are again decisive, and where the condition (E') and the restriction to an empirical measure near α^* are needed (see Lemma 2 below).

Turning now to the detailed proof, let $\|\cdot\|$ denote the variational norm between distributions on Σ and $G_{\eta} = \{\nu \in M_1(\Sigma) : \|\nu - \alpha^*\| < \eta\}$ denote the corresponding open ball of radius $\eta > 0$, centered at α^* . Let $T^i\mathbf{X} = (X_{i+1}, X_{i+2}, \cdots), T^j\mathbf{Y} = (Y_{j+1}, Y_{j+2}, \cdots)$, and define the empirical measure

$$L_{\Delta}^{(T^{i}\mathbf{X},T^{j}\mathbf{Y})} = \frac{1}{\Delta} \sum_{k=1}^{\Delta} \delta_{(X_{i+k},Y_{j+k})}.$$

For $U \in M_1(\Sigma)$ let

$$M_n^U = \max\{\sum_{k=1}^{\Delta} F(X_{i+k}, Y_{j+k}) : 0 \leq \Delta \leq n, \quad i, j \leq n - \Delta, L_{\Delta}^{(T^i\mathbf{X}, T^j\mathbf{Y})} \in U\}$$

i.e. M_n^U is the maximal score among segments with letter pairs having empirical measure in the set U. It is shown in [DKZ, Theorem 3] that if U is a closed set such that $\alpha^* \notin U$ then a.s.

$$\limsup_{n\to\infty} M_n^U/\log n < 2/\theta^*.$$

Let

$$\bar{M}_{n}^{U} = \max\{\sum_{k=1}^{\Delta} F(X_{i+k}, Y_{j+k}) : 0 \le \Delta \le c_{0} \log n, \quad i, j \le n - \Delta, L_{\Delta}^{(T^{i}\mathbf{X}, T^{j}\mathbf{Y})} \in U\},$$
 (2.1)

be the maximal score among segments of length not exceeding $c_0 \log n$ and letter pairs having empirical measure in the set U. It follows from [DKZ, Lemma 1] that for c_0 large enough

$$\sum_{n=1}^{\infty} P(\bar{M}_n^U \neq M_n^U) < \infty .$$

Consequently, for all $\eta > 0$

$$\lim_{n \to \infty} P(\bar{M}_n^{G_\eta} \neq M_n) = 0. \tag{2.2}$$

In particular, for c_1 large enough and all $\eta>0$, suffices to prove (1.5) with the count \overline{W}_y restricted to triplets (i,j,Δ) for which $\Delta\leq c_1y$ and $L_{\Delta}^{(T^{i-\Delta}\mathbf{X},T^{j-\Delta}\mathbf{Y})}\in G_{\eta}$. Now let $\ell_y\geq 3c_1y$ be a sequence of integers such that $\log\ell_y/y\to 0$ and $y^2/\ell_y\to 0$ as $y\to\infty$. Set $m_y=t_y/\ell_y$. Obviously, $m_y\to\infty$. Since $d(\operatorname{Po}(\lambda),\operatorname{Po}(\lambda'))\leq |\lambda-\lambda'|$, we may assume without loss of generality that m_y (and hence t_y) are integers. Partition the sequence (X_1,\ldots,X_{t_y}) into blocks of ℓ_y letters each, such that the i-th block is $X^i=(X_0^i,X_1^i,\ldots,X_{\ell_y-1}^i)$ where $X_k^i=X_{i\ell_y+k+1}$. Similarly, partition the sequence (Y_1,\ldots,Y_{t_y}) into blocks of ℓ_y letters each. For $j=0,\ldots,m_y-1$ and $\xi=0,1,\ldots,\ell_y-1$, let $Y^{j,\xi}=(Y_0^{j,\xi},Y_1^{j,\xi},\ldots,Y_{\ell_y-1}^{j,\xi})$ denote the ξ -cyclically-shifted j-th block, such that $Y_k^{j,\xi}=Y_{j\ell_y+1+(\xi+k)_{\mathrm{mod}\ell_y}}$. Let

$$W_y = \sum_{i=0}^{m_y - 1} \sum_{j=0}^{m_y - 1} \sum_{\xi=0}^{\ell_y - 1} I_{i,j,\xi}, \qquad (2.3)$$

where

$$I_{i,j,\xi} = \begin{cases} 1 & \text{if } \max\{\sum_{k=r}^{r+\Delta-1} F(X_k^i, Y_k^{j,\xi}): & \ell_y - \Delta \geq r \geq 0, \ c_1 y \geq \Delta \geq 0, \ L_{\Delta}^{i,j,\xi,r} \in G_{\eta}\} > y \\ 0 & \text{otherwise}, \end{cases}$$

and

$$L^{i,j,\xi,r}_{\Delta} = \frac{1}{\Delta} \sum_{k=r}^{r+\Delta-1} \delta_{(X^i_k,Y^{j,\xi}_k)}.$$

For $k \leq c_1 y$ let $\mathcal{E}_1(k)$ be the event of a score exceeding y in at least one of the segments of length k which cross the block boundaries in either the X-sequence or the Y-sequence. Similarly, let $\mathcal{E}_2(k)$ be the event of a score exceeding y in at least one of the segments of length k in which the ξ -shift in $Y^{j,\xi}$ causes a gap in the Y-letters. It is easy to check that at most $2t_y m_y (k-1)$ segments are contributing to $\mathcal{E}_i(k)$ for i=1,2, and therefore by the union of events bound

$$P(\bigcup_{k \le c_1 y} \mathcal{E}_1(k) \bigcup_{k \le c_1 y} \mathcal{E}_2(k)) \le 2t_y m_y (c_1 y)^2 \sup_{k \ge 1} P(\sum_{i=1}^k F(X_i, Y_i) > y) \ .$$

