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Abstract

Suppose that the integers are assigned i.i.d. random variables {w;} (taking values in the unit
interval), which serve as an environment. This environment defines a random walk {X} (called a
RWRE) which, when at z, moves one step to the right with probability w,, and one step to the left
with probability 1 — w,. Solomon (1975) determined the almost-sure asymptotic speed (=rate of
escape) of a RWRE. For certain environment distributions where the drifts 2w, — 1 can take both
positive and negative values, we show that the chance of the RWRE deviating below this speed
has a polynomial rate of decay, and determine the exponent in this power law; for environments
which allow only positive and zero drifts, we show that these large-deviation probabilities decay
like exp(—Cnl/ 3). This differs sharply from the rates derived by Greven and den-Hollander (1994)

for large deviation probabilities conditioned on the environment.

As a by product we also provide precise tail and moment estimates for the total population size

in a Branching Process with Random Environment.
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1 Introduction

In this paper we consider the large deviations of the position of a nearest-neighbor random walk

on Z with site-dependent transition probabilities.

Let w = (wz)zcz be an i.i.d. collection of (0,1)-valued random variables, with marginal distri-
bution « such that supp o C (0,1). For every fixed w, let X = (X;)n>0 be the Markov chain on

Z starting at Xy = 0 (unless explicitly stated otherwise), and with transition probabilities

Wy fy=xz+1
P,(Xpi1=y|Xn=2)=% 1-w, fy=z—1 . (1)

0 otherwise

The symbol P, denotes the measure on path space given the environment w. The process (X,w) is

an example of a random walk in random environment (RWRE), and X has law P = [ oZ (dw)P,,.
This model exhibits a number of phenomena not shared by classical random walk.

Abbreviate p = p(z,w) = (1 — wg)/wy and (f) = [ f(w)aZ(dw) for any function f of the
environment. It was established by Solomon [11] that X is w-a.s. transient iff (logp) # 0. In the
transient case limy,_,oo X, = +00 P-a.s. if (log p) < 0 (and limy,_, X, = —00 P-a.s. if (log p) > 0).
With v, = lim,_,c n ' X, denoting the P-a.s. speed of the RWRE, there are two speed regimes,
namely,

(i) va = (1 = (p))/(1 + (p)) when (p) <1 and va = ({(p~") = 1)/({p™!) +1) when (p~!) < 1 (See
Remark 2.1 for a transparent derivation of this result.)
(i) v = 0 when {p)~! <1 < (p71).

This law of large numbers is supplemented in [8] by central limit type theorems. For instance,
in regime (i) the classical central limit theorem holds if (p?) < 1. In regime (ii), on the other hand,

if (log p) < 0 < log(p) then n™*X,, converges in law with s € (0,1) the unique solution of (p*) = 1.

In the recurrent case the motion is extremely slow. Sinai [10] proved that in this case (logn)2X,

converges in law, and Kesten [7] identified explicitly the limiting law.

The large deviations of n ™1 X,, in the quenched setting, namely, conditional on the environment,
are derived in [5]. Specifically, the limit I(v) of —n~!logP,(X, = |vn]) is characterized as
the solution to a variational problem involving specific relative entropy with respect to a certain

stationary Markov process.

In this paper, we study the large deviations of n~1X,, in the annealed setting, namely averaging



over environments w according to the measure aZ. We shall assume hereafter that (p) < 1, hence

the RWRE is transient and of strictly positive speed v, (the case (p~!) < 1 follows by reflection).

How can the walk deviate significantly from its almost-sure limiting speed v,?
For ordinary RW, this is exponentially unlikely and given that such a deviation has occurred, it
is most likely to arise from movement at an approximately constant different speed. For RWRE
there are other possibilities- large deviations can arise from relatively short, atypical, segments in

the environment.

The next two theorems are our main results, characterizing the subexponential slow-down prob-
abilities P(n"1X,, € G) in the mixed-drift cases for any open G C (0,v,) which is separated from
Vq- A polynomial rate of decay is obtained when a negative local drift is possible, whereas for
environments which allow only positive and zero drifts, the large-deviation slow-down probabilities
decay like exp(—Cn!/3).

Let pmax denote the supremum of p over the closed support of «, and let pmin denote the

corresponding minimum.

Theorem 1.1 (Positive and negative drifts) Suppose that (p) < 1 and 00 > pmax > 1. Then,
there ezists a unique s > 1 satisfying (p°) = 1 such that for any open G C (0,v4) which is separated
from vy,
. -1 1
nh_)ngologP(n X, €G)/logn=1—5s.

The condition pmax < oo can be relaxed (see Remark 5 in Section 6).

Theorem 1.2 (Positive and zero drifts) Suppose that (p) < 1, but pmax = 1 and a({1/2}) > 0.
Then, for any open G C (0,vy) which is separated from v,

—00 < linnlgjrgfn_l/3 log P(n™'X, € G) < limsupn~3logP(n 'X, € G) < 0.

n—oo

The next proposition complements Theorems 1.1 and 1.2, by showing that the large-deviation
probabilities outside (0,v,) always decay exponentially. If all drifts in the environment are in
the same direction and bounded away from 0, then any deviation from the limiting speed v, is

exponentially unlikely.

