Refinements of the Gibbs conditioning principle
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Abstract Refinements of Sanov’s large deviations theorem lead via Csiszar’s information theoretic
identity to refinements of the Gibbs conditioning principle which are valid for blocks whose length
increase with the length of the conditioning sequence. Sharp bounds on the growth of the block
length with the length of the conditioning sequence are derived. Extensions of Csiszar’s triangle
inequality and information theoretic identity to the Markov chain set—up lead to similar refinements

in the Markov case.

1 Introduction

Throughout this paper, X1, X5, ... denotes a sequence of independent, identically distributed ran-
dom variables, distributed over a Polish space (X, Bx) with common distribution Px. Here, By

denotes the Borel o-field of 3. Let L, = L 37" | 6, denote the empirical measure of the sequence
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{X;}"_,, and for any two measures u, v, let H(u|v) denote the relative entropy of p with respect

to v.

A common situation is the following. One is given an observation of the empirical measure (usu-
ally, in the form of some averaged “energy”; for precise definitions, see Section 2). One wishes then

to deduce information about the distribution of the random sample conditioned on this observation.

The simplest situation in which such a set—up occurs is in the “Gibbs conditioning principle”
of statistical mechanics. Let A(a,d) = {w:n ' 3", f(X;) € [@ — §,a + 8]}, for some measurable
function f(-). Under suitable conditions on Px and f(-), the Gibbs conditioning principle is the
statement that, for any Borel set B € By, as soon as Ep, (f) # a, one has

lim lim P%(X; € B|A(a,0)) =~"(B), (1.1)

§—0n—00

where v* minimizes the relative entropy H (-|Px) under an energy constraint, and satisfies
dy*(z)/dPx (z) = e%(%) | 75, with Zg = [g, €#/(®) Py (dz) and 8 = B(a) is chosen such that F.«(f) =

a. (For precise statements in this direction, see, e.g., [3, 5, 18, 23]).

Statements of the form (1.1) are a particular case of what we refer to as the “Gibbs conditioning
principle”, which is the meta-theorem that under the conditioning that the empirical measure
belongs to some “rare set” A, the law of X; converges to the law which minimizes the relative
entropy subject to the constraint of belonging to A. There exist a few approaches to the derivation of
such principles. For some remarks on the history of the problem, see the introduction section in [23].
One of the most successful solutions to this question is via the theory of large deviations. Indeed,
Gibbs conditioning served as a motivation behind Lanford’s subadditive approach to the theory
of large deviations. Using the latter, one typically obtains weak convergence of the conditional
measure appearing in (1.1) to v*, and one may also extend the statement (1.1) to the statement
that the law of X1, ..., X} under the previous energy constraint converges weakly to (v*)*, with &
fixed, namely

lim lim P§((X1,..., X% € ClA(a,8)) = (v9)*(C) (1.2)

§—0n—o0

for any C' € BE. One may also obtain Markov analogues of these results (see, e.g., [3, 6, 22, 23]).

In fact, statements like (1.2) hold for quite general type of constraints, for appropriate v* which

solve the variational problem of minimizing the relative entropy subject to the constraint. When



convexity is present in the constraint (like in the case of energy conditioning described above), a
combination of large deviations ideas with geometrical analysis allows Csiszér (see [5]) to obtain
a much stronger mode of convergence. Namely, he proves that the convergence is actually in
divergence, which implies convergence in variation norm. These results have been extended to the

Markov case by Schroeder ([22]).

Our goal in this paper is to obtain extensions of (1.2) which allow for a growth of k& with n, in
the case that some convexity is available in the conditioning. In physical terms, this means that one
is interested not in the behavior of individual “particles” under the conditioning but rather in the
behavior of increasingly large “sub-systems”. Obviously, k(n) cannot grow too fast (in particular,
one cannot have k(n) = n and still hope to have (1.2). Actually, we show in Proposition 2.12 that,
under mild conditions, in order for (1.2) to hold, it is necessary that k(n) = o(n)). Our approach
to finding growth rates of k(n) which preserve (1.2) is based on the observation that Csiszar’s
results may be extended to deal with increasing k = k(n) as soon as one has refinements of Sanov’s
theorem. It seems beyond hope to be able to obtain such refinements in full generality. On the other
hand, such refinements are available (with some efforts) in several particular (important) cases, and
lead to the corresponding extensions of the Gibbs conditioning principle. The particular examples
in Section 2 are intended to serve as an illustration to this general phenomenon . A corollary of
our results (see Corollary 2.7 for the precise conditions) is that (1.2) remains valid (in the sense
of convergence in variation norm) if k(n)logn/n —,_0 0 and, under additional restrictions, as
soon as k(n) = o(n), the sharpest rate possible (see Proposition 2.15). Similar results hold for the
case with interaction (where the conditioning is with respect to U-statistics, namely the energy
is described by a quadratic form involving pairs of points in the sample Xy, ..., X, see Corollary
2.11), and, at the price of less rapid growth of k(n), under conditioning by an infinite class of
functions (see Proposition 2.18 and the examples following it). These results form the core of
Section 2. For the sake of better readability, we have postponed many proofs which interrupt the

flow of the presentation in Section 2 to a separate section.

We remark that Bolthausen [2] has results related to the refinements obtained in this work.
However, he works under smoothness assumptions which are not satisfied here, and it is not clear

how to extend his results to our setup.



Having dealt with the i.i.d. case, we turn our attention in Section 4 to the Markov situation.
Extensions of the basic results of Csiszar to the Markov set-up have been recently derived in [6] (for
Y a finite set) by a counting approach, and in [22] (for ¥ a compact metric space) by using instead
the large deviations results of Donsker and Varadhan. We present here an alternative derivation,
which is closer in spirit to the original approach of Csiszar. Indeed, in the i.i.d. case, the latter was
based on the geometric observation (the “triangle inequality” of [4, (2.14)]) that, under suitable
technical conditions, if A is a closed convex set of probability measures, R ¢ A and @) € A satisfies

inf,ea H(v|R) = H(Q|R), then, for any P € A,

H(P|R) > H(Q|R) + H(P|Q) .

(the geometrical picture being that if H(:|-) is interpreted as the square of the distance, then the
angle between the lines connecting R, () and @, P is acute). In the Markov case, we prove a similar
statement, where the main objects of study are transition kernels (see Lemma 4.5). This geometric
observation, coupled with the Markov chain duals of the information identity of [5, (2.11)] (see
(4.2)), allows us to repeat the analysis of the i.i.d. refinements in the Markov case. In particular, a
corollary of our results (see Corollary 4.17) is that in the Markov case, the convergence in variation
norm to an appropriate v* as in (1.2) holds true under simple energy conditioning as soon as

k(n)logn/n —p,e 0.

We conclude this introduction with some open problems. First we note that our bounds are
not always optimal, and it is of interest to find the maximal rate of growth of k(n) which still
yields conditional independence. (Note that even in the simplest situation treated in Corollary
2.7, the gap between the rate of growth of k(n) and the necessary condition of Proposition 2.12
is closed in Proposition 2.15 only under special conditions. This gap is even larger when one uses
Proposition 2.18). Next, the Markov chain results should carry over to Markov random fields
with local interaction, but we do not carry through this extension. Finally, conditions for the
applicability of Proposition 2.8 for general conditioning sets are needed. It is expected that such
conditions could be derived based on the yet unavailable local CLT’s for empirical measures, thus

motivating further study of the latter.



2  Conditioning, and refinements of Sanov’s theorem.

Let B(X), Cy(X) denote the space of bounded measurable (respectively, bounded continuous) func-
tions on . Let M;(X) denote the space of probability measures on X, equipped with the weak
(Cy(X)-) topology which makes it into a Polish space. Recall that a set IT C M;(X) is completely
convez if for every probability space (2,8, u) and Markov kernel v from (€, B) to (X, Bx) such
that v(w,-) € TI for each w € Q, the probability measure pv defined by pv(-) = [v(z, )u(dz) also
belongs to II (see [5, Definition 2.3]). A convex set [1 C M;(X) is almost completely convez if there
exists a monotone increasing sequence Il of completely convex subsets of Il such that every atomic

v € II with a finite number of atoms is also in UI1}.