Because $E[e^{\theta^*F(X,Y)}] = 1$ and independence

$$P(\sum_{i=1}^{k} F(X_i, Y_i) > y) \leq E(\exp(\sum_{i=1}^{k} \theta^* F(X_i, Y_i))) e^{-\theta^* y} = e^{-\theta^* y}$$

and since by definition $t_y = \sqrt{t}e^{\theta^*y/2}$ we obtain that

$$P(igcup_{k < c_1 y} \mathcal{E}_1(k) igcup_{k < c_1 y} \mathcal{E}_2(k)) \leq rac{2t(c_1 y)^2}{\ell_y} o 0 \quad ext{ as } \quad y o \infty$$

Let $\mathcal{E}_3(i,j,\xi)$ be the event that there are $\Delta \leq r$ and $r+\Delta' \leq r' \leq \ell_y$ such that

$$\sum_{k=r-\Delta+1}^{r} F(X_k^i, Y_k^{j,\xi}) > y, \qquad \sum_{k=r'-\Delta'+1}^{r'} F(X_k^i, Y_k^{j,\xi}) > y.$$

Since R_n is monotone in n (see (1.1)), it follows by conditioning on $\{X_k^i, Y_k^{j,\xi}, k \leq r\}$ that $P(\mathcal{E}_3(i,j,\xi)) \leq P(R_{\ell_y} > y)^2$. Consequently, by the union of events bound

$$P(\bigcup_{i,j,\ell} \mathcal{E}_3(i,j,\xi)) \leq m_y^2 \ell_y P(R_{\ell_y} > y)^2 = t \frac{e^{\theta^* y}}{\ell_y} P(R_{\ell_y} > y)^2$$

Hence, the next lemma implies that $P(\cup_{i,j,\xi}\mathcal{E}_3(i,j,\xi)) \to 0$ as $y \to \infty$.

Lemma 1.

$$\lim_{y \to \infty} \frac{e^{\theta^* y}}{\ell_y} P(R_{\ell_y} > y) = K^*.$$

It is not hard to check that

$$\{ar{W}_y
eq W_y\} \subset igcup_{k \leq c_1 y} \mathcal{E}_1(k) igcup_{k \leq c_1 y} \mathcal{E}_2(k) igcup_{i,j,\xi} \mathcal{E}_3(i,j,\xi) \,.$$

Consequently, in order to prove (1.5), it suffices to show that

$$d(W_y, \text{Po}(tK^*)) \underset{y \to \infty}{\to} 0$$
 (2.4)

Proof of Lemma 1: Following [KD], divide the realization of $S_n = \sum_{i=1}^n F(X_i, Y_i)$ into successive nonnegative excursions:

$$K_0 = 0$$
, $K_{\nu} = \min\{k : k \ge K_{\nu-1} + 1, S_k - S_{K_{\nu-1}} < 0\}$, $\nu = 1, 2, \dots$

with excursions extremes

$$Q_{\nu} = \max_{K_{\nu-1} \le k < K_{\nu}} (S_k - S_{K_{\nu-1}}).$$

Note that Q_{ν} are i.i.d. random variables, with common distribution function denoted G(y). Thus, $P(R_{K_m} > y) = 1 - [G(y)]^m$. Fix $\delta > 0$ arbitrarily small and define next $m_{\pm} = \gamma_{\pm} \ell_y / E(K_1)$ with $E(K_1) < \infty$ due to $E_{\mu}(F) < 0$, where $\gamma_{+} \geq (1 + \delta)$ and $\gamma_{-} \leq (1 - \delta)$ are chosen as the minimal (maximal) values such that m_{+} (and m_{-} , respectively) are integers (as $y \to \infty$ we have $\gamma_{+} \to 1 + \delta$ and $\gamma_{-} \to (1 - \delta)$). Using

$$\lim_{y \to \infty} (1 - G(y))e^{\theta^* y} = E(K_1)K^*,$$

which is provided by [KD, Lemma A] and the identification of K^* in [KD, below (1.12)] (see also [Ig1]), one sees that

$$\lim_{y \to \infty} \frac{e^{\theta^* y}}{\ell_y} P(R_{K_{m_+}} > y) = \lim_{y \to \infty} \frac{e^{\theta^* y}}{\ell_y} [1 - G(y)^{\gamma + \ell_y / E(K_1)}] = (1 + \delta) K^*, \tag{2.5}$$

and

$$\lim_{y \to \infty} \frac{e^{\theta^* y}}{\ell_y} P(R_{K_{m_-}} > y) = (1 - \delta) K^*. \tag{2.6}$$

Since R_n is monotone in n,

$$P(R_{K_{m_{-}}} > y) - P(K_{m_{-}} > \ell_{y}) \le P(R_{\ell_{y}} > y) \le P(R_{K_{m_{+}}} > y) + P(K_{m_{+}} < \ell_{y}).$$
 (2.7)

Let $g(\theta) = -\theta + \frac{(1-\delta)}{E(K_1)} \log E(e^{\theta K_1})$. Note that, for each m, K_m is a sum of i.i.d. positive random variables. Hence, using Chebycheff's bound,

$$P(K_{m_{-}} > \ell_{y}) \le \inf_{\theta > 0} \{e^{-\theta \ell_{y}} E(e^{\theta K_{1}})^{m_{-}}\} \le \inf_{\theta > 0} e^{g(\theta)\ell_{y}}$$