Proposition 1.3 For (p) < 1 and any closed set F' which is disjoint from [0, vy]

limsupn ' logP(n™'X, € F) <0. (2)

n—o00



If also pmax < 1 then (2) holds for any closed F that does not contain v.

The above results cover in particular all cases in which the RWRE has a positive speed and the
marginal environment distribution « is finitely supported. (Other cases are described in the last

section.)

Sections 2,4 and 5 contain the proofs of Theorems 1.1, 1.2 and Proposition 1.3 respectively,
while Section 6 discusses some variants and unsolved problems. We note that the upper bounds
in Theorems 1.1 and 1.2 are harder to prove than the lower bounds. Indeed the lower bound in
Theorem 1.2 is straightforward; establishing that it is sharp was the initial impetus for our work.
The key to our upper bounds is Lemma 2.4. As explained in Section 3, this lemma applies in a
wider context, supplying also precise tail and moment estimates on the total population size of a

Branching Process in Random Environment (called BPRE).

2 Positive and negative drifts: Proof of Theorem 1.1

Throughout this section, the hypotheses of Theorem 1.1 are in force. Since pmax > 1, the convex,
continuous map A — (p*) from R, to IR, satisfies limy_,,(p*) = co. Moreover, (p) < 1, yielding
both the existence and uniqueness of s > 1 such that (p*) = 1. We fix this value of s for the rest

of the section.

Let X, denote the Markov chain, initialized at zero, with the same w-dependent transition

kernel as in (1) but now with the value of wg set to be wp = 1. Let

7 = inf{n: X, =k} (3)
and
m-+k
Ri(m)=k=" > logp(i), with Ry = Ry(0). (4)
i=m-+1

The following simple tail estimate for 7 is used in the proof of the lower bound on P(n"1X,, € G).

Lemma 2.1 For all n and k,

P,(7x > n) > (1 — e~ *k-DERe-1yn

Proof: Let oy =inf{n >1: X, =k or X, =0}. By Chung [2, Pages 65-71], we have

k—1
Pw(Xo-k = 0) =1— (Z eiRi)*l > (1 _ e*(k*l)Rk_l) ’
=0



and the lower bound follows since P, (T, > n) > P, (X,, = 0)". U

For y € Z, let 7y = min{n : X, = y}. The next lemma provides an exponential tail estimate
on Ly = max{y — X,, : n > 7,}, the longest excursion of the RWRE path to the left of y. This
estimate is crucial to the proof of both the upper and the lower bounds on P(n~1X, € G).

Lemma 2.2 For everyy € Z and any k > 1,

P(Ly > k) < (o)

Proof: Note that for each £ > 1

Oy 2 Py(Ly > k) = Py(X, =y — k for some n > 0|Xo = y)

is a stationary process (when w has the distribution aZ). By, e.g., [2, Pages 65-71],

Ez OHa:_f(k ne ( ) > :
O = ; < plz) =Z. (5)
1+ Z H:z:_—(k 1P ( ) zz:o r{
The lemma follows by observing that E(Z) = 332 (p)*™* while P(L, > k) = E(O, ). U

Since G C (0,v,) is open and separated from wv,, it suffices to establish the lower bound for

G = (v —27,v) as in the next lemma.

Lemma 2.3 Let 0 < 2 < v < vy. Then

.. -1 . .
hnniggflogP(n Xn € (v—2n,v))/logn>1—s. (6)

Proof: Fix v and 7 as in the statement of the lemma. Observe that the event n~1X,, € (v —2n,v)

contains the event

{ (v—2n)n

< T(w—p)n <M, the excursion distance L(,_p), < nn, and 7y, > n} ,
Va

namely, that the RWRE hits (v — n)n at about the expected time, from which point its longest
excursion to the left is less than nn, but the RWRE does not arrive at position vn by time n.
Recall that P(7(y_p)n € ((v —279)n/ve,n)) — 1 as n — oo (by Solomon [11, Theorem 1.16]), and

set £ = 1— (v —2n)/ve > 0. Since 7 is independent of {w, : = > (v — n)n}, it follows by

v—n)n
stationarity that

P(Tyn > n|T(y—n)n € (v — 20)n/vqa,n)) > P(Tyn > €n) .



Hence, by the exponential bound on P(L,_py, > nn) (see Lemma 2.2), we establish (6) as soon as
we show that
11nn_1>£flogP(an >¢én)/logn>1—s. (7)

To this end, let ys = (p°°log p)/(p*~%) for § > 0, and note that yo > 0 > (log p) by convexity of
x — xlog z. Hence, for every § > 0 small enough y; is finite and positive.

