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1 Introduction

A .. . . .
Let 2o = (Za,¥a), @ = 1,2,---,n be n iid., IR? valued random variables, each distributed ac-
cording to the law P(z,y) on [0, 1]2. For £ < n, we say that a subsequence {#i; + i1,42,..,00 C
{1,2,...,n} } C{z,} forms an increasing subsequence, or a record sequence of length £, if

Ti; < Ty Yi; < Yijpnr 3= 1,00 =1

(Note that we do not require that ¢; < i;41). Let fmax(n) denote the length of the longest increasing
subsequence. We say that {(z4, ¥a)} form a record sequence (in short: form a record) if fmax(n) = n.
This is equivalent to the existence of a permutation 7 : {1,---,n} — {1,---,n} such that

Lr(a) < Lr(a+l)y  Ym(a) < Yr(a+1)s Va=1,---,n—1.
We are interested in the concentration of the measure P™ under the conditioning that a record
exists. This question is motivated by the following result, due to Goldie and Resnick [5]. Let

Z; 2 (X;,Y;), i = 1,2,... be a sequence of i.i.d. IR? valued random variables, each distributed
according to the law P(z,y) on [0, 1]2. Let L, = 0 and

L. — o0, if Ln,1 = o0 (1)
n inf{m > Ln,_1: Xpm > max;.n;ll X, Y > max;?;—ll Y;}, if Lp_1 < 0.
Let
) (@,1), if L, = o0,
Rn = { (XLnaYLn); if L, < o0. (2)

L, is the sequence of simultaneous record times, while Ry, denotes the record (extreme) values.
Define N = sup{n : L, < oo}, and, with z = (z,y), define the hazard measure

P(dz)

B = T, x 0,4

If H([0,1]?) < oo, then N < oo a.s. (see [4]). This is the case if P possesses an atom in (1,1) or,
more generally, if P is obtained from a general distribution on IR% which charges ((0,1)%)c.

Suppose now that one conditions on N being large. One might ask what form does the record
sequence take under this conditioning. Let P(dz) = H(dz)/H([0,1])2. A basic result in [5] (Proposi-
tion 2.2) states that if H possesses a bounded density on [0, 1]?, and if the measure P™ concentrates,
under the conditioning that a record exists, around a deterministic curve as n increases, then so
do the values of R;, : = 1,2,..., N, conditioned on N = n. Thus, the concentration of P™ under
the record conditioning, which is the main object studied in this paper, plays a decisive role in un-
derstanding the structure of multi-dimensional extremal sequences. [5] contains also some results
related to those in this paper.

It should be noted that the case of P(z,y) uniform, or, more generally, independent z and y
coordinates, is rather straight forward (see remarks 2,3 following Theorem 1). The general case
however does require some work.



A naturally related question, suggested by Cochand, is the following: Let £pax(n) denote, as
before, the length of the longest increasing subsequence. One may ask about the asymptotics of
fmax(n) and the shape of the longest increasing subsequence. For the uniform case, this question is
equivalent to the one tackled by Vershik and Kerov in [9], where they prove that £max(n)/v/7 —n—00
2 in probability, and it is not hard to see that in that case the longest increasing subsequence
concentrates along the diagonal. It is of interest to extend their result to general densities. As
we will show, the solution to this problem is intimately related to the solution of the records
conditioning problem.

The organization of the paper is as follows: in the next section, we state our main results
and prove that under mild conditions, records concentrate around limiting curves which form
the solution of a variational problem. Section 3 studies the properties of the latter variational
problem. In particular, we prove existence of absolutely continuous optimizing curves, and provide
a characterization for those. Section 4 is devoted to examples. Finally, Section 5 deals with the
longest increasing subsequence problem.

2 Main results

We will work here under the following hypotheses

(A1) P(z,y) possesses a bounded density p(z,y) with respect to Lebesgue measure in [0, 1]2.
(A2) p(z,y) is C} and bounded below in [0, 1]%.