Note that for $\lambda_0 > 0$ such that $\Lambda(\lambda_0) = \log E(e^{\lambda_0 F(X_1, Y_1)}) < 0$ (λ_0 exists due to the boundedness of F and (H), see [DKZ, proof of Lemma 1]) we have

$$P(K_1 > n) \le P(\sum_{i=1}^{n} F(X_i, Y_i) \ge 0) \le e^{n\Lambda(\lambda_0)}$$

Therefore, $g(\theta) < \infty$ for all θ in a small enough neighborhood of 0. It follows that $g'(0) = -\delta < 0$, leading to

$$\frac{e^{\theta^* y}}{\ell_y} P(K_{m_-} > \ell_y) \le e^{-c(\delta)\ell_y} e^{\theta^* y} \underset{y \to \infty}{\longrightarrow} 0$$
 (2.8)

for some constant $c(\delta) > 0$. A similar computation yields

$$\frac{e^{\theta^* y}}{\ell_y} P(K_{m_+} < \ell_y) \underset{y \to \infty}{\to} 0 \tag{2.9}$$

Substituting (2.5)-(2.6) and (2.8)-(2.9) into (2.7) and taking $\delta \to 0$ yields the lemma.

For the objective of proving (2.4) we employ a version of the Chen-Stein method given in [AGG]. Let $\alpha = (i, j, \xi)$ and let $\mathcal{B}_{\alpha} = \{(i', j', \xi') : i = i' \text{ or } j = j'\}$ denote the associated neighborhood of dependence. With this definition, note that I_{α} is independent of $\{I_{\gamma} : \gamma \notin \mathcal{B}_{\alpha}\}$. Thus, from [AGG] (see also [DK92, inequalities (2.4) and (2.7)]), one has

$$d(W_y,\operatorname{Po}(tK^*)) \leq (b_1+b_2)\frac{(1-e^{-\lambda_y})}{\lambda_y} + |\lambda_y - tK^*|$$

where $\lambda_y = E(W_y)$, and

$$\begin{aligned} b_1 &= \sum_{\alpha} \sum_{\beta \in \mathcal{B}_{\alpha}} P(I_{\alpha} = 1) P(I_{\beta} = 1) \\ b_2 &= \sum_{\alpha} \sum_{\substack{\beta \in \mathcal{B}_{\alpha} \\ \beta \neq \alpha}} P(I_{\alpha} = 1, I_{\beta} = 1) \end{aligned}$$

(in the notations of [AGG], $b_3 = 0$). Let

$$R_{\ell_y}^{G_{\eta}} = \max\{\sum_{k=1}^{\Delta} F(X_{i+k}, Y_{i+k}) : 0 \leq i \leq \ell_y - \Delta, 0 \leq \Delta \leq c_1 y, \quad L_{\Delta}^{T^i \mathbf{X}, T^i \mathbf{Y}} \in G_{\eta}\}$$

and $p_y = P(R_{\ell_y}^{G_{\eta}} > y)$. Note that for any α , $P(I_{\alpha} = 1) = p_y$, and $|\mathcal{B}_{\alpha}| \leq 2m_y \ell_y$. Therefore,

$$\lambda_y = m_y^2 \ell_y p_y = t(\frac{p_y}{\ell_y}) e^{\theta^* y}. \tag{2.10}$$

and

$$|b_1=p_y^2\sum_lpha|\mathcal{B}_lpha|\leq 2m_y\ell_yp_y^2(m_y^2\ell_y)=rac{2\lambda_y^2}{m_y}$$

Since $R_{\ell_y} \geq R_{\ell_y}^{G_{\eta}}$, it follows that

$$P(R_{\ell_y} > y) \ge p_y \ge P(R_{\ell_y}^{G_{\eta}} = R_{\ell_y} | R_{\ell_y} > y) P(R_{\ell_y} > y)$$
.

The strong laws of [DK91, Theorems 1 and 2] imply that $P(R_{\ell_y}^{G_{\eta}} = R_{\ell_y} | R_{\ell_y} > y) \to 1$ for every $\eta > 0$, and hence by (2.10) and Lemma 1

$$\lim_{y \to \infty} |\lambda_y - tK^*| = \lim_{y \to \infty} t |(\frac{p_y}{\ell_y}) e^{\theta^* y} - K^*| = 0$$
(2.11)

(recall that t = t(y) is bounded). In particular, (2.11) implies that $b_1 \to 0$, and (2.4) thus follows from the next lemma, completing the proof of Theorem 1.

Lemma 2. For all $\eta > 0$ small enough, $b_2 \to 0$ as $y \to \infty$.