Applying Cramér’s theorem to the i.i.d. real-valued random variables {log p(z)}zcz gives

liminf — logP(Rk 1> Ys) = —YsSs

k—oo k

where s; = 5 — 6 — (y5) "' log(p®~®) (see, e.g., [4, Corollary 2.2.19 and Lemma 2.2.5]). In other

words,
P(Ry_1 > ys) > e Govto)k a5 k 5 00 (8)
Choose
k= kn) =1+ 8™
Ys

so that e~ (ssvsto(1)k — p=s5+0(1) 535 1 and k tend to oo , and consider the event

= : _ > .
An ={w o Ry_1(mk,w) > ys5}

Since {Ry_1(mk)}m>o are i.i.d. variables, we obtain from (8) that

lim inf
n—0o ]o

m o —s) —1_
logP(A)>11nn_1>£f10gnlg(k(n)n )—1 S5 - 9)

Decomposing the event A4, according to m* = min{m > 0 : Ry_1(mk) > y} and ignoring the time
which the chain X,, spends outside [m*k, m*k + k), we get by stationarity that

P(Fpn > En|Ap) > inf  P,(Fp > £&n) .
(Ton > €n | Ap) or (Tr > &n)

By Lemma 2.1,

inf P, (7r > &n) > inf (1 — e~ (F-D2)(Ent1) > (1 _ p=1)Ent1) (10)
w:Ry_1(w)>ys 22Ys

Combining (9) and (10) and taking § | 0 (for which s5 — s), we establish (7), thus completing the
proof of the lemma. L]

The upper bound on P(n !X, € G) hinges upon moment estimates on the hitting times 7.

To derive these observe that 7, = E;-“:l (1s — 1i—1) (with 79 = 0), is the sum of the identically



distributed, (dependent) random variables (7; — 7;_1), the law of each of which is identical to the
law of 7. Let C,, = E(7{) and note that by Minkowski’s inequality for all k£ > 1

E(r}) < C,k7 . (11)
Our goal is thus to prove that C., < oo for all y < s.

To this end, let Wy = 1 and for negative integers x, let W, be the cardinality of the finite set
Se={ne{l,...,n}: Xpn_1=2,X, =x+1}. Then, n = 2Z — 1 for the integer valued

Z= i W, . (12)

With ng =0 and S; = {n1 < na < ... < nw,} we have the representation
We
We1=> N, (13)
=1

where Né") is the number of excursions to the left of z (each starting and ending at z), during the

time interval {n;_1,...,n;}. The key observation is that the random variables Na(;i), forx =0,-1,...

and i = 1,2,... are independent under the measure P, with
P,(NW =m)=(1—-w,)"w, VmeZ, .
Denote N, = NS”. In particular, E,(N;) = p(z,w) so that for every v >0

E[(E,Nz)"] = {p7) - (14)

Remark 2.1 The representation (12) yields the following transparent derivation of Solomon’s

formula for the limiting speed v,. Since {Na(;i)}i are non-negative, identically distributed, and
independent of W,, we deduce from (13) that E(W,_;) = E(W,)E(N,). Since Wy = 1 and

E(N;) = (p) < 1, we conclude by monotone convergence that
0

0
E(Z)= Y BW.)= Y (o) ®=(1-(p) " <oo. (15)

T=—00 T=—00

The speed v, is now computed from (15), since vo = 1/E(71) = 1/(2E(Z) — 1) (c.f. [11, Theorems
1.15, 1.16)).

We deduce next that Cy of (11) is finite for all y < s.



Lemma 2.4 E(Z") is finite for every v < s.

Proof: Without loss of generality, we consider hereafter v > 1. Fix v € [1,s), € > 0 and a non-
positive integer z. Let ¢y = (1 — (14 ¢)7Y7)77. Since 27 < (1 + €)y" + ¢ye|lz — y|? for every
z,y > 0, it follows from (13) that

W
E{W] ,} <B{(1+ BN W] + eyl S (ND — BE,N,)|7} - (16)
i=1
As E,N; = p(z) is independent of W, we have that

E[(E,N;)"W;] = E[p(z)"|E(W]) = (0") E(W) . (17)

Under the measure P, the random variables Na(gi) —E, N, fori=1,2,... are i.i.d. of zero mean and
are also independent of W,. Therefore, for some universal constant B, < oo, by the Marcinkiewicz-
Zygmund inequality

Wy
Eu[| Y (NS — EyNo)"] < ByEo(N)EL(W)/2')
i=1
(see [6, Theorem 1.5.1]). The independence of the two terms on the right-hand side yields
W,
E[| Y (N - E,N,)["] < BE(N)E(W7/>") . (18)
i=1

Since E(N]) < oo is independent of z, by combining (16), (17) and (18) we have thus shown that
for every € > 0 there exists K, . < oo such that for x = 0,—-1,...

E(W] 1) < (1+€)(p)B(W]) + Ky, BW/2D) . (19)

We deduce next that for every v € [1,s) there exists a, € (0,1) and ¢, < oo such that for
z=0,-1,...