Before stating the last assumption we need some further notation: Let B be the set of non-
decreasing, right continuous functions ¢ : [0,1] — [0,1]. For ¢ € B/, we have ¢(t) = fg ¢(s)ds +
¢s(t) where ¢ is singular (and possesses a zero derivative almost everywhere). Next define J :

B - Rt )
J(¢) = /0 Vo(@)p(, 6(2)) da (3)

and denote by K (J) C B~ the set of solutions to the variational problem

T2 sup J(9). (4)
¢cB”

Our third assumption is

(A3) K(J) is a finite set {¢1, ..., P}

We claim the:

Theorem 1 Under (A1)-(A3), for each § > 0,

lim P( min =~ max |yo — ¢¢(2a)| <& [{(%a,Ya)}a=1 form a record ) =1. (5)

n—co  f=1,.k a=Ll,.,n



Remarks: 1) We shall prove in the next section, that, under (A1) and (A2), K(J) is a non-empty
compact subset of C{. Actually we believe that (A3) follows from (A1) and (A2), but don’t know
how to prove it. We show in Theorem 3, that each ¢ € K(J) solves the boundary value problem

— pw(x,¢($)) (x> o py(.’lf, q{)(-’E)) ]

o) = e, o)) o(z, d(a)) *) (©)

with boundary conditions
$(0) =0, ¢(1)=1.

Also any two different solutions ¢y, ¢2 of (4) can only intersect at z =0 and z = 1.

2) Theorem 1 admits a rather elementary proof in the case that P is the uniform law on [0, 1]?.
Indeed, in that case, the coordinates are independent, and a record occurs if the two independent
rearrangements of the {z,} and {y,} coincide (we note that this event has probability 1/n!). Let
Blgfﬁ,n denote the event that for all k, the k — th smallest sample (out of n) of the z coordinate is
in [(k/n —8) ANO,(k/n+6) V1], let B,{d,n denote the analogous event in the y coordinate, and let
Bisn = B,fé’n N B,{J’n. If one can show that P(N;Byn |/lmax(n) = n) — 1 as n — oo, then one
immediately deduces that the record must concentrate around the diagonal in the sense of Theorem

1. Note that conditioning on the occurence of a record amounts to conditioning on the ordering
permutation being the same in both coordinates, an event which is independent of all By, 5,,. Thus,

P(UgBf n gllmax(n) = n) = P(UkBf o 5) < P(UkBiys ) + P(UkBing ) = 2P(UkBins) ()

Note that

1 n
P(UkBlfn,éc) < P(sup |- Z 1[0,a:](xa) —2z[>6) ns00 0,
z€[0,]] M 5

where the last limit follows from the Glivenko-Cantelli theorem (see, e.g., [7, Pg. 7]). Combining
this with (7), one arrives at the desired conclusion. As will be seen in Section 4, the diagonal is
also the unique solution of the optimization problem (4).

3) The case of p(x,y) = p(x)q(y) can also be easily settled by a monotone change of coordinates
which reduces the problem to the uniform case.

The following extension of the Vershik—Kerov theorem was conjectured by Cochand.

Theorem 2 1. Assume (A1), (A2). Then

lim lpax(n)/v/n=2J, (8)

n—oo

where the limit is in probability.

2. Further assume (A3). Then, for each § > 0, and each record sequence {z;, f;“;"f(n) of length
emax(n);

lim P( min max )|yz~a — ¢j(zi,)| <6 )=1. ©)

n—oo  “j=1,..k a=1,...,lmax(n



Remarks: 1) Actually, the result of Vershik and Kerov is stated in terms of the longest increasing
subsequence of a random permutation. However, this is equivalent to our problem since, the x and
y coordinates being independent in the case of uniform distribution, one may first re-arrange the x
coordinate and ask for the longest increasing subsequence in the independent y coordinate, which
is equivalent to the random permutation problem. The same argument applies to the general case
of independent coordinates.

2) Theorem 2 extends naturally to the d-dimensional hypercube. Essentially the same argument
shows that then, £pax/ n/4 — ¢4J, where cq is the limiting constant for the uniform case. It is, to
the best of our knowledge, an open and challenging problem to compute cg4.

As is often the case in limit theorems involving conditioning, the proof of Theorem 1 is split
into lower and upper bounds. We use below the notation

QD Q, ={w: {(za,Ya)}o—; form a record }

Lemma 1 Assume (A1)—(A2). Let ¢ : [0,1] — [0, 1] be a monotone, non decreasing, Ci function.
Then, for each § > 0,

liminf > log | €"°%(2) P(Qn, max |ye — d(za)] <8)| > 2108 J(4). (10)

n—oo n a=1,...,n

Before proving the Lemma, let us recall a well known fact. Let K, K, be integers and set
Az =1/K,, Ay =1/K,,
Az; = [t —1)Az,idz)  Ay; = [(j —1)Ay,jAy),

i=1,..,K;,j=1,..,Ky. Next denote by £,(¢,j) the block empirical measure of (21, ..., 2p):

. 1
La(i,j) = n H(Za)Ya) : 2za € Az; X ij}|

where | - | denotes the cardinality of a set.