For any measure ), let @™ denote the n-fold product of Q. We use Pr,, € M;(M;(X)) to denote
the law of the empirical measure L, = 13", x, in M;(X). Whenever Pr, (II') > 0, let P}

n

k|H/
denote the law of (X7y,..., Xx) conditioned on the event L, € I’ (here, k < n).

We shall make throughout the following assumption.

Assumption (A-1) lI' is a measurable subset of an almost completely conver 11 C M, (%), with
Pr, (TI1") > 0 and H(I1|Px) = inf pert H(P|Px) < 0.
Here, TI" measurable means that {(z1,...,2,) 1 n71 Y%, 8, € [I'} € Byn (= (By)™) for all n.

Let P* be the generalized I-projection of Px on II. That is, P* is the unique element of M; (%)
such that if P, € Il satisfy

H(P,|Px) = m—oo ]iDIé%H(PUDX) )

then P,, — P*, with the convergence holding in variational norm (see [4] for a proof of the existence
and uniqueness of the generalized I-projection, and note that if II is variation-closed then P* € 11
and H(II|Px) = H(P*|Px) by [5, (1.6)]). Henceforth we let f = log% — H(P*|Px), so that
f € Ly(P*) with [ fdP* =0.

A remarkable observation of Csiszar is the following

Theorem 2.1 [5, Theorem 1] Assume (A-1). Then,

1

n

1 1
H (Pl (P7)") < = —log Pr,, (I1) = H(I|Px) < ——log Pr, (I') = H(P*|Px) . (2.2)



In particular, since for any p € M;(X"), v € M;(X), with u; denoting the marginal of y on the i-th
coordinate (see [5, (2.10)]),

LS H ) < SH (), 23)

Csiszar, using the exchangeability of the random variables X; under the conditioning, concludes
that
N 1
H(Pgi|P7) < —log Pr, (1) — H(IT|Px) . (2.4)

We say that I1’ satisfies the Sanov property (with respect to Py and IT) as soon as the right hand
side of (2.4) converges to zero. In particular, if [I"’ = II is a closed set with nonempty interior such
that infperre H(P|Px) = infpenn H(P|Px), the Sanov property is a direct consequence of Sanov’s
theorem. Whenever the Sanov property holds, one obtains the convergence of the conditional
measure of X; to the measure P*, in a divergence sense which is even stronger than convergence

in variational norm.

Our starting point is the following, well known refinement of (2.3). Let n, k(n) be such that
n/k(n) is an integer. Consider blocks of length k(n), and for any p € M;(X"), denote by ,uf(n) €
M, (ZF04) the law of the j-th block (that is, ,ulf(n)(A) = (A x 2*=k)) and in general uf(n)(A) =
p(BU=DER) s A x $7=3k(2)) for every Borel set A C X#(%)). Then, (2.3) reads

n/k(n)
H (™ R0y < H (o). (2.5)

J=1

Again by the exchangeability of the k(n) blocks, it follows that when (A-1) holds

H (Pl (P7)F0)) < () (—~ log P, (IT) = H (11| Px)) < k(n) (~ - log Pr, (1) — H(P*|Px))

(2.6)
Csiszar has actually observed (2.6) for k(n) = k independent of n, and in this context concluded
that as soon as the Sanov property holds, any fixed number of variables X; behave, under the
conditioning, like independent random variables. Note however that more information is contained
in (2.6): namely, whenever one may prove refinements of Sanov’s property, one immediately obtains
independent-like behavior for blocks of length related to the accuracy of the refinement. Our goal
therefore in this section is to present several situations where such refinements may be obtained,

leading to a “Gibbs” statement for n-dependent blocks.



The following simple corollary of (2.6) applies to the conditioning on the empirical mean of
Rf-valued statistics, i.e. conditioning on the event {n=' "  #(X;) € C'}, where ¢ : ¥ — R’ is a
Borel measurable map. Let Qx = Px o %™, and A(\) = log [ eM*)Qx (dz).

Corollary 2.7 Let TI' = {v : v o =" of compact support, [bdv € C}, for a conver set C' C R*
such that C'° intersects the interior of the convexr hull of the support of Qx. Suppose further that
Qx is either lattice or strongly nonlattice, that {\ : A(\) < 0o} is an open set, and [2Qx (dz) & C.
If n='k(n)logn — 0, then H(P)”(k(n)'n,|(P*)k(”)) — 0.

(Strongly nonlattice means that the modulus of the Fourier transform of )x equals one only at
the origin).

Remark: It is shown in [5, (2.36)] that in this setting % = exp((N*, ¥(:)) = A(X*)) where \* € IR*
attains the maximum of hA(A) = infiec (A, z) — A(N).

Proof: See Section 3. m

The rate in Corollary 2.7 is in general not optimal. As will be shown below (c.f. Proposi-
tion 2.12), k(n) = o(n) is necessary for the conclusion of Corollary 2.7. Under additional assump-
tion, it can be shown (by a somewhat different technique), that o(n) is actually sufficient (see

Proposition 2.15).

Since the method of obtaining refinements based on (2.6) is relatively simple to apply, it is
of interest to note that in general (2.6) is not tight even when (2.2) is. Consider Py = Qx,
the standard Normal law on ¥ = IR, with C' = [1,00) and %(-) being the identity map. In this
setting P* is the law of a Normal(1,1) random variable, and the event L, € Il corresponds to
conditioning on n71 Y " ; X; > 1. Using the special structure of the Normal law, it follows as in
Proposition 2.15 that k(n) = o(n) suffices for k(n)-independence. A direct computation reveals
that the difference between the right-side and left-side of (2.2) is at most 1/n but for k(n)/n — 0
while n™'k(n) logn — oo the right-side of (2.6) is unbounded yet the left-side of (2.6) converges
to zero. The cause for this lies in (2.5) where we ignored the contribution due to the conditional

dependence among the k(n)-blocks.

In [10, Theorem 1.6], Diaconis and Freedman deal with point conditioning, as in the above ex-

ample when taking C' = {1}, and prove that then H (P2, ,|(P*)*) — 0iff k(n)/n — 0 (their results

Xk



are phrased in terms of the variation norm, but the estimate of [10, Lemma 3.1] suffices for conver-
gence in divergence). In the setting of [10], P)?"IH’ = (P*)}Z(nm, by sufficiency theory for exponential
families, allowing one to let Px = P* to begin with. On the other hand, Pn"IH’ is then singular
making (2.2) useless. In contrast, for C' = [1, 00) in the above example H ((P*)%n|(P7)") < log2
by (2.2), demonstrating the dependence of the conditional distribution on the parameter of the

relevant exponential family.

For arbitrary measurable set I1', Diaconis and Freedman show in [9, Theorem 13] that the vari-
ational distance between Py, , and the set of mixture laws {Q € My(Z%) : Q() = [ P*()pun(dP),
pn € My(M; (X))}, is at most k%/n, and in [9, Proposition 31] give an example of I’ for which this
rate is tight. In comparison, our results deal with the stronger notion of divergence distance, with
in = &px which is degenerate and independent of n, but cover only some special classes of sets II’

where typically a much better convergence rate is achievable.

The next proposition is suitable for analyzing the more general setting not covered in Corollary
2.7. As mentioned before, the required tool is a refined lower bound on P, (II'). The main idea is
to perform a change of measure in the proof of the large deviations lower bound to a point which
may be an interior point, but which converges with n to a boundary point. This allows to have a
ball wholly contained inside the conditioning set, and hence to avoid the need for “local” results,
which are generally cumbersome and known only in finite dimensions. On the other hand, this

procedure introduces a discrepancy in the exponent which needs to be controlled.