Proof of Lemma 2: Using I_0 to abbreviate $I_{(0,0,0)}$ let $Q_0(y) = e^{\theta^* y/2} P(I_{(1,0,0)} = 1 | I_0 = 1)$, $Q_1(y) = e^{\theta^* y/2} P(I_{(0,1,0)} = 1 | I_0 = 1)$, and $Q_2(y) = \sum_{\xi=1}^{\ell_y-1} P(I_{(0,0,\xi)} = 1 | I_0 = 1)$. By the symmetry of the problem,

$$b_2 = \sum_{\alpha} p_y \sum_{\substack{\beta \in \mathcal{B}_{(0,0,0)} \\ \beta \neq (0,0,0)}} P(I_{\beta} = 1 | I_0 = 1)$$

$$\leq p_{y} m_{y}^{2} \ell_{y} m_{y} \ell_{y} [P(I_{(1,0,0)} = 1 | I_{0} = 1) + P(I_{(0,1,0)} = 1 | I_{0} = 1) + \frac{1}{m_{y} \ell_{y}} \sum_{\xi=1}^{\ell_{y}-1} P(I_{(0,0,\xi)} = 1 | I_{0} = 1)]$$

$$= a_{y} (Q_{0}(y) + Q_{1}(y)) + \tilde{a}_{y} Q_{2}(y) \tag{2.13}$$

where $a_y = \frac{p_y}{\ell_y} m_y^3 \ell_y^3 e^{-\theta^* y/2}$ is such that $|a_y - t^{3/2} K^*| \to 0$ as $y \to \infty$ (see (2.11)), and $\tilde{a}_y = a_y e^{\theta^* y/2} / \ell_y m_y$ is such that $|\tilde{a}_y - tK^*| \to 0$ as $y \to \infty$. Proving Lemma 2 thus requires showing that $Q_i(y) \to 0$, i = 0, 1, 2 as $y \to \infty$. Due to the symmetric roles played by μ_X and μ_Y , it is enough to consider only i = 1 and i = 2.

It is now useful to decompose the events I_0 , $I_{(0,1,0)}$ and $I_{(0,0,\xi)}$. Thus, let

$$J_{x,k,\nu} = \{\omega : \frac{1}{k} \sum_{j=0}^{k-1} \delta_{(X_{x+j}, Y_{x+\ell_y+j})} = \nu \in G_{\eta}, \quad kE_{\nu}(F) > y\},$$

with $x = 1, ..., \ell_y - k + 1$, $k \le c_1 y$ and ν ranges over all possible k-types ($\nu \in M_1(\Sigma)$ with $k\nu(i)$ an integer for all $i \in \Sigma$); thus, the range of the pair (k, ν) is of cardinality at most $(c_1 y + 1)^{|\Sigma|}$. Similarly, define

$$J_{x',k',\nu',\xi} = \{\omega : \frac{1}{k'} \sum_{j=0}^{k'-1} \delta_{(X_{x'+j},Y_{x'+(\xi+j)_{\mathrm{mod}\ell_y}})} = \nu' \in G_{\eta}, \quad k' E_{\nu'}(F) > y\}$$

with $x'=1,\ldots,\ell_y-k'+1,\ k'\leq c_1y,\ \nu'$ ranges over all possible k'-types, and $\xi=0,1,\ldots,\ell_y-1$.

(1) Starting with $Q_1(y)$, note that

$$P(I_{(0,1,0)} = 1 | I_0 = 1) = P(\bigcup_{x,k,\nu} J_{x,k,\nu} | \bigcup_{x',k',\nu'} J_{x',k',\nu',0}) \le \sum_{x,k,\nu} \sum_{x',k',\nu'} P(J_{x,k,\nu} | J_{x',k',\nu',0}).$$

There are two distinct classes of four-tuples e=(x,x',k,k') to consider, $e\in\mathcal{E}_a$ if $[x,x+k-1]\cap[x',x'+k'-1]=\emptyset$ and $e\in\mathcal{E}_b$ otherwise. For $e\in\mathcal{E}_a$,

$$P(J_{x,k,\nu}|J_{x',k',\nu',0}) = P(J_{x,k,\nu}) \le P(I_{(0,1,0)} = 1) = p_u \tag{2.14}$$

Since the only connection between the conditioning event and $J_{x,k,\nu}$ is through the X-sequence

$$\sup_{e \in \mathcal{E}_{b}, \nu, \nu'} P(J_{x,k,\nu} | J_{x',k',\nu',0}) = \sup_{\substack{k,k',\nu,\nu' \\ 1 \le x \le k'}} P(J_{x,k,\nu} | J_{1,k',\nu',0}) \\
\leq \sup_{\substack{(a_{1}, \dots, a_{k}) \\ k', k, \nu, 1 \le x \le k'}} P(J_{x,k,\nu} | X_{x} = a_{1}, \dots, X_{x+k-1} = a_{k}) \\
= \sup_{k,\nu} P(\frac{1}{k} \sum_{j=1}^{k} \delta_{(X_{j}, Y_{\ell_{y}+j})} = \nu | \frac{1}{k} \sum_{j=1}^{k} \delta_{X_{j}} = \nu_{X}) = \sup_{k,\nu} \frac{P(\frac{1}{k} \sum_{j=1}^{k} \delta_{(X_{j}, Y_{j})} = \nu)}{P(\frac{1}{k} \sum_{j=1}^{k} \delta_{X_{j}} = \nu_{X})} \tag{2.15}$$

Using simple combinatorial bounds (see, e.g. [DKZ, (3) and (4)]), one sees that

$$\sup_{k,\nu} \frac{P(\frac{1}{k} \sum_{j=1}^{k} \delta_{(X_{j},Y_{j})} = \nu)}{P(\frac{1}{k} \sum_{j=1}^{k} \delta_{X_{j}} = \nu_{X})} \le \sup_{k,\nu} (c_{1}y + 1)^{|\Sigma|} e^{-k[H(\nu|\mu) - H(\nu_{X}|\mu_{X})]}$$
(2.16)

By (E') and the continuity in a of H(a|b), for $\eta > 0$ small enough

$$\beta(\eta) = \inf_{\nu \in G_{\eta}} \{ H(\nu|\mu) - 2 \max[H(\nu_X|\mu_X), H(\nu_Y|\mu_Y)] \} > 0$$