In the sequel, we refer to any probability vector with weights which are integer multiples of 1/n
as a type. For a given type p on the above grid, consider a partition {M;;(u) } of {1,...,n} into
disjoint connected components such that |M;;(u)| = nij(n) = nui; and set M;(p) = UjM;;(p),
ni(u) = |M;(n)|. Let us introduce a new family of random variables {z; = (Z;,%;), i = 1,...,n}
defined by the law

P(dz,...dZ) = > P(ln = p)Pu(dz, ...,dZ),
u is a type
where B B
Py(dz1,...,dz) =[] ] Pildz), Pij(dzy,) = pij(Zx)dzx
i,J keM;;(u)
with

_ p(2)
fA:ci fij p(:v, y)

Pij(2) dzdy LieAw;xAy; -



Thus the random variables {z;} are obtained from two subsequent drawings: first choose the block
empirical measure £, according to the original law P and then distribute the random variables z
inside the boxes Ax; X Ay; according to P;;.

Finally define the two empirical measures L, and L,

L,= 6,  Lnp=

n n
(2
i=1 i=1

S|
S|

5.

(2

An important step in the proof of Lemma 1 is the following intuitive, well known result which, for
completeness, is proved in the Appendix:

Lemma 2 For all measurable A C M;([0,1]%) (the set of probability distributions on [0,1]?), we
have ~
P(L, € A)=P(L, € A).
We can now proceed with the proof of Lemma, 1:

Proof of Lemma 1:

Let é; be such that 1/4; is an integer, and let 3(d1) = B > 4 be a J;—dependent integer whose
value will be fixed below. Choose K, = K,(d1) large enough such that Az < § and

sup p(z,y)
|lz—zo | <Az
—Yo|< 1, z b A
sup sup |y —yo | <max( ?UP clo,1] 9(z)) Az <(1+d) (11)
2o€[0,1) ¥o€[0,1) inf p(z,y)

|lz—zo| <Az
y—yo| <max(1,sup,co,1) $()) Az

(This is possible due to (A2)). Let now

A2 it sup (16(s) = 9(0)] v [o(s) — 9(2))
=1 steAx;

(A is finite and A A——>) 0 0 since ¢ is Cl}). Increase K, if necessary to make
x

A < min(6/8,81/2). (12)

Choose now K, = BK,. Recall that by the fact that the {(zq,yo)}n_; forms an i.i.d. sequence, for
any type fi,
e—nH(ulP)

(T DKy < Pt = p) < € "HP) (13)

where H(,u|15) = Zu,—j log M];j is the relative entropy of u with respect to P, and
i,j (7]
15,~j = / / p(z,y)dzdy. (See [2], Lemma 2.1.9). For a given measure p on {1,...,K,;} X
Ay; J Az;
{1,..., Ky}, let
Bi(p) = min{j : p;; >0}, Ty(p) = max{j: py >0}



with To(p) = 0 and B;(u) = T;(p) = Ti—1(p) if pi; = 0 Vj. It is obvious that when £, = p then the
support of {L,} belongs to the set U;(Ax; x [(B;(u) — 1)Ay, T;(p)Ay)).

Define the events

1>

{w:Vi=1,--+, Ky —1,Biy1(€n) > T;() } N Qy
{w:Vi=1,--- Ky —1,Bi1(£n) > T;(€n) } N

Tn = Tn(Ln)

A

R, =R,(L,) =
where C% = {a : z, € [(i — 1)Az,iAz)} and

Q8 = {w: {(Za Ya) Yacci form a record} .

Clearly, r, C Q, C R,,.