Proposition 2.8 Assume (A-1). Suppose that for some ) € M;(X) with H(Q|Px) < oo there
exist ay, € [0,1], pp > 0 and k(n) such that k(n)(o, + pn) — 0 and

iminf X 1og (@) (L EH’,n‘lzn:(fan(Xi)—/fanann) <o) =0, (29
=1

n—00 n

where @, = aQ + (1 — a)P* and f, = log ;lg;. Then, H(Py |(P*)¥(")) = 0.

k(n)|H/

Proof: Fix () as in the statement of the proposition, and observe that since H(Q|Px) < oo, by

convexity of the relative entropy

H(QulPx) < aH (Q|Px) + (1 - ) H(P*|Px) < 0 ,



for all « € [0, 1], so that f, = log gg; € L1(Qq) with [ f,dQ, = H(Qa.|Px). Fix any measurable

representation of f, in L1(Q,) and let

M. ={v:f ELl(V),/fadu—/faan <pInil'.

(Although IT, , may depend on the particular representation of f, chosen in its definition, (Q,)r,, (I1,.4)

does not).

Observe that for every n, @ € [0,1] and p > 0

Pr, () 2 P, (11,.0)

v

e—nlotf faan)/ ¢ J Jadln g py
Mo !

_ e—n(p+H(Qa|Px))/ d(Qa)Ln > e_nH(P*|PX)e_n(p+o‘H(Q|PX))(Qa)Ln(Hp,a) . (2,10)
Iy a

Since f, € Ly(L,) a.e-(Q4)", the proof is complete by combining (2.6), (2.10) and our assumptions

on ay, p, and k(n). =

Remark: In the case o, = 0, (2.10) is related to [12, Theorem 2.1].

Proposition 2.8 applies in the following special case of conditioning by a U-statistics. Let

U :¥? — [0, M] be a continuous, symmetric, bounded function, such that:

(C-1) [U(2,y)(Q1 — Q2)(dz)(Q1 — Q2)(dy) = 0 for every @1, Qy € My ().
(C-2) [ U(z,y)Px(dz)Px(dy) > 1.
(C—8) There exists @ € M;(X) such that H(Q|Px) < oo and [U(z,y)Q(dz)Q(dy) < 1.

Corollary 2.11 Assume that (C-1)-(C-3) hold, and let 11 = 11" = {v : [U(z,y)v(dz)v(dy) < 1}.

Then, H(Pg, |(P*)¥")) = 0 provided that n="k(n)logn — 0.

(n) |1

Remark: Note that the conditioning L, € II’ corresponds to n~2 ZZj:l U(X;, X;) <1

Proof: See Section 3. =
Having spent some effort in obtaining convergence statements for the conditional law P)nfk(“)lﬂ”

and before turning to the infinite dimensional setup, we next show that under mild conditions,

k(n) = o(n) is necessary for H(Py |(P*)k(n)) — 0.

k(n)|H/



Proposition 2.12 Let Il be convex and such that H(Il|Px) < co. Let P* denote the generalized
I -projection of Px on Il with f =log(dP*/dPx) — H(P*|Px). Assume that f € Ly(P*), that

log P, (I) + nH (P*|Px) > —pu(n), (2.13)

or some positive sequence (n) = o(/n), an a e characteristic function o o__1 18 in
f posit q p(n) = o(y/n), and that the characteristic function of P*o f

L,(R), some p € [1,00). Then, for k(n) = fn, any 1 > 3 > 0 fired, one has

liminf 7 (Pgam el (P9)F) > 0. (2.14)

Remark: (2.13) holds, in particular in the setting of Corollaries 2.7 and 2.11.
Proof: See Section 3. =
In the situation described by Corollary 2.7, one may under further assumptions actually close

the gap between the sufficient rate k(n) = o(n/log n) and the necessary rate k(n) = o(n). Indeed,

we have the

Proposition 2.15 In the setup of Corollary 2.7, assume that the characteristic function of P*o~!

s in Lp(]RZ), some p € [1,00). Further assume that, for some M < oo,

X n—1/2
P, ()" (P71Px) > (2.16)
M
Then, for any k(n) = o(n),
1P oy e — (P flvar — 0. (2.17)
n—oo

Proof: See Section 3. =

Remarks: (1) Conditions for (2.16) to hold are given in [15, 20]. In particular, (2.16) holds for
£ =1 and, for £ > 1, as soon as I’ is a convex polytope with P* belonging to the relative interior
of an £ — 1-dimensional facet.

(2) If Qx possesses a bounded density, then the characteristic function of P* o ¢~ is in Lp(IRZ)
for some p € [1, 00).

(3) In Proposition 2.15 we may find other assumptions replacing (2.16) (c.f. Remark 3.1).

10



Proof: See Section 3. =

We next turn to the infinite dimensional setup. Let F be a permissible class (see [21, Appendix
C]) of Borel measurable functions from ¥ to [—1,1]. Equip the set X’ of bounded real valued
functions on F with the norm ||z||7 = supscx|2(f)|. We shall identify M (X) with a subset of X’
via the mapping v — vz such that vz (f) = [ fdv. Denote by B, s ={v € My(X) : ||v — p||x < 6}
the F-ball of radius §, centered at u € My ().

Let N4(8, F) denote the minimal cardinality of a d-cover of F in the (pseudo) metric space
(B(X), d), and for any x,, = (21,...,2,) € X" define the (pseudo) metric £, (f,g) =n=' 30y |f(zi)—
g(zi)| on B(X). Finally, let Hy(8,F) = supy,exnlog Ng (6, F), and recall that F is a uniform
Glivenko-Cantelli class of functions iff H,, (8, F)/n — 0 for any fixed § > 0 (see [13, Theorem 6]).

Proposition 2.18 Assume (A-1) and that [(log %)de* < oo. Suppose that for some @) € 11’
with [(log %)QdQ < 00, it holds that Bg, ss, C II' for some o, > &, — 0 such that né2 —

2H,,(8,,F) — co. Then, H(P;k(n)|n,|(P*)k(”)) — 0 for any k(n) such that k(n)a, — 0.

Proof: See Section 3. =

Remarks: 1) Note that in Proposition 2.18, k(n) is at most of o(y/n), demonstrating a significant
loss compared with the finite dimensional situation.

2) In Proposition 2.18 the conditions f € Ly(P*) and log % € L2(Q) may be relaxed to f €
Lg(P*) and log% € Lp(Q) for some B € (1,2) at the expense of requiring n'~'/#5, to be
bounded away from zero (c.f. Remark 3.2).

In order to avoid discussing measurability issues, we restrict the discussion in the next propo-
sition to the case of countable F. Instead, one could put a separability condition on the empirical
process indexed by F. Recall that F is a Donsker class with respect to P* iff for X; i.i.d. P*
random variables, the laws of V,, = \/n(L, — P*)r converge in the C3(X)-topology of M;(X) to a
Gaussian Radon measure ypx on X' (c.f. [19, Section 14.2]). This suggests the following alternative

to Proposition 2.18.

Proposition 2.19 Assume (A-1) and that [(log %)QdP* < 00. Suppose there exists a Donsker
class F with respect to P* and C C X open, convex such that Py € C and {v € My(X) : vr €

11



Cycll'. Ifyp«({t(z — Pz) 12z € C}) > 0 for some t € (0,00) then H (P}
any k(n) = o(y/n).

k(n)m/l(P*)k(n)) —0 fOT

Proof: See Section 3. =

The following lemma, adapted from [12, Theorem 2.1], is a useful tool in the application of

Propositions 2.18 and 2.19.

Lemma 2.20 Let M,(X) be equipped with the V-topology, where either V. = Cy(X) (the weak
topology) or V.= B(X) (the T-topology). Let 11 be convez, open and such that H(Il1|Px) < oo, and
P* € 11 denote the generalized I -projection of Px on I1. Then, log(%) eV.