E(W7) < ¢ya7° . (20)

Indeed, we have already seen that E(W,) = (p)~* hence (20) holds for v = 1. To see that (20)

holds for every integer 7y € [2, s) note that then (y—1) > /2 V1, thus w2V < WJ2~L. Applying
a finite induction on 7 we set € > 0 small enough such that a, = (1 +¢€)(p?) € (ay—1,1) and define
¢y =1+ K, cy—1/(ay —ay—1) < co. Then, by (19) and the induction hypothesis

E(W,_,) < a,EW]) + Ky ccy10%



which since Wy = 1 results with (20) holding for 7. Note that 4/ = [s] — 1 € [1, s) is an integer for
which (20) holds, and it is left to establish (20) only for v =4 4+ n < s such that € (0,1). Since
then ' > v/2V 1, we follow the same argument as before with 4/ replacing v — 1. Fixing v € [1, s),

we have from (20) by monotone convergence that

0
E(Z)7< Y EWHY <0,

r=—00
as required. O

In view of the lower bound of Lemma 2.3, the following upper bound completes the proof of
Theorem 1.1.

Lemma 2.5 For every v € (0,vy), if v < s and n is large enough, then

P(X, <wvn) <n'77.

Proof: Fix A > —s/log(p) and let k = k(n) = Alogn. On the same probability space on which
{X:} is defined, we define the process {Y;} and the hitting times 7 = min{t > 0 : ¥; = ik},
where the only change between {X;} and {Y;} is that for ¢ > 7, ¢ = 0,1,..., the process Y; is
reflected at position (i — 1)k (via the use of w;_ 1)y = 1 for t > 7). Let N = [vn/k] + 1 and
T,Ei) = Tik — Ti-1)k> ¢ = 1,...,N. Note that T,Ei) are identically distributed, each stochastically
dominated by 7. Hence, E(T}) < E(7g). Fix A € (1/s,1). By (11) we know that E(T;/)\) < CkYA

for some C' < oo. Moreover, by Holder’s inequality,
E(m,) < E(Ty) + P(Ly > k)li}\E(T]i/}\))‘ ‘

Thus by Lemma 2.2, E(T})/E(7;) — 1, and therefore Solomon [11, Theorem 1.15] implies that,
E(Ty)/k — v;! for k — oo.

On the event that L, < k for ¢ = 0,..., N, the two processes {X;} and {Y;} coincide for all

t < Ty = Zfil Tlgi). Moreover, in this case, {X, < (N — 1)k} only if 7np > n. Therefore, by

Lemma 2.2, for all n large enough,

N
P(X, <wn) <P(X, <(N-1k) < POTY >n)+P( max L > k) (21)
izl 1=0,...,
N .
< PO T,Sz) >n)+n 071,
=1



Since v~ > v, ! = limsupy,_, ., k" 1E(T}), there exists 7 > 0 small enough such that

N

N
P70 >n) < POL(TY —E(TL) > 2m)
=1 i=1

[N/2] i)
< 2P( ) (T, —E(Ty)) > nn) .
i=1
We now observe that {TIEZi) — E(T})} is a sequence of i.i.d. mean-zero random variables. Since

T}, is stochastically dominated by 7%, it follows from (11) that E(|T — E(T})[") < Ck for all
v" € (0, s). Therefore, by Markov’s inequality, for 7' € (v, s), and all n large enough

P(T), — E(Ty) > nn) < (mm) " B( Tk ~ BTQ)[") <n™7 .

Hence (see Nagaev [9, (1.3),(1.7a)]),

N2
P ( S (T ~EB(T) > nn) < NP (T}, — E(T}) > nn) + 0507 < nl 7.
i=1

3 Moments of total population size in BPRE

Let M;(Z ) denote the collection of probability measures {p = {p(7)}2, : p(¢i) > 0,3 ; p(i) = 1}

on the nonnegative integers satisfying the further constraint

Let the environment £ = ({m)mez, be an ii.d. collection of M;(Z )-valued random variables
with a denoting the law of each &,,. We assume that (p) = [ p(£o)a(déy) < 1. For each realization
¢ there evolves a population {Wp,}mez, governed by the laws of the standard temporally non-
homogeneous branching process, initialized at Wy = 1. Specifically, let N},f), t=1,...,W,, be

independent random variables, each drawn according to &,, with N,Sf) indicating the number of

immediate descendants of the i-th individual at generation m. Thus,

W
Wit =Y N,
=1

10



is the size of the population at the (m + 1)-th generation. It is well known that the condition

(p) < 1 implies certain extinction of the BPRE, namely that the total population size

o0

is a.s. finite (see [1, Theorems 1,3]). The RWRE setting we considered in Lemma 2.4 corresponds
to a special case of BPRE in which &,(i) = w_m(1 —w_p,) for i € Z, is a Geometric distribution,
so that p(§m) = (1 — w-m)/w-m.