Finally, denote
B =B (Lyp) ={w: |ya —d(xa)| <d, Va=1,---,n},

and write B9 = E‘s(I_Jn), 7 = n(Lyn). Now, by Lemma 2

P(E°NQ,) > P(E°nNr,)=PENF)= >, P P.(E°NFy,)
u type
> Y Pty = p)Pu(fn) (14)
BEA(S)

where

: , . J . ,
A(9) = {n type : Biyi(p) > Ti(p), and pij =0 if [§(iAz) —jAy| > 5, j =1,... Ky, i =1,..., Ky}
(we used in the last inequality the fact that Ay + A < §/2 ). Let

7y, = {Z = {Za}acnm; : form a record },

then for a type u € A(§), by construction we have from (11)

— PN =TI > (15

JRIEAGS

where P;f denotes the distribution corresponding to 15,~j being the uniform distribution on each
A.’L‘i X ij.

Lemma 3 For each i,

Py(r) = : (15)



Proof: Since p is fixed, let us drop the dependence of y in the formulae. Without loss of generality,
we may assume that M; = {1,2,...,n;} and M;; = {m;_1 + 1,...,m;} where my = 0, m; =
Zi:lnik: Jj= 1a"'7Ji =T, —B; +1.

Let IT! = { permutations = : M; — M; : m(M;;) = M;j,j =1, ..., J}. Now

Pﬁ('r:z) = Eﬂ'eﬂi Pﬁ(fn(l) <...< jr(ni)vgr(l) <...< gﬂ(nz))
= Yoremi Pi(Zr) < - < Zr(ng)r In() < - < Trma)> In(ma+1) < - < Ur(ma)s
...,g,,(meH) < < Qw(mﬂ.))
= I} |PY(Z1 < ... < Zn,;, 51 <o < Fmas Tt < oo < Tmgy oo Imys 41 < oo < Ty )
= |Hi|Pﬁ(§:1 <..< jm) H']]lzl Pﬁ(gmj_rl-l <o < Ymy )
= I T o = o

j=1 n,-j! ng!”

Combining (13), (14) and (15), one arrives at

P(E’, Q) > ( L )nﬁ 1 nmp)_ L
’ “\L+é1/ ) ni(p)! (n +1)K=H

+1
for any p € A(d). Write p; = ni(n)/n. Now, by Stirling’s formula (n! < ("Tﬂ)n - ) one obtains,
for n large enough,

P(E,Q,) > 1( 1 )n 1 KK, ( 1 )K
= 2 1441/ (n+1)KeKy n+1

“nlog(2) | 7" 2y M 108

-€
e~ 2, Hilog i

i
N —nlog(2) —n Y, pijlog mL 1Y, pilog s
S gpe e ij . @ Qi Hilog K

where p satisfies the support constraint, and, for each 8 = 3(d;) independent of n,
limg, 0 limy, o0 % log g, = 0.

Our strategy in the sequel is to find appropriate g which, together with (16), will yield the

required lower bound. To this end, it is convenient to first fix the support limits B;,T; and then
look for a p such that B;(u) = B; and T;(p) = T;. Let

I‘tzﬁl - T i
Mz’j:{ Yiin, Pij J€{Bi T}

j=B;
elsewhere
Then,
> mijlog 5+ 3" pilogpi = 23 pilog — . (17)
ij Py 5 G st B
j:Bi 1Y)



Choosing p; = c,/ECfLBi ]5“- where c is such that ), pu; = 1 yields

QZu,log E = —2logc——210g(z Z ,J) (18)

j=B; 15 i \Jj=Bi

(Note that this choice of p;; and p; is optimal in that it maximizes the right hand side of the
expression (16)).

To conclude the proof of Lemma 1, assume first that v = inf,¢[o 1] é(x) > 0, and let

B; = [QS(ZAA;)-‘ , Ti=DBj1 —1.

Note that for B; < j < T;, one has by (11) that

A~

1 B,
14461 ~ p(iAz, ¢(iAz)) - AzAy

Let 8 = ((d1) be large enough such that simultaneously, ¢(iAz) € [AyB;, AyT;), and

1 T,— B;+1
1446 S"A Az -
1 ¢(iAx) - 37

(This is possible since v > 0 by using (12)!). Hence,

limg, 0 210g (4 /Siip, Py) > limag o 2log (X y/p(iAz, ¢(iAz))d(iAz) Az)
= 2log ( [y y/p(x, $(x))d(x) de) .