Proof: See Section 3. m

We conclude this section with two examples demonstrating the applicability of Proposition 2.18

and Lemma 2.20.

Example 2.1 Let Lip(1,1) denote the class of Lipschitz continuous functions, bounded in absolute
value by 1, with Lipschitz constant bounded by 1. Let F consist of a permissible class of Lip(1,1)
functions. Let @ € M;(X) be such that ||Px — Q|| > v for some v € (0,2), and such that
log(dQ/dPx) € L2(Q). By Fubini’s theorem, I"' =11 = {v : ||[v — Q|| < 7} is completely convex.
With respect to the Cp(X)-topology on M; (X)), the set II is open with H(II|Px) < H(Q|Px) < oo.
Thus, (A1) is satisfied since by Sanov’s theorem P, (II") > e~"(H(@QIPx)+1) > 0 for n large enough.

Moreover, by Lemma 2.20, P* € Tl and log(%) € Cy(X). Next, note that for every v € M; (%)

lv = Qllx < llv = Qallx + 1Qa = Qllx < [lv = Qullxr + (1 — )7,

implying that Bg, ss C Il' for all & > 85/v. Choosing v, = 83,,/7, &, such that né2 —2H, (8,, F) —

oo and k(n) = o(6,") we conclude by Proposition 2.18 that H (P, [(P)¥")) 0. m

() |11

The next example demonstrates the additional work needed in order to apply Proposition 2.18

when the conditioning set possesses no interior.

Example 2.2 Let ¥ = R and F = F; = {13 4(2) : —00 < b < ¢ < co}. Let @ and Px be such

that ||@ — Px||z > 7, some v € (0,1) and % =YL kifi, L < ocand f; = L, € Fr with

ait1]

12



—00 = a1 < --- < ap41 = 00. Clearly, flog( )QdQ < 00. Consider the variation-closed set
'=10={v:|lv-Q|r <~} Notethat L, € II'is closely related to conditioning on the empirical
measure being in a Kolmogorov-Smirnov ball centered at ). Clearly, Px ¢ Il while P* € II. Use
the change of measure as in the first equality of (2.10) together with the boundedness of % to
conclude that Pr, (II') > ¢"Qr,, (II') for some ¢ > 0. By the classical Glivenko-Cantelli theorem
(see [21, Section I1.3]) Qr,, (II') — 1 as n — oo, leading to the conclusion that Pr,, (II') > 0 for all

n large. Since, by Fubini’s theorem, IT is completely convex, (A-1) follows. We show below that

dP*

L
:Zfzfl for some &4, ...,&r, (2.21)
=1

implying that [(log %)QdP* < o0.

Note that, exactly as in Example 2.1, Bg,gs C I’ for all o > 835/v. Since H, (3, F;) <
2log(n + 1) for all & > 0. It follows that for ¢ large enough the choice §, = cy/logn/n with
a, = 83, /v and k, = o(\/n/logn) allows for the application of Proposition 2.18.

We turn finally to showing (2.21). Consider the auxiliary problem,

inf H(P|Pyx)
{P:| [ fdP— [ fdQ|<v,feFL}
where Fr = {Ef:j fi o1 < j <k < L}, whose solution, denoted P is easily checked to be
of the form (2.21). Since F; C Fj, suffices to check that P € II in order to conclude that
P* = P. To this end, fix f = L, € Fr such that b € [a;,a;11] and ¢ € [ag, agq1]. Assume
first that P((b,¢]) — Q((b,¢]) > 0. Since the measure P — Q has a fixed sign on [a;, a;41], either
Py ) = Qb ) < Pl(asye]) — Qllasye]) or P((byel) = Qb)) < Pllaen, ) — Qlaze, ).
Similar arguments apply to [ax, az41] and to the case of P((b,c]) — Q((b,c]) < 0, leading to the

conclusion that

P((6,e) = QU )| < sup | [ faP - [ 1dQl <.

feFy

This example easily generalizes to F consisting of indicators on rectangles in IR?. The general-
ization to measures () of general structure and to other Glivenko-Cantelli classes is similar, except

for the bound log % € Lg(P*), B > 1, which has to be provided on a case by case basis. m

13



3 Proofs for Section 2

Proof of Corollary 2.7 Let I(z) = supycpe[(A, 2)—A(X)]. Note that Pp, (II') = Q% (n=' Y7L, Vi €
), where Y; = ¢(X;) are i.i.d. Qx. It follows from [20, (3.4)] that for some finite ¢; > 0 and n
large enough

n~'log P, (') > n+n~! log(cln_Z/Z) ,

where

= lir —1 n ') YV, e C) > — inf I(2) > —o0,
n= lim —logQ%(n ;; ¢ inf () > —oo

and the inequalities follow from Cramer’s theorem and the support condition on @ x.
In [5, (3.36) and Lemma 4.3], it is shown that IT = {v : vo?~! of compact support, [ ¥dv € C},

is almost completely convex. As n~'k(n)log(c;n=%/?) — 0, the proof is completed by (2.6) provided
that H(I1|Px) > inf.eco I(2). To this end, note that by [5, (3.5) and Theorem 3],

H(I|Py) = inf _ H(Q|Qx)
{@ of compact support, [ zQ(dr)eC}
= inf H(QIQx) - (3.1)

{Q of compact support, [ zQ(dz)eC}

Note that if dQ/dQx = f is of compact support, then [ |z|Q(dz) < oo and for every \ € IR,

H(QIQx) = (A /xQ dm}—/1f>oflog €/ 1O x (dz) > (A /:;;Q (dz)) = A(N)
implying that H(Q|Qx) > I([ 2Q(dz)). Consequently, using (3.1), H(II|Px) > inf,cco I(z). ®

Proof of Corollary 2.11 11 = II' is closed with {v : [U(z,y)v(dz)v(dy) < 1} C TI° (see [8,
Lemma 7.3.12]). By (C-1) and the boundedness of U, II is completely convex, with H (II|Pyx) <
H(II°|Px) < oo by (C-3). Hence, by Sanov’s theorem P, (II') > 0 for all n large enough. It was
shown in [23] (see also [8, proof of Theorem 7.3.16]) that P* = v« € II where for all § > 0, v3 is

of the form
dvgp

iy = OP(=AWUrs(e) = 9(B)) + H(vsPx))

with

Uae) = [ UGe,m)ratdy), 98) = [ Ule,n)aldn)lay),
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and §* = inf{# > 0 : g(8) < 1}. In particular ([8, Lemma 7.3.14]), ¢(8*) = 1 and by (C-2),
B > 0. Let f(2) = F(2)/B" = 1 - Uyge(s) and Ufa,y) = 1 - Uls,y) - f(a) - f(y). Define
Zy = n~Y2YE, f(Xi) and Y, = 7 R, Y0, U(XG, X)), Note that {L, € II'} = {2Z, +
n='/2Y,, > 0}. Thus, for all C' > ¢ > 0,

(P)" (L, € ', F(X3) < CB*logn) = (P*)"(=0.5n""2Y, < Z, < Cn~'/*logn)
=1
> (P)"(ecn Y logn < Z, < Cn~Y?logn) — (P*)"(Y, < —2clogn) . (3.2)

Denoting hereafter expectations under (P*)" = (yg+)" by E*(-), we see that E*(f(X;)) = 0, and
X;) = E*((NJ()&'j,Xi)|Xi) = 0. By the Berry-Esseen theorem (c.f.

for all ¢ # j also E*(U(X;, X;)

[1, Theorem 12.4]), for all n large enough

- _ C —c)logn
P\» 1/2] < 7, < Cn~Y?] >(—
(F7)"(en™logn < T logm) 2 o Vonn

Let F, () denote the distribution function of Y,,. Then (see [17]),

- 0(n~11?). (3.3)

sup |y (2) — Fao ()] < O(n™'/?)

where I, denotes the distribution function of the random variable § = E*(U (X, X))+>232, Aj(2%—
1), with A; deterministic, square summable, and z; independent standard Normal random variables.