As done in Remark 2.1, since {N,(rf) }i are non-negative, identically distributed, and independent
of W,,, we have E(W,,11) = E(Wp,)E(N,,). Then, with Wy = 1 and E(N,;,) = (p) < 1, we conclude

by monotone convergence that the mean total population size for the BPRE is

E(Z)=) EWn)=> (W™ =01—(p) ' <oo.
m=0 m=0

The next lemma supplies moment bounds on the total population size of the BPRE.

Lemma 3.1 Assume that for some v > 1 both (p7) = [ p(&0)"a(déo) <1 and
[ (X&) aldgo) < oo (22)

=0

Then, C, = E(Z7) < oo, hence P(Z > z) < C,z~" for all z € N.

Proof: Upon setting m = —x and replacing w by ¢ the proof of Lemma 2.4 applies to the more
general setting of the BPRE. By Holder’s inequality, the only requirements of the proof are that
(p7) < 1 and that E(Ny]) < co. These are exactly the assumptions of Lemma 3.1. O

Remark 3.1 The conditions of Lemma 8.1 are also necessary for E(Z7) < co. Indeed, for v > 1,
E(Z7) > E(W{) = E(Ny), hence E(Z7) = co when (22) fails. Also, for allm € N,

E(W77l+1) = E[Ef(W;z—l—l'Wm)] Z E[(E£Wm+1|Wm)7] = E[(WmEmey]
= E[(ENn) EWg] = (p")EWg] .

Hence, EW,}, > (p")™ for every v > 1, m € N. Therefore, EZY > > °_E(W,),) is infinite for
every v > 1 such that (p7) > 1.

11



4 Positive and zero drifts: Proof of Theorem 1.2

We shall follow the notations and general outline of the proof of Theorem 1.1, indicating only the
changes for the case where pmax = 1 and @({1/2}) > 0, which we consider here. For the lower
bound on P(n~1X, € G), it again suffices to consider G = (v — 2n,v), 0 < 2y < v. Setting
£ =1— (v—2n)/v, we find that

lim gfn*1/3 logP(n"'X, € (v—20,v)) > lim gfn*1/3 log P (7, > €n) .

Let k = k(n) = On'/3 with @ > 0 to be determined below. Using the notations (3) and (4), the
conditional probability P(7Ty > &n|Rk—1 = 0) is exactly the probability that a simple random
walk stays in the interval [—(k — 1), (k — 1)] for at least &n steps. Since k2n~! — 0, a well-known

eigenvalue calculation gives
lim E2n"log P(Ty > &n| Ry_1 = 0) = —¢n/8
(see Spitzer [12, Page 243]). Thus, for all n large enough
P(Tyn > €n) > P(Ry_1 = 0)P(T4 > &n| Ry_y = 0) > a({1/2})Fe €/ (Ek)(A+o(1))

Recalling that k = k(n) = §n'/3, we see that this lower bound is maximal for

) 1/3
S N S (23)
4log a({1/2})
yielding the lower bound
Lo _ _ 3 s
lim infn~'/* log P (n X, € (v— 277,1;)) > —551/3|§ log a({1/2})[2/3 (24)

(note that (24) remains true with ¢ = 1 — v/v, since P(n"!'X,, € (v — 2n,v)) is nondecreasing in
m)-
Turning now to the upper bound, we define the process {¥;} as in Lemma 2.5, but now for

k = k(n) = Bn'/3, with B a large positive constant. Fixing v € (0,v4), from (21) and Lemma 2.2
it follows that for every C; < |log(p)|

N 1 L/C. 1
P(X, <on) <P T > n) + e OB <op( 3 73D > pnj2) 4 OB (25)
i=1 =1

12



Recall that N = [vn/k] + 1 and {T\* "}, are i.id. with
P(T() # m) <P(Lo > k) < e OB (26)

The next lemma supplies tail estimates on T}, = T,gl) which are key to the proof of the upper bound.

Lemma 4.1 For every v' € (0,v,), every C < oo, B > 0, and all n large enough
P(T}, > k/v') <n™C,

where k = k(n) = Bn!/3,

Proof of Lemma 4.1: Fix v’ € (0,v,) and C < co. By (26) suffices to prove that P(r > k/v') <

n~C. To this end, let " be the probability measures on (0,1) obtained from « by moving 7 > 0
of the mass of a({p}) from p = 1/2 to p = 1/2 — n (of course n < a({1/2})). Fix n > 0 small

enough so that both [ p(w)3¢*1a(M(dw) < 1 and v/ < v, ). Let P(M denote the law of the RWRE

when the environment w is chosen according to the law (a{M)Z and s > 1 the corresponding

value of s. Then, for all &,
P(ry > k/v') < P(")(Tk > k/v') < P(n)(X[k/v’] <k)< kl—s(fl)+o(1),

where the last inequality follows from Theorem 1.1. We conclude by observing that s > 3C +1
and k = Bnl/3. ]