If 1 were a type for each 41, (19) together with (16), (17) and (18) would yield Lemma 1. The
general case follows by approximation using the continuity of the RHS of (16) in u;; by noting that,
for every large enough n, one may find a type u, arbitrarily close to p with same support limits
B;, T;. Finally, the case v = 0 follows by considering a sequence of ¢,, such that qu (z) > 0 for all
z € [0,1] while ¢,, converges uniformly to ¢ on [0, 1]. ]

(19)

We prove in the next section, cf. Corollary 1, that (A1)—(A3) imply

(A4) Let || - || denote the supremum norm on [0, 1]. For every § > 0 there exists an €(§) > 0 such
that any piecewise linear, non-decreasing ¢ : [0,1] — [0,1] with ||¢—¢y|| > dfor £ =1,2,... k
satisfies J(¢) < J — €(d).

Lemma 4 Assume (A1)—(A4). Let § > 0, small enough, be given. Then,
1 n -
limsup — log 6"1°g(?)P(Qn, min = max |yq — ¢e(za)| > ) < 2log(J — 2¢(6/4))

n—oo N =1,...,k a=l,..,n

where €(d) > 0.



Proof: It follows from Theorem 4 below that we may, and will, consider only ¢, € C,}, and
furthermore that ¢g(z) > 0 for all z € (0,1). Fix §; > 0, and let d; = d2(6;) < 1 be such that

sup  p(z,y)
|z—2z0|<d2

ly—yo|<d2

sup sup < (1+44d1), (20)

2o€[0,1) Yo€[0,1) \m—imn|f<62 p(z,y)

‘y_yo|<62

let K, = [6,%] and Az = K,'. Reduce d; if necessary to have also Az < §/(2 maXgc(o,1] bo()),
¢=1,...,k. Fix 8 > 4 (eventually, a limit in 8 — oo will be taken). Define next K, = 8K, and
Ay = Ky_1 as in the proof of Lemma 1.

Let

B =FE(Ly)={w: min max |yo— ¢e(za)| >}
=1,...k o=1,...,n

and for fixed sequences t = (¢1,---,tKk,),b = (b1,---,bk,) which satisfy b; 11 > t;, set

F(t,b) = {w: Ti(fn) =t;, Bi(€n) =b;, min max max |¢(iAz)— jeAy| > 5/2, }
£=1,...k & j§e€[bi,t;]

Then using R, instead of r,, (16) is replaced, for every sequence (¢,b), by

P(Ry,, F°(t,b)) < > P(£, = p)Pu(NiTy,)
p type:Ti(p)=ti,B;(n)=b;
) Sy g My ik
< (1 +51)nefnlog; Z € ij Mii P;;
p type:Ti(p)=t;,B;i(n)=b;

(Note that n! > (n/e)", and use the upper bound in (13).) For each (K, Ky) let
F = {(t, b) sforall4=1,... k, dj, € [bi,ti] ,|¢e(ZACL‘) — ngy\ > 5/2,bi+1 >t; 1=1, ,Kw} .

Note that |F| < KgKm Note also that since Az < §/(2max,¢o,1 (]-55(:1))), one has that R, N E% C
Ugper Bin N F(t,b). Thus,

~ ~ —n ). pijlog g Zanzp; ik E?:bi Hik
P(Q,, E°) < P(R,,E%) <g,e ™ ¢ sup sup e ity Py

(t,b)eF {u:support upeUi{i,[b;,t]}
where limg, 0 limy, % logg,, = 0, uniformly in all other parameters.

Fixing (b;, t;) and using Lagrange multipliers to optimize over yu which satisfies the constraints,
one obtains

5 (bist)
= _ n 2nl E A/ PVt
P(Rn,E‘s) <g,€ nlog ¢ sup e 08 Lui :
(t.b)eF

(21)

10



where 151.(1"’“) = E;‘i:b,- 13” For each (t,b) € F, let

@1(@,@ = {Z : K_l(bH_l —b; + 1) < 52}, @2(&,@ = {Z 1> Ky_l(bi+1 —b; + 1) > (52} .