It follows that

(P*)™(Y,, < —2clogn) < P(8 < —2clogn) +O(n~%/?). (3.4)

Due to the square summability of the A; there exists A, > 0 such that ¢; = E(exp(—A,0)) < oo.

Hence, using Chebycheff’s inequality,
P(8 < —2clogn) < ¢je”reclosn (3.5)

Choose now C' > ¢ > 1/(4),), and combine (3.5) with (3.4) and (3.3) to conclude that (3.2) implies

that, for some n > 0 and all n large enough,

(P)*(Ln, € ', Y F(Xi) < CB*logn) > nn " %logn .

i=1

The proof is completed by applying Proposition 2.8 for a, = 0 and p, = Cf*n"'logn. m
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Proof of Proposition 2.12 Let 02 = fdeP* and f = f/o. Then [ fdP* =0 and [ f2dP* =1,
and, for any v € II', (f,v) > 0 (see [5, (1.5)]). Let T}, = \/k(n)(f, Li(n)) and

1 X, 1- 6
V= 5k L) = T, —flkzn)ﬂfm 5V

Denote the law of T}, (respectively, V,,) under (P*)" by P, 1 (P, ). Then, under our assumptions

(c.f. [1, Theorem 19.1]), P, 7 and P+ possess densities denoted, respectively, by p, () and
p, 7 (v), and, with ¢(z) = (v2r)"le "/,

félp|pnT() o(t)] = o(1)
sup [p, 7(v) — ¢(v)] = o(1).
velR

Thus, it follows that the conditional law of T,,, conditioned on V,, = v, possesses a density p, (t|v),

and, furthermore, denoting
Pa(t,v) = (y/2r (1 — B))~Le=(t=F?/201-5)

one has that

sup |pa(t[v) = 9p(t, v)[ = o(1) .
el Jol <1

(The appearance of the density g (t|v) is anything but mysterious: it represents the density of 7T’
conditioned on T+ /(1 — 3)/BV = v, where T,V are independent standard Normal).

Define now F,(v) = e=?VE®Y(P(L, € |(f, L,) = Bv/\/k(n)). Then F,(v) : R — [0,1]
and F,(v) =0 for v < 0. Let g(z) = 1{_1<z<1}- Then, denotlng by P, (v t) the joint law of V,,, T},
under (P*)",

(
- /E g(t)|V, = v)dQn<v t),

where
dQ,(v,t) F,(v)
dP,(v,t) [ F,(v)dP,(v)’

is independent of ¢. Note that, by (2.13),

/Fn(v)dpn(v,t) =P, (H/)enH(P*|PX) S g—nln)
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Therefore, taking pq(n)y/n/ max(p(n), 1) —,—00 0o but py(n) = o(1), one has that

[ auw 21—
<pi(n)

implying that

/]RE(g(t)ﬂ/n =0)dQ,(v,t) > inf  E(g(T,)|V,=v)—o(1)

0<w<p(n)

— /]Rg(t)pn(ﬂv)dt—o(l)

0<u<p(n)

inf / 9(t)ds(t, v)dt — o(1)

0<v<ui(n

S [ 901,00t > [ g0,

v

where the last inequality is due to the fact that 13(+, 0) is the density of Normal(0,1— 3) law. On
the other hand, by a standard CLT, (P*)"(-1 < T, < 1) =500 [fr g(t)@(t)dt. One concludes that
the variational distance between Pg, ") (11 and (P*)k(”) is bounded away from zero, yielding, using
[8, Exercise 6.2.17], the assertion (2.14). |

Proof of Proposition 2.15 By [5, (2.36)] f is an affine function of ¢ and since {\ : A(\) < oo} is

! are finite. If the covariance matrix of P* ot~ is singular, then

an open set, all moments of P*o~
for some A € R* the random variable (X, 1 (X)) is constant Px-almost-surely. By removing all such
deterministic relations from the definition of II" we may and shall assume without loss of generality
that this covariance matrix is positive definite. Hence, by an affine transformation of IR, we may
assume hereafter that [ ¢dP* = 0 and [ ¥'dP* is the identity matrix. This transformation can
be done such that f = aw; for some a > 0, noting that then C' C {v : v; > 0}. Consequently, for

any A C ©F measurable,

[ 1 . e 2z 1(#) g(pyn
Axsn—k {3z Y ¥(zi)eC}
=1

7l , A :/ dP%ny = n
i (A) axsomk X0 f1 . e™ iz 2= g(pryn

wn {L 3 Y(xi)ec)
i=1
Let V,, = ﬁ é P(X;) and g, (v) = 1{ue\/ﬁc}6_ﬁavl- Denoting hereafter expectations under (P*)"

by FE*(-), we see that
dPXﬂH’

dP+*

E[gn (Vi) [Vi]

= hn (Vi) = EX[g,(V,)]
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and

n xk *
” Pxﬂnf - P Hvar =k |hn(Vk) - 1| .

Since ||Pgy g — P |lvar is monotone nondecreasing in , it suffices to show that

e

lim lim sup F*|h,(V.,) = 1] =0. (3.6)

e=0 naoo

Under our assumptions, V,, possesses a bounded continuous density p,(v) which admits the asymp-

totic expansion

sup, (L+ (101 pa(v) = d(0) (1 + 07 2 H (v))] = o(n'/?) (3.7)

where ¢(v) is the standard Normal density on IR® and H(v) is a polynomial of degree 3 in v (c.f.
[1, Theorem 19.2 and (7.20)]). The joint density of (V,,, V,) is then

Pn(t,0) = pen (t)p(l—e)n (1]\/%\/?) (1- 6)_({/2 :

With
bn = / egn(”)l’n(“)dv = pp, ()" HPTIPx) > pp=1p=1/2
R
it follows that
* 1 ]
E*hy(Ven) — 1] < b—// I (V) [P, (£, 0) = Pen () pp (v)|dE dov (3.8)

<MVt [ [ g (©pan(®)lp-oye (jlfﬂ) (1= ™ — pu(v)|dt dv (3.9)

Due to the integrability of the error terms in (3.7), we may replace pg(-) by ¢(-)(1 + k~"/2H(-))
when studying (3.9). Let §(-) denote the centered Normal density for the covariance matrix 21/,.
Note that ¢(t)(1 4 |H (t)|) < CG(t) for some C' < oo and all ¢ € R*. Moreover, differentiating with
respect to 4/e it is straightforward to check that for all ¢ small enough,

o(1)19 (ﬁfﬂ

) (1=~ = ¢(v)] < VeCa(t)a(v) ,

for some C' < oo and all t,v € IRY. Hence, for some C; < oo independent of n and ¢, and for all ¢

small enough and n large enough

1—¢

Vi [ [ 0:@pa®lp-o ( . ﬁt) (1= 7/ = pu(v)ldtdv
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<o(l) +Ci(vne+1) //gn(v)a(t)[a(vH (1—6)‘4/%(\/—‘[:)]&@

<o(l) +Cy(vme+1) / VN2 (01 doy
0
<o(l) +Cs(/?4n~Y?,

implying (3.6) and the proposition. m

Remark 3.1 Let d5(v) = [|p(t[v) — pen(t)|dt < 2. For any compact K C IR® and all n large

enough, inf,ex p,(v) > L infex ¢(v) > 0. Therefore, by the same arguments as detailed before,

lim lim sup sup d;,(v) = 0.

e=0 nooo veK

If ¢, (v) = gn(v)pn(v) /b, is a tight sequence in M, (IR?) then

lim limsup [ ¢,(v)d;(v)dv=10.

e=+0 n—oo

By (3.8) we then get (3.6) and hence (2.17) even when (2.16) does not hold. The tightness of
{¢.(-)} can be phrased in terms of the contact of C' with [ idP*.