Fixing € > 0, let v(e) = ev + (1 — €)v, and consider the binomial random variable

INJ2]
W= ; L@y -

By Lemma 4.1, for all positive constants A and C, the random variable W is stochastically dom-

inated by a Binomial(n3/4 n—(AC+1))

M = M(n) = n'/3/(Alogn). It thus follows by Chebycheff’s inequality that for A = CAlogn > 0

n variable provided that n is large enough. Fix A and let

P(W > M) < e*)\M(e/\nf(AC—Fl) + 1)n3/4 < 267077,1/3 ‘
Let d(e) = (1 — €)(vq — v)/(2v(€)) and for each subset I of {1,...,[N/2]} of cardinality M let
Er ={>icr Tk(zi_l) > d(e)n}. Since {Zzﬂ:vl/z] TIE%_l) > n/2} and {W < M} imply that at least one

of the E occurs,

(N2l Mo
P(Y 7Y > n/2) <PW > M)+ S P(Br) < 2e " 4 AP T > 5(e)n)
=1 I i=1

(27)

13



where the last inequality follows by observing that E; are equally likely and there are at most n™

possible subsets I.

The random variable T} is stochastically dominated by the random variable obtained when
setting w, = 1/2 for all |z| < k. The latter is the exit time of a simple random walk from the
interval [—(3k — 1), (k — 1)], which is stochastically dominated by the exit time from the interval
[—(2k — 1), (2k — 1)]. Hence, for every € > 0, some ¢ = ¢(€) < 0o, and all k large enough

P((2k)2T) > ) < ce #1197 /8 gz >0

(see Spitzer [12, Page 243]). Consequently, for A = (1 — 2¢)(2k)~27%/8 and n large enough, by
Chebycheff’s bound

M
. M
P(ZTISZl—l) > 5(6)71) S e*/\é(é)n (E(eXTk)) < e—(1—36)6(5)n1/37r2/(32B2) ) (28)
=1

Setting n — oo followed by € | 0 and A, C 1 0o we see from (25),(27) and (28) that for every B > 0

lim supn'/3log P(X, < vn) < —min{|log(p)|B, (1 — v/va)w?/(64B%)} < 0 .

n—oo

5 Exponentially unlikely deviations: Proof of Proposition 1.3

Step 1. The event {n !X, < —n} implies that the excursion length Ly is at least nn. By Lemma
2.2, for each fixed 1 > 0, the probability of the latter event decays exponentially in 7.

Step 2. It suffices to show that

limsupn ! logP(n_an > v + 277) <0, (29)

n—oo

for every 7 > 0. This is done in two steps. First, we note that a RWRE with positive speed spends

finite expected time in the nonpositive half-line; more precisely,

- _ 1+{p
E[ygl{XnSO}] - (1 — <p>)2 ’ (30)

provided that (p) < 1 (see [11, Theorem 1.19(i)]). Denote the right-hand side of (30) by C,. It

follows that
E(r —Tk) < Cq (31)
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for any k > 1, where 7, was defined in (3).

For the second step, given 1 > 0, fix k large enough so that

k
——C,—2> k .
Vo Vo + 17

By (31) and E1, = kET1 = k/vq [11, Theorem 1.15], this implies that

k

E(?k)—2>v +’I7-
o

(32)

Consider a modified environment in which w; is set to 1 for all 7, and at all other integers x, the

(%)

transition probabilities w; are still picked according to a. Denote by 7, the number of steps the

walk in the modified environment, started at (i —1)k, takes until it reaches ¢k. Let F,(:)’M = Fg) ANM

where M is large enough such that E(7)) > E(7y) — 1. The variables Fg)’M for ¢ > 1 are i.i.d. of
bounded support. For each large enough n, we can find an integer m = m(n) such that
n(va + 1) n(vq + 21)

L <m < el (33)

The inequalities (32) and (33) imply that n < m(E(7¥) — 1). Since the sum >, Fg)’M is

stochastically dominated by 7g,, it follows by Cramér’s theorem that for some ¢ > 0,
P(n—IXn > vg + 277) < P(rkm < n) < P(Z?S)’M < m(E(?kM) —1)) <e ™,
i=1

The assertion (29) follows since the ratio n/m is bounded above as n — co.

Step 3. Assume ppax < 1, namely that wmin = 1/(1 + pmax) > 1/2. Clearly, suffices to show that
for every n > 0

limsupn tlogP(n X, < (1 —4n)vs) <0. (34)

n—oo

If the trajectory of a nearest neighbor walk on Z traverses between x — 1 and x exactly once,
we call the latter arrived position a regeneration point and the time following the step between

these positions its regeneration time.

Let Y = (Y,)n>0 denote a simple, asymmetric random walk, which is independent of w, with
Yo=0,and P(Y,11 - Y, =1) =1—-P(Y11 — Y, = —1) = win- For every fixed w = (wg)zez
construct Bernouli((w; — Wmin)/(1 — Wmin)) random variables &;(x) which are independent of each
other and of Y. Let X = (X, )n>0 with

Xn+1 =Xn + §n(Xn) + (1 - én(Xn))(Yn+1 - Yn)a Xo=0.