Y

Note that

A
Z \/W \/ IESup.qzyEOl (.’L‘ Z/) \/52 sup p(x’y)’

i€O2(b,t) z,y€[0,1]

where we have in the first inequality used the fact that |©2(b,t)| < 1/d2. On the other hand, for
(NS 61(b5 t)a

1 P
0 +1~ AzAyp(iAz,b;Ay)

for any j € {b;,b; +1,...,t;}. Thus,

Z \/E(bi’ti) < 4/ (14461) Z \/p 1Az, b;Ay)(t; — b; + 1) AyAx
i

<1+464

€01 (b,t)
+ \/52 sup p(x,y)
z,y€[0,1]
< +51/\/p$¢p (z) + B 1)dz
+ \/52 sup p(x,y),
z,y€[0,1]

where ¢p(+) denotes the polygonal, monotone curve formed by (iAz,b;Ay). Note that, for each
C=1,...,k, ||[¢p — ¢e|| > 6/4. Tt follows that

< (1+446) sup /\/ (z, d(x

{6, ¢ piecewise linear ,min,—i,....x ||6—¢¢/|>8/4}

+(1+41) / sup p(z,y))(y/B~ +\/£
z,y€[0,1]

< (1+8)T —e(6/4) + (1 +8) [ sup plwy) (/B + /)

z,y€[0,1]

where the last inequality is due to (A4). Using (21), taking first n — oo, then 8 — oo, followed
by d2 N\, 0 and finally &1 \, 0, yields Lemma 4. U

Proof of Theorem 1: Theorem 1 follows from Lemmas 1 and 4 by noting (see Corollary 1 below)
that (A4) is implied by (A1)-(A3). 0

Remarks: 1. Let {S;; = [a;,ai41) % [bj, bjt1),1 < i,j < m} be a finite partition of the unit square

[0,1)? into rectangles, then an inspection of the proof reveals that one could replace (A2) by the
following assumption:

(A2%) The density p(z,y) is C} and bounded below on each S;.

11



In this case, each ¢ € K(J) is continuous in [0,1)? and piecewise C} in each Sj;. Note that now,
different solutions may intersect inside [0, 1]2.

2. We could also allow that p(x,y) vanishes on some S;;:
(A2”) On each square S;;j, the density p(z,y) is either C} and bounded below, or p(z,y) = 0.

Of course in this case we have to restrict the variational problem (2) to ST, the set of squares S;;
where p(z,y) > 0. The main difference with (A2’), is the discontinuity of the solutions. Under
both (A2’) and (A2”), two different solutions ¢;, ¢2 € K(J) may share the same line segment on
some Sj; € ST, cf. the checkerboard example of Section 4.

3. Note that by rewriting ¢ as a parameterized curve, i.e. rewriting the curve z — (z,¢(x)) as
t — Y(t) = (¥1(t), ¥2(t)), J may be written more symmetrically as

1) = [ ()i 0a(n) " d

Based on this expression and the proof of Theorem 1, one can reasonably expect that the
results of this section extend to d-dimensional i.i.d. records with increasing curves ¢t — ¥(t) =

(Y1(t), ..., q(t)) € [0,1]¢ maximizing

76) = [ (pw@)in® - gu)

4. Based on the characterization of y;; as an empirical measure, one could actually prove a slightly
stronger statement. Namely, let m be the permutation which reorders {z, }, and define the (random)
piecewise constant function g : [0,1] — [0,1] by g(t) = Yr([nsg))- Then, under (A1)—(A3),

Jim P(Z:nll,i.?,k tZ'E(l)p lg(t) — ¢e(t)| < dl{(za,Ya)}p—q form a record )=1. (22)

3 The variational problem

Let us first derive an existence result for the optimization problem under assumptions (A1)-(A2).

Theorem 3 Assume (A1)—(A2). The optimization problem

é sup (/ de) (23)

¢eB”

possesses a solution over the space B”.

12



Proof: Let first {¢,} C B be a minimizing sequence of —J. Identify each ¢ € B/ with a
(positive) measure ug on [0, 1], equipped with the Borel field, by u4([0,t]) = ¢(t). Equip the space
of signed measure on [0, 1], denoted M, with the weak topology generated by C|0, 1], and note that
both M = C[0,1]* and C[0,1] = M*, where * denotes the topological dual. Next, note that by
Helly’s theorem, on a subsequence which is denoted again by {n}, ¢, — doo € B~ a.e.. Thus,

[ Vo 60@)da@ite — [ ple, bue(@)dn(@)is] < \/ A R —

where c is a positive constant independent of ¢,,. It therefore only remains to show that

timint — [ y/pla, due(2)n(2)de > I (610).