Thus, for $\nu \in G_{\eta}$ such that $kE_{\nu}(F) > y$, one has that $H(\nu|\mu) \ge 2H(\nu_X|\mu_X) + \beta(\eta)$ while $kH(\nu|\mu) \ge \theta^*y$. Hence, using (2.14)-(2.16) and (2.11),

$$\begin{split} Q_1(y) = & e^{\theta^* y/2} P(I_{(0,1,0)} = 1 | I_0 = 1) \\ \leq & e^{\theta^* y/2} [\ell_y^2 (c_1 y + 1)^{3|\Sigma|} e^{-\theta^* y/2} e^{-\beta(\eta)y/2||F||_{\infty}} + p_y (c_1 y + 1)^{2|\Sigma|} \ell_y^2] \underset{y \to \infty}{\to} 0. \end{split}$$

(2) It remains to deal with $Q_2(y)$. As in the above computation, note that,

$$p_y = P(\bigcup_{x,k,\nu} J_{x,k,\nu,\xi}) = P(\bigcup_{x',k',\nu'} J_{x',k',\nu',0}),$$

and one has

$$Q_{2}(y) = \sum_{\xi=1}^{\ell_{y}-1} P(I_{(0,0,\xi)} = 1 | I_{0} = 1) = \sum_{\xi=1}^{\ell_{y}-1} P(\bigcup_{x,k,\nu} J_{x,k,\nu,\xi}, \bigcup_{x',k',\nu'} J_{x',k',\nu',0}) / p_{y}$$

$$\leq 2 \sum_{\substack{\xi,x,k,\nu\\x',k' \leq k,\nu'}} \frac{P(J_{x,k,\nu,\xi}, J_{x',k',\nu',0})}{p_{y}}$$
(2.17)

For any five-tuple $e = (\xi, x, x', k, k')$, let Δ_X (Δ_Y) denote the set of X_i (Y_i) letters occurring in the definition of $J_{x,k,\nu,\xi}$ which do not occur in the definition of $J_{x',k',\nu',0}$. Three distinct cases are possible:

- (a) $|\Delta_X| \vee |\Delta_Y| \geq (1 \eta)k$ (denoted $e \in \mathcal{E}_a$).
- (b) $(1 \eta)k \ge |\Delta_X| \lor |\Delta_Y| \ge \delta y$ (denoted $e \in \mathcal{E}_b$).
- (c) $|\Delta_X| \vee |\Delta_Y| \leq \delta y$ (denoted $e \in \mathcal{E}_c$).

Here, δ is a small fixed constant which depends on η and will be chosen below. We analyze the three cases separately. The argument for $|\Delta_X| > |\Delta_Y|$ being the same as for $|\Delta_X| \le |\Delta_Y|$, we may assume the latter in subsequent computations.

Case (a) To simplify the notations we assume that ηk is an integer (otherwise replace ηk by its integer part), and let $L_{\eta} = \sum_{i=1}^{\eta k} \delta_{Y_i}/\eta k$, $L_{1-\eta} = \sum_{i=\eta k+1}^{k} \delta_{Y_i}/(1-\eta)k$. Note that, after re-labeling the random variables involved, since $\nu \in G_{\eta}$, for $\eta \leq 1/2$

$$\begin{split} P(J_{x,k,\nu,\xi}|J_{x',k',\nu',0}) &\leq \sup_{(b_1,b_2,\dots,b_{\eta k})} P(\frac{1}{k}\sum_{i=1}^k \delta_{Y_i} = \nu_Y|Y_1 = b_1, Y_2 = b_2,\dots,Y_{\eta k} = b_{\eta k}) \\ &= \sup_{(b_1,b_2,\dots,b_{\eta k})} P((1-\eta)L_{1-\eta} + \eta L_{\eta} = \nu_Y|Y_1 = b_1, Y_2 = b_2,\dots,Y_{\eta k} = b_{\eta k}) \\ &\leq \sup_{\phi \in G_{4\eta}} P(L_{1-\eta} = \phi_Y) \end{split}$$

With $\alpha_Y^* \neq \mu_Y$, one may find an η small enough such that $\rho(\eta) = \inf_{\phi \in G_{4\eta}} H(\phi_Y | \mu_Y) > 0$. Choosing η at least that small, by the combinatorial upper bound of [DZ, Lemma 2.1.9]

$$\sup_{\phi \in G_{4n}} P(L_{1-\eta} = \phi_Y) \le e^{-(1-\eta)\rho(\eta)k} \le e^{-(1-\eta)\rho(\eta)y/||F||_{\infty}}$$

(recall that $kE_{\nu}(F)>y$). Since $p_y\geq P(J_{x',k',\nu',0})$, we are led to the conclusion that, for all $e\in\mathcal{E}_a$,

$$\frac{P(J_{x,k,\nu,\xi},J_{x',k',\nu',0})}{p_n} \le P(J_{x,k,\nu,\xi}|J_{x',k',\nu',0}) \le e^{-(1-\eta)\rho(\eta)y/||F||_{\infty}}.$$
(2.18)

Note that in both cases (b) and (c), since the overlap between the sequences involved in the definition of $J_{x,k,\nu,\xi}$ and $J_{x',k',\nu',0}$ is at least of one symbol whereas $\ell_y \geq 3c_1y \geq 3k$, one may re-label the sequences such that x' = 1, x may assume both positive and negative values and the modulus operation is omitted from the definition of $J_{x,k,\nu,\xi}$. We will henceforth work with this re-labeling without further mentioning it.