15



It is easy to see that the process (X,w) is identical in law to the RWRE. Furthermore, every

regeneration time of Y is also a regeneration time of X.

Let p =0and 0 < 601 < 62 < ... denote the regeneration times of Y. Denote the corresponding
distances of regeneration points by W; = Yy, , — Yy, and Z; = Xy,,, — Xp,. Lemma 5.1 below
imply that w = EW; < oo, thus there are a.s. infinitely many regeneration points of Y. A direct
computation of the joint probability law of (6;,Yp, )™ reveals that {W;}$°; is a sequence of i.i.d.
random variables. A similar computation reveals that the incremental trajectories (Y9, — Yy, : t =
0,...,0;41 —6;) for i = 0,1,... are independent and of the same law for each 7 > 1. The random
variable Z; is determined by the i-th such trajectory, the environment (w;) for z € [X,,, X, ,,)
and the otherwise independent {£;(x)}. It follows that {Z;}°, are independent, and identically
distributed for 7 > 1. With (Xy, — Xp,)/(6p — 61) — vq a.s. ([11, Theorem 1.16]), and (Yp, —
Yy, )/(6n — 01) — (2wmin — 1) one has that Z = EZ; = wv,/(2wpin — 1) < 0.

Fix n € (0,1/3). Let k = n(1 — 37)(2wmin — 1)/w and § = /(1 — 3n) > 0. Then,

POgi1 >n) < P(ng_,’_1 >Y,)
k
< P(Y, <wk(1+26)) + P(Wo > wké) + P(>_ Wi >wk(1+46)).  (35)
=1
Noting that wk(1 + 26) = (2wmin — 1)n(1 — n) it is clear that the first term on the right-hand
side of (35) is bounded above by exp(—cn) for some ¢ > 0 and all n large. Lemma 5.1 below
implies the same type of bound for P(Wy > wkd). Lemma 5.1 also guarantees that E[exp(AW7)] =
exp(Aw + o(A)) for A > 0 small enough. By Chebycheff’s inequality, this leads to

k
P(fpp1 >n) <e 4+ Pk Z W; >w(l+9)) <e ",
=1

for some ¢; > 0 and all n large enough. With {Z;};>; positive i.i.d. random variables, of finite
mean, and since k(1 — §)zZ = n(1 — 4n)v,, by Chebycheff’s inequality we have for some co > 0
k
P(n "X, < (1—4n)vg) < P61 >n)+ Pk "D Z; < (1-6)z) < e ",
i=1
The proof of (34) is thus completed by establishing that indeed the distances between regeneration

times of the simple, asymmetric random walk Y have exponential tails.

Lemma 5.1 For everyy >d e N

P(Wo + W1 > 2y) < 2P(Wo > y) < 2(pmax + piha) ¥/9 7" (36)
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Proof: Fix y > 1. Let oy = inf{n : Y;, = y}. The event {Wy + W1 > 2y} implies that either
{Wy > y} or there is no regeneration point of Y in the interval [y + 1,2y]. The latter event
is determined by (Y3 )n>,, and by the strong Markov property of o, its probability is exactly
P(Wy > y). To prove the second part of (36), it suffices to consider y = kd with k € Nand d € N
such that pmax + p%., < 1. Fixing such d we shall prove by induction on k that

P(Wo > kd) < (pmax + plhax)* -

The basis for this induction (the case k = 1) is automatic. Proceeding to the inductive step, we
denote the position of the first regeneration point of the killed process (Yy)n<s, by W¢. Observe
that W < Wy and W§ € {1,...,y}. Conditioned upon {W{ = w}, the event {Wj > y} implies
that the process (Y7 )n>o, must visit the point w — 1. Therefore, by the strong Markov property of
Ty,

P(Wo > y|[W¢ = w) < P(oy-1 < 00|Yy = y) = pl ™

(use (5) with p(x) = ppmax for all z). Consequently, for all k € N

k
P(Wo>kd) < Y P((m-—1)d< W < md)pfb !
m=1
k
< Y P(Wo > (m—1)d)plm
m=1
which by the induction hypothesis yields,
k
P(Wo > kd) < > (pmax + Phax)™ o8 < (pmax + phax) -
m=1
This completes the inductive step, and the proof of the lemma. L]

6 Concluding remarks

1. A setting which we have not covered is that of pmax = 1 while a({1/2}) = 0. We believe that in

this case, the large deviation probabilities can decay like exp(—Cn?) for any 3 € (1/3,1), with
the value of 3 determined by the behavior of the measure a(-) in the neighborhood of 1/2.

2. We conjecture that in the setting of Theorem 1.2,
3 m
: -1/3 -1 _ 9. _ /3T 2/3
Jim n logP(n™ X, € G) = 5 ;gé(l v/vq) |2 log a({1/2})|/* .