n—oo

In order to proceed, we represent the functional above as an appropriate Legendre transform.
This will yield the required lower semicontinuity. To this end, let X = C[0,1], * = M and
9(z) = p(x, poo(z)). As noted above, X** = X. For any ¢ € X* let

Gd) =4 ~ fol 9(x)¢ac(z) dz  if ¢ is a nonnegative measure
00 otherwise
where ¢,. denotes the absolutely continuous part of ¢. For any ¢ € X, define

0o if 1/v ¢ L1([0,1]) or 9 > 0 on a set of positive Lebesgue measure

I (ﬁ)) dz otherwise

b

A(y) = {

INT
<

For ¢ € X%, let
A*(¢) = sup x (¥, p)x+ — A(Y).

PeEX

where x (¢, d)x+ = fol ¥(x)¢(dz) denotes the duality pairing between X and X*. Clearly, A*(¢) is
lower-semicontinuous. The existence theorem thus follows from the

Lemma 5

Proof: Assume first that there exists a set A with ¢(A) < 0. Since ¢ is regular, one may find a
sequence of continuous functions 0 < 9, < 1 such that

lim (¢, d)x = ¢(A) <0.

n—o0
Let ¥,, = —n, — 1. It follows that
nll)nolo X(“Iln, ¢>X* - A(\I’n) = 0.

We may thus assume that ¢ is non negative. Note that in this case, A*(¢ac) > A*(d). Let ¢, € X
be a sequence such that

nlir& x(¥ny Gac) s — AYn) = A™(¢ac) »

13



with ¢;1 > 9, > ¢, > 0. Let B be a Borel set such that ¢,.([0,1] \ B) = ¢4.([0,1]) and ¢s([0,1]) =
¢s(B), where ¢s = ¢ — ¢ac > 0. For each ¢, let 9, denote the e continuous modification of ¥,1pgec,
that is ¢ = ¥p1lpe on a set C with ¢(C¢) < €, u(C¢) < € (¢ denotes Lebesgue measure, and such
a modification may be found by Lusin’s theorem). Then, for some constant c,

X(d’n:(ﬁac))\,’* _A("/)n) = <¢ncha¢>X* - ('@bnlBC)

= Wn e g [ dek e - o+ [ ol - s
< A'(¢)+ @ + Za(C%) S0 A(9)

It follows that A*(¢) = A*(dac)-

It remains to compute A*(¢) for absolutely continuous, non decreasing ¢. In the sequel, we
implicitly assume that ¢ is absolutely continuous, and write

1
2, B ae = /0 Voda

Note that, by a direct computation and [3], page 94, Theorem 2,

G(9) supq{ / Yddr + = 5 / = dz : ¢ bounded, measurable, non positive}

sup{ / Yddr + = 5 / 9 i . 1 measurable, non positive} .

To complete the proof it therefore remains to check that

supq{ / Ydd + = 5 / = dz : 1 bounded, measurable, non positive}

= sup{ / Yodr + = 5 / 9 e - 1 continuous, non positive} .

This is again a straight forward application of Lusin’s theorem. This completes the proof of the
lemma and of the Theorem. ]

Remark: As pointed out by the referee, one may, by the change of coordinates y = f[; v/g(¢)dt
reduce the problem to the issue of lower semi-continuity of G(¢) for g(-) = 1. Yuval Peres has
shown us a direct proof of the latter fact, based on a construction of a suitable subsequence whose
derivative converges almost everywhere.

While proving the existence of minimizers is somewhat involved, the characterization of mini-
mizers is actually a consequence of the classical calculus of variations. Indeed, we have:

Theorem 4 Assume (A1)—(A2). Then, any optimizer ¢ € K(J) of (4) is of class C}, with
absolutely continuous derivative, and satisfies the equation

(7, 9(2)) ; py(z, ¢(z)) ;

2
o5, 3@) *@ " e aa) O (24)

$(z) =
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with boundary conditions
$(0) =0, ¢(1)=1

and q5 > 0. Moreover different solutions to the variational problem can only intersect at © = 0 and
z=1

Proof: We first show that it is enough to consider absolutely continuous minimizers with fixed
boundary conditions.

Lemma 6 Assume (A1)—(A2). Let ¢ € K(J). Then, ¢s = 0, ¢(0) = 0 and ¢(1) = 1, and ¢
cannot have an interval where it is constant.