Proof of Proposition 2.18 Let f, be as in Proposition 2.8. Let 1 < 3 < 2. Since i(z) = z|log z|?
is bounded on [0,1] by h(e™®) < oo, and h(z)1{z>1y is convex, it follows that for some constant

M < oo,

dP*
Ad = /h — 4+ (1- dP
151, (0 + (1= @) )Py
< hie +a/|10gd dQ + (1 /|log

Hence, by Chebycheff’s inequality (with g = 2),

|‘3dP* <M. (3.10)

= (Qa,)" ‘IIZ (o (X) = [ faQa)] 2 80) < 52% S0, (3.11)

Moreover, for n large enough such that nd? > 1/8, we have by [21, page 31, inequalities (30),(31)]
that
P = (Qun)"(Ln £ 1) € (Qa,)" (Ln & Baa, s5,) < 8 Cn)=m52/2 5
(The term (Q,,,)" (L, & Bq., 8s5,) is well defined since F is permissible). In view of Proposition
2.8, suffices to prove that (2.9) holds for p,, = é,. This follows by the union of events bound since
el 50, m
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Remark 3.2 Proposition 2.18 remains valid if the conditions f(log dP*) dP* < oo and f(log )QdQ <
oo are replaced by [ | log |5dP* < oo and [|log 775 49 |5dQ < 00, respectively, for some 1 < 3 < 2,
(2)

as soon as the other conditions hold for 6, = cnl/ﬁ_l and c large. Indeed, €5’ is handled exactly

as before, while one has

1) < 2000, (fan (X0) = [ fu,0Qa, )
v (Gur)”

where the first inequality is due to Chebycheff’s inequality (for z”) combined with [24, Theorem

< 228 Mnt P58 = aM(2/e)? < 1,

2], and the second follows from (3.10).

Proof of Proposition 2.19 Let eV = (P)"(n'| Y, F(X5)] > en™'/?) and e = (P*)* (L, ¢
1"). Since eV < M/c* (c.f. (3.11)), by Proposition 2.8 suffices to show that limsup,_, ., e <
1 (cf. (2.9) for @, = 0 and p, = en~"/2 ). (We note that measurability questions can be
taken into account by using outer measures when bounding 622).) Let V,, = v/n(L, — P*)r and
Ts = {s(zx — Py) : z € C} which are open subsets of X’ for s € (0,00). By our assumptions
P <1- (P*)*((Ln)F € C) =1 — (P*)*(V, € T /). Since C'is an open convex set and Px € C,
it follows that T is non-decreasing in s. Hence, 6;2) <1—(P)™(V, € Ty) for all n > t%. The
Cy(X)-convergence of the laws of V,, to yps thus implies that lim sup,_,., 6%2) < 1—vp=(Ty) < 1.

Proof of Lemma 2.20 We may and will assume that P* # Px for otherwise there is nothing
to prove. In particular, H(II|Px) > 0. With the V-topology weaker than the variational norm

topology on M;(X), clearly P* € II. Consider the convex, compact set
L={veM(X): Hv|Px) < H(Il|Px)}.

Since II is open, if P € LNII then P(t) = (1 —t)P 4+ tPx € Il for t > 0 small enough, with

H(P(t)|Px) < (1 —t)H(P|Px) < H(Il|Px). Therefore, the convex, open set Il and L are disjoint
subsets of M;(X), and by the Hahn-Banach theorem (cf. [11, Theorem V.2.8]), there exists h €
M(X)*=V and @ € R such that forg=h —a eV

Lc{v:(g,v)<0}, IMC{p:{g,p)>0}.
In particular,

H(I|Px)= inf H(v|Px)= 1nf sup{tz — log Ep, (€")} (3.12)
{vi(g,v)>0} OtelR
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(since v — (g, v) is a continuous mapping, the rightmost equality follows for example by comparing

[8, Theorem 2.2.3] with [8, Theorem 6.2.10]).

Since Px € L and there exists Q < Px, @ € Il it follows that (g, Px) < 0 and moreover,
Px({g > 0}) > 0 and Px({g < 0}) > 0. With g bounded, hence Ep,(ge™?) = 0 for some

o0 > tg > 0 and

inf sup{tz — log Ep, (¢")} = limsup{tz —log Ep, (")}

z>0¢cR z{0 >0
= sup{~log By ()} =~ log By (¢ (313
>0

(c.f. [8, Lemma 2.2.5]).

Let f =tog. Combining (3.12) and (3.13) we see that H (II| Px) = — log Fp, (¢/) and [ fdP >0
for every P € II. Therefore, by [5, Lemma 3.1], log(%) =f+H(|Px)eV. =

4 Refinements in the Markov case

Hereafter, we consider the measure space (2, Bq) with Q = Y%+ and ¥ a Polish space. The
marginal of @ € M;(€2) on the coordinates (¢,74+ 1,...,7), j > ¢ is denoted @Q;; (or @; when
j = 1), and for § > ¢ the corresponding regular conditional probability distributions are denoted
Qi+1,5i(, ), (or Qiyq)i(z,-) when j = i+ 1). The Markov measure on k41 corresponding to
initial distribution v and transition kernel 7 is denoted v ®j; 7, omitting the index k£ for & = 1.
Similarly, v ® 71 ® 3 ® - - - ® 7 denotes the non-homogeneous Markov measure induced by the
kernels 7y, ..., 7. If @ € M;(X?) is such that Q < @1 ® 7, with f = dQ ® , then for all z ¢ Ny
we have Q2|1(x, ) < 7 (z,-) with Radon-Nykodim derivative f(z,-), such that [ f(z,y)7(z,dy) =1
and Ny € By is such that @1 (V1) = 0. The function

flzyy) ifeg N

1 otherwise

fT(z,y) =
is then called the Borel measurable m-extension of f. Given a Markov kernel 7, a m-extension of

Qi+1)i(7, ) is a Markov kernel of the form

Qitrfi(z,-) ifz ¢ N;

m(z,:) otherwise,

A
;r+1|i(‘r7 )=
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where the Borel set N; of zero ();-measure is always chosen such that if Q;;41 < @; ® © then
dQT, . . (z, . e ey . . .
fM(z,y) = %‘8) for all z. Thus, given Qo , any Markov kernel 7 and initial distribution

p € M;(Y) induce the non-homogeneous Markov measure Q" = p® Q71T|0 Q- ® Q2|n—1'

The next lemma is the Markov analog of the fundamental information identity presented in [5,

(2.11)] for the i.i.d. case.

Lemma 4.1 For every Q € M1(Q2), every p € M1(X), every Markov kernel m and all n > 1,
n—1

H(Qonlp @ m) = H(QomlQ"™) + Y H(Qiin|Qi @ 7) - (4.2)

=0

Moreover, H(Qo,|QP™) is independent of the kernel «.

Remark: The special case of ) a stationary measure with J; = p is derived in [22, Lemma 4.1].

Proof: Hereafter we identify ) with (o, and let P = p®,, 7. The value of H(Q|@?™) is independent

of 7 (and of the specific T-extensions we used) since

n—1

QUi {(0, -+, n) s € Ni}) <Y Qi(N;) =0,
=0
Suppose first that ;41 < Q; @ mfori=0,...,n -1 and let hi(z,y) = sz%g; . By construction,
QP < P and %57 =[]0 hT (24, 2:41), where hT are the m-extensions of h; for i = 0,...,n — 1.
Moreover,
dcgnw n—1
Q5 =0) < 3 Quani({(2,9)  hila,y) = 0}) = 0.
=0

Hence, Q < QP iff @ < P. We thus assume that Q < Q7™ < P (otherwise (4.2) trivially holds),

in which case

n—1 n—1
H(QIP) = H(Q|Q"7) —I—/log(H hi (2, wig1))dQ = H(QIQPT) + E/loghi(%fiﬂ)dQ
n—1 n—1
= H@QIQ"™) + > /22 log hi(z,1)dQiis1 = H(QIQP™) + > H(Qii11Qi @ 7) .