Case (b) Let here

$$L_{x,k,\xi} = \frac{1}{k} \sum_{\ell=x}^{x+k-1} \delta_{X_{\ell},Y_{\ell+\xi}},$$

and

$$L_{x,k,\xi}^{\Delta} = \frac{1}{k-|\Delta_Y|} \sum_{\ell+\xi \in [x+\xi,x+\xi+k-1] \backslash \Delta_Y} \delta_{X_\ell,Y_{\ell+\xi}}.$$

Note that now,

$$\begin{split} P(J_{x,k,\nu,\xi},J_{1,k',\nu',0}) &= P(L_{x,k,\xi} = \nu,L_{1,k',0} = \nu') \leq P(L_{x,k,\xi} = \nu,L_{x,k,\xi}^{\Delta} \not\in G_{2\eta}) \\ &+ \sup_{\phi \in G_{\eta}} P(L_{x,k,\xi} = \phi,L_{1,k',0} = \nu',L_{x,k,\xi}^{\Delta} \in G_{2\eta}) = A_1 + A_2 \end{split}$$

Turning our attention to A_1 , note that, by combining [DZ, (2.1.32) and (2.1.34)],

$$P(L_{x,k,\xi}^{\Delta} = \psi | L_{x,k,\xi} = \nu) \le (k+1)^{2(|\Sigma|+1)} e^{-(k-|\Delta_Y|)H(\psi|\nu)}$$
.

Hence, for $\nu \in G_{\eta}$ such that $kE_{\nu}(F) > y$

$$\frac{A_1}{p_y} \le P(L_{x,k,\xi}^{\Delta} \notin G_{2\eta} | L_{x,k,\xi} = \nu) \le (k+1)^{3(|\Sigma|+1)} e^{-\eta k \inf_{\psi \notin G_{2\eta}} H(\psi|\nu)} \\
\le (c_1 y + 1)^{3(|\Sigma|+1)} e^{-y\eta^3/2||F||_{\infty}}$$
(2.19)

where we have used in the last inequality the relation (see [DZ, Exercise 6.2.17])

$$H(\psi|\phi) \ge \|\psi - \phi\|^2 / 2$$
. (2.20)

To evaluate A_2 , let L^{Δ_Y} denote the empirical measure of the Y_i letters in the set Δ_Y , and note that, denoting $v_{\Delta} = |\Delta_Y|/k$,

$$\begin{split} P(L_{x,k,\xi} = \phi, L_{x,k,\xi}^{\Delta} \in G_{2\eta} | L_{1,k',0} = \nu') &\leq (c_1 y + 1)^{|\Sigma|} \sup_{\phi \in G_{\eta}, \psi \in G_{2\eta}} P(v_{\Delta} L^{\Delta_Y} + (1 - v_{\Delta}) \psi_Y = \phi_Y) \\ &\leq (c_1 y + 1)^{|\Sigma|} P(\|L^{\Delta_Y} - \alpha_Y^*\| \leq 3c_1 \eta/\delta) \,. \end{split}$$

Therefore, using again (2.20) and the combinatorial upper bound from [DZ, Lemma 2.1.9], and choosing $\delta = \delta(\eta)$ not too small such that $3c_1\eta/\delta < \|\alpha_Y^* - \mu_Y\|/2$ (this is always possible for small η since $\alpha_Y^* \neq \mu_Y$), one obtains

$$\frac{A_2}{p_y} \le (c_1 y + 1)^{2|\Sigma|} e^{-\delta y \|\alpha_Y^* - \mu_Y\|^2/8} \,. \tag{2.21}$$

Note that one may have both η small and $\delta = \delta(\eta)$ small (for example, by choosing $\delta = \delta(\eta) = \sqrt{\eta}$ and taking η small enough). Combining (2.19) and (2.21), one obtains that for any $e \in \mathcal{E}_b$, and every $\eta > 0$ small enough,

$$\frac{P(J_{x,k,\nu,\xi}, J_{x',k',\nu',0})}{p_y} \le g_1(y)e^{-\kappa(\eta)y}$$
(2.22)

where $g_1(y)$ is independent of e and of η , $y^{-1} \log g_1(y) \to 0$ with y, and $\kappa(\eta) > 0$.

Case (c) Note that since $k \geq k'$ and $|\Delta_X| \leq |\Delta_Y| \leq \delta y$, necessarily $k - k' \leq \delta y$, and $\xi \leq 2\delta y$. Let now $Z_i = ((Z_i)_X, (Z_i)_Y)$ denote the following (relabeled) random variables:

$$(Z_i)_X = X_{x-1+i\xi}, (Z_i)_Y = Y_{x-1+(i+1)\xi}, \ , i = 0, 1, \dots, ([\frac{k}{\xi}] - 1)$$

$$(Z_i)_X = X_{x+(i-[rac{k}{\xi}])\xi}, (Z_i)_Y = Y_{x+(i-[rac{k}{\xi}]+1)\xi}, \; , i = [rac{k}{\xi}], \ldots, (2[rac{k}{\xi}]-1)\,,$$

etc, up to $i = [\frac{k}{\xi}]\xi - 1$. Complete this construction up to i = k in such a way that the empirical measure of (Z_1, \ldots, Z_k) is $L_{x,k,\xi}$. Define next the empirical measure

$$L_k = \frac{1}{k} \sum_{i=0}^{k-1} \delta_{Z_i Z_{i+1}} \in M_1(\Sigma^2).$$

For any $\theta \in M_1(\Sigma_X \times \Sigma_Y \times \Sigma_X \times \Sigma_Y)$, let

$$(heta)_1 = \sum_{\substack{x_2 \in \Sigma_X \ y_2 \in \Sigma_Y}} heta(\cdot, \cdot, x_2, y_2) \in M_1(\Sigma)$$

$$(heta)_2 = \sum_{\substack{x_1 \in \Sigma_X \ y_1 \in \Sigma_Y}} heta(x_1, y_1, \cdot, \cdot) \in M_1(\Sigma)$$

and

$$(heta)_{12} = \sum_{\substack{x_1 \in \Sigma_X \ y_2 \in \Sigma_Y}} heta(x_1, \cdot, \cdot, y_2) \in M_1(\Sigma).$$