Such a lower bound is given in (24). What is missing is the corresponding (tight) upper bound.
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3. Let 0 < v < vy, and suppose that the large-deviation event n~1X,, € (0,v) occurs. We speculate

that in this case, the environment w is likely to have the following structure:

e When pmax > 1: one interval of size (1 + o(1))(log n)/y in which the empirical measure of
w is near p’a, with the remaining environment as well as the actions taken by the random

walk being the typical ones (recall that y = (p® log p)).

e When pmax = 1 and a({1/2}) > 0: one interval of size (1 + o(1))#n'/3 within which
wy = 1/2 for all z, with the remaining environment being a typical one (see (23) for the
value of #). We also expect then that the chain behaves typically outside this interval,
whereas inside the interval it behaves like a reflected at 0 simple random walk conditioned

to stay there for (1 — v/vy)n steps.

In both cases the position of the atypical interval is expected to be roughly uniformly distributed
over (0,vn).

To establish such results one has to refine the upper bounds of Sections 2 and 4 so that if the
setting described above is excluded, the upper bound shall be of lower order than the estimates
of Theorems 1.1 and 1.2.

4. In the quenched setting a typical environment w is fixed. When ppax <1 or pmin > 1 (“case B”
in the terminology of Greven and den-Hollander [5]) the local drifts always point in the same

direction, and it is shown in [5] that for almost all environments w,

I(v) = nll)ngo %| log P, (X, = [vn])| >0 for all v # v,.
On the other hand, when pmin < 1 < pmax, (“case A” in [5]) the random environment has local
drifts in both directions and I(v) = 0 on the whole interval between 0 and v,. This subexponen-
tial rate is due to the a.s. existence of arbitrarily long stretches in the random environment in
which neutral drifts or local potential wells temporarily “trap” the walk, allowing it to slow down.
More precisely, in the setting of Theorem 1.1 we shall find for almost every w that there is an
interval of length k = (1+0(1)) log n/(sy) in which kR > (1+0(1))log n/s (for example see [3]).
The corresponding lower bound on P, (n 'X,, € Q) shall thus be exp(—n'~1/5t°(1)), Similarly,
in the setting of Theorem 1.2, by the Erdos-Renyi strong law (for longest run of heads) we shall
find for almost every w that there is an interval of length k = logn/(—log a({1/2}))(1 + o(1))
within which w, = 1/2 for every x. The corresponding lower bound on P,,(n71X,, € (v —2n,v))
shall thus be exp(—Kn/(logn)?(1 + o(1))) with K = 0.5/0.57 loga({1/2})|?(1 — v/vs). Since
such lower bounds, due to one non-typical segment in the environment, proved to be quite tight

in the annealed setting, we expect that the same should apply in the quenched setting.
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5. Our assumption that the closed support of « is contained in the open interval (0,1) is used only

in the context of Theorem 1.1, where it can be replaced by the weaker assumption of (p*) = 1 for
some s > 1. Indeed, the latter condition suffices for (22) to hold (since E,(Nj) < ky(1 + p(0)7)
with k, < oo), thus for the upper bound to apply. Similarly, this condition suffices for our

application of Cramér’s theorem enroute to the lower bound of Theorem 1.1.

Acknowledgement We are indebted to Robin Pemantle for several helpful conversations, espe-
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References

[1]

[10]

[11]

[12]

K. B. Athreya and S. Karlin, “On branching processes with random environments: I extinction
probabilities”, Ann. Math. Stat. 42 (1971) pp. 1499-1520.

K. L. Chung, Markov Chains with Stationary Transition Probabilities, Berlin: Springer, 1960.

A. Dembo and S. Karlin, “Strong limit theorems of empirical functionals for large exceedances
of partial sums of i.i.d. variables”, Ann. Probab. 19 (1991) pp. 1737-1755.

A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Boston: Jones and
Bartlett, 1993.

A. Greven and F. den Hollander, “Large deviations for a random walk in random environment”,
Ann. Probab. 22 (1994) pp. 1381-1428.

A. Gut, Stopped random walks, Berlin: Springer, 1988.

H. Kesten, “The limit distribution of Sinai’s random walk in random environment”, Phys. A
138 (1986) pp. 299-309.

H. Kesten, M. V. Kozlov and F. Spitzer, “A limit law for random walk in a random environ-
ment”, Comp. Math. 30 (1975) pp. 145-168.

S. V. Nagaev, “Large deviations of sums of independent random variables”, Ann. Probab. 7
(1979) pp. 745-789.

Ya. G. Sinai, “The limiting behavior of a one dimensional random walk in a random medium?”,
Theory Probab. Appl. 27 (1982), pp. 256-268.

F. Solomon, “Random walks in random environment”, Ann. Probab. 3 (1975), pp. 1-31.

F. Spitzer, Principles of random walk, Springer, Berlin (1976).

19