Suppose now that for some ¢ and some A € By2, Q;4+1(A) > 0 while Q; ® 7(A) = 0. If Q; £ B
then both sides of (4.2) are co. Otherwise, let A; = AN {(z,y) : 'é%f (z) > 0} and observe that

Qii+1(A1) > 0, while P; ® m(A;) = 0. Since P, ;41 = P; ® m, it thus follows that Q; ;41 € F;it+1
implying that both sides of (4.2) are co. =
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The following direct corollary of Lemma 4.1 is the Markov analog of (2.5).

Corollary 4.3 For every Q € M;(Q2), every p € M1(Y), every Markov kernel m and alln > k > 1,

[n/k]—1
H(Qonlp®@nm) > Z H(ij,(j+1)k|@jk Q) - (4.4)

J=0
Proof: Let m = [n/k]. Since the relative entropy is non-increased by projections (see [5, (1.4)]),
in particular H(Qon|p @, m) > H(Qomk|P @mi m). For k > 1 fix v € Ml(Ek_l) and let Q be

such that Qo mrt(k-1) = Qok—2 X Qrk—1,mk+k-1, Where Qr_1mr+k-1 = Qomr and Qor—2 = v

(if £ = 1 then @ = Q). Applying Lemma 4.1 (on (X¥)%+) for the Markov kernel 73(z,dy) =
m(zg, dyr)w(y1, dyz) - - -7 (yk—1, dyx) and the initial (product) distribution py = v x p, we obtain the

inequality
H(Qo,mk|p @mr ©) = H(Qo,mk+(k_1)|pk Qm k) > El H(ij,jk+(2k—1)|ij,jk+(k—1) ® mE) -
j=0
Since mi(z, dy) is independent of {z1,...,zx_1}, it follows that for all j
H Qi jit (2b-1) Qi it (1) OTk) = H (Q b (k1) ikt (2b—1) Qo (h—1)OTk) = H (Q ik (j41)4|Qir @) .
The proof is completed by combining the preceding inequalities. ®

Csiszar’s proof of Theorem 2.1 is based on the “triangle inequality” for relative entropies (see
[4, (2.14)]). The next lemma, inspired by [6, (A.1)] (in which X is a finite set), is the Markov analog

of this inequality.
Lemma 4.5 Let Q, P € M;(X?%), and for a € [0,1], define R, = aP+(1-a)Q. If for all a € [0,1]

H(Ra|(Ro)1 @) 2 H(QIQ1 ® ) , (4.6)

then
H(PIP@m)> HPIPLe7)+ H(Q|Q1@7), (4.7)

where

T(x,) ifxéd N
Py, (z,-)  otherwise,

is a Markov kernel, and N = {z : d(é?ﬁ(x) = 0} € By. In particular, if P, € @y, we take
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Proof: Without loss of generality H(P|P; ® ) < oo, and by (4.6) (for a« = 1) also H(Q|Q1 ® ) <

oco. In particular, Q@ € @1 ® # and P € P, @ 7 with f = ledl% and g = d]gll’(;w. Note that

(Roz)l ~ (RI/Q)I for all € (0, 1) while both Ql = (RO)I < (R1/2)1 and P1 = (Rl)l < (RI/Q)I-

Let m = (Ry/3)1 @ 7 and ¢, = %151—72% for a € [0,1],1.e. g4 = aq1 + (1 — @)qo with go + ¢1 = 2 for

all z € ¥. Tt is easy to check that R, < m with p, = B2 = ag¢™ + (1 — a)gof™. Consequently,

dm

H(Ru|(Ry)1 @ m) = [ hodm where hy = pylog(pa/qa) for @ € (0,1). Since the mapping o —
heo (2, y)is convex on (0, 1) and hg = lim, 0 hy = polog f™, by = limy4q hy = py log g7, it follows that
(h1 —ho) — (ho — ho) /o > 0 is monotone non-increasing on (0, 1] while H(P|P,®@7) = [ hydm < oo
and H(Q|Q1 ® 7) = [ hodm < oco. Since [(h, — hg)dm > 0, by monotone convergence

/(iiino(ha — ho)/a)dm > 0 .

Let N = {z : go(z) = 0} and observe that a=!(h, — hg) —a—0 P1logg™ for z € N and o™ (h, —
ho) —a—so q1(g"1(frs0y — ) + (p1 — po) log f™ otherwise. Since Py @ T < m, with d];l—méﬁ =
@1 (Ine(z) f™+ 1n(2)g™), it follows that [ pidm =1, [ ¢ (1ne(z) f™ 4+ In(2)g")dm =1 and

1dPL 7T
HPIP @™ = [prlog(-- 12T

p1 dm

Jdm = — / 1ne(z)p1 log f—dm .
g7r

Consequently,

0 < / (lim (o, — ho) /) dm
= [ in@prloggTdm + [ 1xe(@)(pr ~ po)log STdm + [ Lye(2)(arg gm0y — 1S T)dm
< /p1 log g"dm — /pologfwdm—}—/lNc(:c)pl log ﬁ—wdm—I—/lNC(a@)pldm—/lNc(;r)qlf”dm

= /hldm— /hodm—l—/lNc(:c)pl log ﬁ—wdm—l—/pldm— /ql(lN(m)g”—l— Ine(z) fM)dm
and the inequality (4.7) follows. m

With a slight abuse of notation we let P§ denote the joint Markov law of (X, Xy,..., X,_1),
where Xg, X1,..., X,,,...is arealization of the Markov chain with initial distribution py and Markov
transition kernel 7 (z, dy) i.e. P¥ = pg ®@,—1 7. The (modified) pair empirical measure is

n—2

Lno = n_l(z 5Xi7X(i+1) + 6Xn—17X0) :

1=0
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Warning: This definition artificially introduces a transition X,,_; — Xg in order to assure that

L, 2 is a stationary measure.
Under suitable conditions the large deviations rate function for L, ; is then

)é HQIQ1em) ifQ1=0Q

00 otherwise.

L(Q|x (4.9)

In analogy with the ii.d. case we let Pr , € My(M;(X?)) denote the law of Ly 5 in M;(X?) and
whenever Pr, . (I') > 0, let Py, denote the law of (Xo, X3,..., X;_1) conditioned on the event

L, 3 € I'. The following assumption replaces (A-1) in the Markov setting.

Assumption (A-2) I is a measurable subset of a completely convex 11 C My (X?), with P, ,(Il') >
0 and Iy(Il|7) = inf pery I2(P|7) < oo.
Here, [I’ measurable means that A,, = {(zg,...,z,_1) : n " (3057 5%1?(1.“) + 00,y mo) €'} € Bsn

for all n.

The I-projection of m on Il is P* such that Iy(P*|r) = Iz(Il|x) and a@ + (1 — a)P* € 1I for

every () € II. Note that as defined here, the I-projection of # on Il might not exist, and even

apP*

= dP1*®7r’ and

when P* € Il exists, it might be non-unique (see [6, Example 2]). Given P*, let f

construct its m-extension f7(z,y). The Markov kernel 7*(z,dy) = f™(z,y)m(z,dy) induces the
Markov measure py ®,_1 7* on M;(X") to be denoted (P*)™. Note that (P*)" < P% with

=
Py Igf (25, %i41) -

In what follows, @,_10 denotes the marginal of a measure € M;(X") on its last and first

coordinates, that is, for any Borel set B C ¥?, Q,—1,0(B) = Q({(z0, .-, ¥n-1) : (Tn_1,70) € B}).