Note that $(L_k)_2 = L_{x,k,\xi}$, $\|(L_k)_1 - L_{x,k,\xi}\| \le 2/k$, and $\|(L_k)_{12} - L_{1,k',0}\| \le (4\xi + 4\delta y)/k \le 12\delta y/k \le 12\delta ||F||_{\infty}$. Hence, with $\epsilon = \eta + 12\delta ||F||_{\infty}$, for all large y

$$P(J_{x,k,\nu,\xi},J_{1,k',\nu',0}) \le (c_1y+1)^{2|\Sigma|} \sup_{\theta_1,\theta_2 \in G_{\epsilon}} P((L_k)_1 = \theta_1,(L_k)_{12} = \theta_2,(L_k)_2 = \nu). \tag{2.23}$$

For any ν , it follows from the Markov structure of the chain $\{(Z_i Z_{i+1})\}_i$, that

$$P(L_k = \nu) \le e^{-kH(\nu|(\nu)_1 \times \mu_X \times \mu_Y)} \tag{2.24}$$

(see [CCC, Lemma 3], or [DZ, Exercise 3.1.21]). Using (2.23) and (2.24), one obtains that

$$\frac{P(J_{x,k,\nu,\xi},J_{x',k',\nu',0})}{p_y} \leq g_2(y) \exp(-k \inf_{\theta \in \Theta_\epsilon} (H(\theta|(\theta)_1 \times \mu_X \times \mu_Y) - H((\theta)_2|\mu_X \times \mu_Y))),$$

where $\Theta_{\epsilon} = \{\theta \in M_1(\Sigma^2) : (\theta)_1, (\theta)_2, (\theta)_{12} \in G_{\epsilon}\}$ and $y^{-1} \log g_2(y) \to 0$ with y, independently of $e \in \mathcal{E}_c$ and of η .

It is easy to check that for all $\theta \in M_1(\Sigma^2)$

$$H(\theta|(\theta)_1 \times \mu_X \times \mu_Y) - H((\theta)_2|\mu_X \times \mu_Y) = H(\theta|(\theta)_1 \times (\theta)_2) \ge 0, \tag{2.25}$$

with equality iff $\theta = (\theta)_1 \times (\theta)_2$. Equality cannot be achieved in (2.25) when $(\theta)_1 = (\theta)_2 = (\theta)_{12} = \alpha^*$ since by (E'), $(\alpha^* \times \alpha^*)_{12} = \alpha_X^* \times \alpha_Y^* \neq \alpha^*$. In view of the continuity of $\theta \mapsto H(\theta|(\theta)_1 \times (\theta)_2)$ and the compactness of $M_1(\Sigma^2)$, it follows that for all $\epsilon = \eta + 12\delta||F||_{\infty}$ small enough

$$\beta'(\epsilon) = \inf_{\theta \in \Theta_{\epsilon}} \left\{ H(\theta | (\theta)_1 \times \mu_X \times \mu_Y) - H((\theta)_2 | \mu_X \times \mu_Y) \right\} > 0.$$

This in turn implies, for η, δ small enough (again, the choice $\delta = \sqrt{\eta}$ with η small enough will do) and $\beta = \beta'(\epsilon)/||F||_{\infty} > 0$, that for each $e \in \mathcal{E}_c$,

$$\frac{P(J_{x,k,\nu,\xi}, J_{x',k',\nu',0})}{p_u} \le g_2(y)e^{-\beta y}. \tag{2.26}$$

Combining now (2.18), (2.22) and (2.26), one sees that $\lim_{y\to\infty} Q_2(y) = 0$ (see (2.17)), completing the proof of the lemma.

3. Proof of (1.8) and an example satisfying (E_Y) .

Proof of (1.8): By (E_Y) and the continuity of $H(\cdot|\mu_X \times \mu_Y)$ there exists a relatively open subset U of $\{\nu : \nu(\bar{\Sigma}) = 1\}$ such that $U_Y = \{\nu_Y : \nu \in U\}$ is an open neighborhood of β^* and

$$\sup_{\nu \in U} \left\{ H(\nu | \mu_X \times \nu_Y) - H(\nu_Y | \mu_Y) \right\} \leq \frac{1-\delta}{1+\delta} H(\beta^* | \mu_Y) \;,$$

for some $\delta > 0$. Let $I_n = \{\Delta : |H(\beta^*|\mu_Y)\Delta/\log n - 1| \leq \delta\}$ and set Δ_n , $j_n \leq n - \Delta_n$ to be such that $\bar{R}_n^Y = \sum_{k=1}^{\Delta_n} G_Y(Y_{j_n+k})$. Note that $M_n = \bar{R}_n^Y$ if for some $i = 0, \ldots, \lfloor n/\Delta_n \rfloor - 1$ the empirical measure $L_{\Delta_n}^{T^{i\Delta_n}\mathbf{X}, T^{j_n}\mathbf{Y}}$ of the pairings $(X_{i\Delta_n+k}, Y_{j_n+k})$ is supported on $\bar{\Sigma}$. By [DKZ, Theorem 2],

$$q_n = P(\Delta_n \in I_n, L_{\Delta_n}^{T^{j_n} \mathbf{Y}} \in U_Y) \to_{n \to \infty} 1.$$