Proposition 4.10 Assume (A-2). Let Q = Pnnm,. Suppose that H(Qn—1,0|Qn-1 ® 7) < 00, and
that there exists an I-projection P* of © on Il such that n™! Z?:_Ol Q: < Pf. Then,

1 1 1
i (P (7)) < =g 1, (1)~ () 4 L [log 7 a0 )
Proof: Since Q(I') = Py(I'N A,)/P%(A,) for all I' € By, it follows that @ < Py with

H(QIP}) = —log P} (A4) = — log Pr,,, (IT) < oo .
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Applying (4.2) for p = pg and the Markov kernels 7* we obtain the identity

n—2
H(Q|(P)™) = HQIQ™™ ) + Y~ H(Qiin Qi@ 7).
1=0

Applying again (4.2), now with the Markov kernel 7, we also have
n—2
1OgPL , (I ) H(@Q|Q™™) + ZH(Qi,i+1|Qi®7r)
=0

(in particular, the right side is finite), and since H (Q|QP™) = H(Q|Q? ™), it follows that

n—2

H (P (P*)") +log Pr,, , (1) = Y [H(Qii41]Q: @ 7) — H(Qii11|Qi @ 7)] .

=0

Since H(Qi,i+1|Q:; ® ) is finite and f™ = dﬂ%%’:, it follows that

H(Quet11Q:® ) = H(QisaalQ: ©7) + [ log(7)dQuens
with the integral well defined, but possibly infinite (see [4, (2.6)]). We show below that
/log frdp> /log fTdP* = L(T|r) >0 (4.12)
where P = ™! Z?:_Ol (i (i+1)modn and the left-side is well defined, but possibly infinite. Thus,
. onz2 1
H (P (P*)") +log Pr,,, (IT) + nly(Tl[7) < n/10g JTdP + ; /log(f—w) dQ; it
= [log " dQu-ro
It remains to prove (4.12). To this end, recall that for every I' € B%,
‘IEZJD (X, X(i41)modn) € U|Lnp € ') = E[Ly3(D)| Lz € '] = E[Lp | Ly € (T)

implying that P € Il with P, = P,. Note that for & € (0,1], both P, = aP + (1 —a)P* € 1l
and (P,); = (P,)2. Since P* is the I-projection of 7 on II, it follows that H(P*|Pf @ 7)) <
H(P,|(P,)1 ® 7). Therefore, by Lemma 4.5

H(P|IP @) > H(P|P 7))+ HP*|Pf o),
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where 7 is the Markov kernel of (4.8). Since P < P, ™ = n* and in particular, f™ = ;lgl—gf. Since
1T
H(Qn_10|Qn_1 ®7) < 00, it follows by the convexity of H(-|(-); ® 7) that also H(P|P, ® 7) < oo.

Consequently, by [4, (2.6)]
H(P|P or) - HP|PoF) = /log frap,
yielding (4.12). m

Forany 0 </ < 0/ < m, let P

X denote the law of (Xy, Xs41,..., Xp_1) conditioned on the

event L, 5 € II'. A direct consequence of Proposition 4.10 and Corollary 4.3 is the following

Corollary 4.13 Assume the conditions of Proposition 4.10. Further assume that for some k(n),

n

k
log Pr,, , (IU') — k(n) I(I1|7) + % /log fTdQn-1,0—=ns 0. (4.14)
Let J € {0,1,...,[n/k(n)] — 1} be uniformly distributed. Then

H(P s

ﬂ)+1|H, ®k(n) ﬂ-*) —nooco 0n Ly . (415)

n |PnJ
()|HI X] ”

k(
k(
That is, a block of length k(n) whose starting point is distributed uniformly over the sequence
behaves, under the conditioning, like a Markov chain with transition kernel 7*.

We conclude by describing one concrete example, a Markov counterpart of Corollary 2.7. As-

sume there exists a dominating measure m € M;(X) such that, for some b > 1,

bm() > w(z,-) > b~ 'm(:), H(polm) < . (4.16)

Let 1 be the invariant measure for the kernel 7 and % : ¥ — IR® a Borel measurable map with

K = sup, [1:(y)] < oo.

Corollary 4.17 Suppose that the law of 1(X1) conditioned on Xog = z, is either strongly non-
lattice for m-a.e. z, or is lattice with the same span for m-a.e. . Let C' C IR* be a conver set
such that [¥(y)ur(dy) ¢ C and C° intersects the interior of the convex hull of the support of
my =mop~t. Then, (4.15) holds true for ' = {v : [dvy € C} and n~'k(n)logn — 0.

Remark: Note that L, 3 € I’ is equivalent to the statement that n=! Z?:_ol P(X;) € C.
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Proof: II' is a measurable subset of the completely convex I1 = {v: [dvy € C} € M;(%?) and

1 n—1

Z P(X;) el).

=0

P, , (1) = P(

n
Our assumption (4.16) translates into [16, condition (3.1)] and since % is bounded [16, Theorem

5.3] applies, yielding for some 77 < 0o and 0 < ¢; < ¢3 < 00,
cyn~2em < Pr,,,(IT') < o™, (4.18)

For every a € RY, by [14, Theorem II1.10.1], the kernel 7, (z,dy) = 7 (z, dy)e<a’¢(y)> has a maximal
simple positive eigenvalue ¢*(®) with associated (right) eigenfunction r, and (left) eigenmeasure
04 such that r, and Cgl"—m" are bounded and uniformly positive and [r,do, = 1. The probability
measure

P, (dz, dy) = e Mo, (dz) 7oz, dy)ra(y)

has marginals (P,)1 = (Pa)2 = ra0s > m, with

108 Sy (520 = (00 0(0)) = A(@) + 108 4 (3) = log o (o)

Pa)1®7r

a bounded function. By [16, Corollary 4.1], VA(a) = [ #d(r,0,) and hence
I(P,|r) = <0z,/¢d(Pa)2> —Ala) = (o, VA(r)) — A(a) . (4.19)

By [16, Theorem 5.2 and (4.27)], n = I3(P,,|7) < oo for some «, such that P* = P, € Il. In

particular, assumption (A-2) holds.
Applying [7, Theorem 10] to the m-open set M= {v: [¢dvy € C°} CTI', we obtain that

1 .
—I(P*|7) = —n > liminf — log Py, , (II) > — inf I,(Q|~) . (4.20)
n—oo 1 ’ Qefi

Our assumptions imply (again, by [16, Theorem 5.2 and (4.27)] applied to a closed, convex subset
of C°) that there exists o/ such that Q = P, € Tl with I,(Q|r) < oo (see (4.19)). Since Q, =
a@Q + (1 —a)P € Il for any P € Il and all a € (0,1], we consequently obtain by (4.20) and the

convexity of I5(-|7) that

L(P*|7) < L(Qul7) < al(Q|7) + (1 — a)[(P|7) —amo I(P|7) .

28



Therefore, P* is the I-projection of 7 on I, and condition (4.14) holds (see (4.18)).

Turning to check that all assumptions of Proposition 4.10 hold, note first that (4.16) obviously
implies that Q; < m, hence also L3771 Q; < m < Pf. Let C = {z: infygc |z —y|l > 4}
Clearly, for any Borel set B C X2,

Qn-10(B)Pr,,(I) < P((Xn-1, Xo) € B) <" 'm x po(B),

while

n—2

1 .
Qut @ 7(B)Pr, (1) 2 P((Xno1,Xa) € B,~ S G(X,) € O/
i=1

1 n—2 )
Z b~ "m x m(B)mZ_z({(vl, ey ’Un_2) : ; Z v; € C—Qfx/n}) ]
i=1

It follows from Cramer’s theorem and the support condition on m, that mZ_Q({(vl, cey Upo2) t

Ls -ty € C72K/"}) > 0 for all n large enough. Hence, dcé?n’:l@ow (z,y) < cn%(y) for some

constant ¢, which is finite for all n large enough, leading by (4.16) to H(Q,—1,0/@n-1 @ 7) < o0.

We conclude by applying Corollary 4.13. =
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