For n large enough, every $\Delta_n \in I_n$ and all i,

$$P(L_{\Delta_n}^{T^{i\Delta_n}\mathbf{X},T^{j_n}\mathbf{Y}} \in U|\Delta_n,j_n,L_{\Delta_n}^{T^{j_n}\mathbf{Y}} \in U_Y) \geq (\Delta_n+1)^{-(|\Sigma|-1)}e^{-\Delta_n(1-\delta)H(\beta^*|\mu_Y)/(1+\delta)} = p(\Delta_n)$$

(see [DKZ, (3) and (5)]). For some c > 0 and all n large enough, $\inf_{\Delta \in I_n} [n/\Delta] p(\Delta) \ge cn^{\delta/2}$. Hence, by the independence of $(X_{i\Delta_n+1}, \dots, X_{i\Delta_n+\Delta_n})$,

$$P(M_n = \bar{R}_n^Y) \ge q_n \inf_{\Delta \in I_n} \{1 - (1 - p(\Delta))^{[n/\Delta]}\} \ge q_n (1 - e^{-cn^{\delta/2}}) \to_{n \to \infty} 1. \quad \blacksquare$$

The following example satisfies (E_Y) for $\Sigma_X = \Sigma_Y = \{0,1,2\}$. Let $\mu_X(i) = 1/3$, i = 0,1,2, $\mu_Y(0) = \mu_Y(1) = 1/6$ and consider the symmetric score F(x,y) = 1 for x + y < 2 while $F(x,y) = -\infty$ otherwise (so $F(x,y) \neq F(x) + F(y)$). Here, $E_{\mu_Y}(G_Y) = -\infty$ and $\bar{\Sigma} = \{(0,0),(0,1),(1,0)\}$, with $\bar{\theta}^* = H(\beta^*|\mu_Y) = \log 3$, $\beta^*(0) = \beta^*(1) = 1/2$ and $E_{\nu}(F) = 1$ as soon as $\nu(\bar{\Sigma}) = 1$. Thus, (E_Y) holds since $H(\nu|\mu_X \times \mu_Y) < 2\log 3$ for $\nu((0,1)) = 1/2$, $\nu((0,0)) = \nu((1,0)) = 1/4$. In this particular example, $\theta^* = \log 6$ hence $1/\theta^* < \gamma^* < 2/\theta^*$, while $\mathcal{M} = \{\nu : \nu((0,1)) = 1/2, \nu((0,0)) + \nu((1,0)) = 1/2\}$ is the set of limit points of the empirical measure of pairings $(X_{i+\ell}, Y_{j+\ell})$ over the segment where M_n is achieved (cf. [DKZ, Theorem 2]). In particular, $|\mathcal{M}| = \infty$, $\alpha^* \notin \mathcal{M}$ and (E') fails while M_n possesses a limit distribution of type I (up to lattice effects as in (1.4)).

References

- [AW] Arratia R. and Waterman M. S. (1994). A phase transition for the score in matching random sequences allowing deletions. *Annals of Applied Probability*. To appear.
- [AGG] Arratia R., Goldstein L. and Gordon L. (1989). Two moments suffice for Poisson approximations: The Chen-Stein method. *Annals of Probability*, 17 9-25.
- [AGW86] Arratia, R., Gordon, L. and Waterman, M. S. (1986). An extreme value theory for sequence matching. *Ann. Statist.* 14 971-993.
- [AGW90] Arratia, R., Gordon, L. and Waterman, M. S. (1990). The Erdös-Rényi law in distribution for coin tossing and sequence matching. *Ann. Statist.* **18** 539-570.
- [CCC] Csiszár, I., Cover, T. M. and Choi, B. S. (1987). Conditional limit theorems under Markov conditioning. *IEEE Trans. Inf. Theory* **33** 788-801.
- [DK91] Dembo A. and Karlin S. (1991). Strong Limit theorems of empirical functionals for large exceedances of partial sums of i.i.d. variables. *Annals of Probability*, **19** 1737-1755.
- [DK92] Dembo A. and Karlin S. (1992). Poisson Approximations for r-scan processes. *Annals of Applied Probability*, 2 329-357.
- [DKZ] Dembo A. Karlin S. and Zeitouni O. (1994). Critical phenomena for sequence matching with scoring. *Annals of Probability*. To appear.
- [DZ] Dembo, A. and Zeitouni, O. (1993). Large Deviations Techniques and Applications, Jones and Bartlett, Boston.
- [Igl] Iglehart D. (1972). Extreme values in the GI/G/1 queue. Annals Mathematical Statistics 43 627-635.
- [KD] Karlin S. and Dembo A. (1992). Limit distributions of maximal segmental score among Markov dependent partial sums. Advances in Applied Probability, 24 113-140.
- [KO] Karlin, S. and Ost, F. (1988). Maximal length of common words among random letter sequences. *Annals of Probability* 16 535-563.
- [Neu] Neuhauser, C. (1994). A Poisson approximation for sequence comparisons with insertions and deletions. *Annals of Statistics*. To appear.