Proof: Assume first that ¢s # 0. Then, in particular, there exists a sequence of intervals [ay,, by,]

such that
¢(brn) — ¢(an)
Pac (bn) - ¢ac(an)
Let ¢n(t) = ¢(t) if t & [an,by] and ¢,(t) = d(an) + (t — an)(d(bn) — ¢(an))/(bn — ar,) otherwise.
Denoting p = ming y 1/p(z,y), P = max, 4 v/p(z,y), it is easy to check that

_>’I‘L—)OO Q.

IO - I6n) < [ P36~ py(on — an) 600) — plan)
< P\/(bn - an)(¢ac(bn) - ¢ac(an)

—py/(bn — an)(9(bn) — (an)) <0

for sufficiently large n, where the second inequality is a consequence of Jensen’s inequality and the
first of the definition of a,, b,. It follows that ¢ cannot possess a singular part, and hence must be
absolutely continuous. This argument immediately, when applied to a sequence of intervals [0, by,]
and [ay, 1], leads to ¢(0) =0, ¢(1) = 1.

We turn finally to showing that there cannot exist an interval [a, b] with b > a and ¢(b) = ¢(a).
Assume otherwise, and w.lo.g. let a = 0, and assume ¢(b + €) > 0 for all ¢ > 0. Consider the

curve (z, ¢¢(z)) which is linear between (0,0) and (b+ €, ¢(b+¢€)): ¢e(x) = zde, 0 < & < b+ € with
be = ¢$)b+t€) and ¢¢(z) = ¢(x),b+ e <z < 1. Then

J(¢)—J(¢) = /0 o \/p(@, 2 pe da— /b e \Vp(z, 9)ddz > ph(b+e)'/?(b+e)' /2~ Pp(b+e)' /2 /.

Taking a small enough € yields a contradiction, and completes the proof of the lemma. ]

We return to the proof of the theorem. To see that the optimizing curve must satisfy the differ-
ential equation (24), we make use of the Hamiltonian form of the Pontryagin maximum principle.
First, we check that all conditions needed to apply Theorem 5.1.i in [1] apply. This will lead to
a version of (24) which holds almost everywhere. We then use the particular properties of the
problem to guarantee that the optimizing path indeed satisfies (24).

15



To apply the above mentioned theorem of [1], let f,(¢,z,u) = —/p(t,z)u, g =0, f(t, z,u) = u,
B ={0,0,1,1}, A = [0,1] x [0,1], U = [0,00) and M = A x U. Then, f, and f,, are both
continuous in M, conditions 4.1.a, 4.1.b, 4.1.d are easily checked to be satisfied, and condition
4.1.¢’ is satisfied since, for the optimizing path z*(¢),u*(t) (with z*(t) = u*(t) a.e.),

|for(t', 2", u*(1)] < eyfur(t) € L'[0,1]

where the last inclusion is due to the fact that u* > 0 and fol u*(s)ds = 1. A similar computation
holds for f,,. Thus, Theorem 5.1.i applies and, defining

H(t,z,u,\) = —/p(t,z)u + Au

and
t,x
—00 A<0

M(t,z,\) = {
one concludes that, for some absolutely continuous A(t) satisfying the equation

(b2 () (@)

A(t) NIOYEO) a.e. (25)
it holds that i
— /ot 2 (8))u (£) + Mt () = —p(t%(t()t)) ac.. (26)
These equations imply that
21/ A®)ur(2) = y/p(t, 2 (1)) /A1) ae.. (27)

Let © = {t : A(¢) = 0}. Since p(z,y) is bounded away from zero, the Lebesgue measure of ©
is null; and the RHS of the last equation is continuous on [0,1] \ ©. Hence, u*(-) is continuous
there, and actually one may take \/u*(t) = v/p(t, z*(t))/2\(t) there. Moreover, the RHS of (27) is
differentiable a.e., and since [ (v/u*(£))?dt = 1, one deduces that f; A(t)~2dt < co. One concludes
that

wi(t) _ pa(t,@* () + @ (Opy(t,2* () MO)Vp(E 2" (D)

PN & RO N/ (= ) 202(1)
Recalling that @& = & = ¢, and using (25), one obtains (24).

Next, we show that ¢ is bounded and d)() > 0. Indeed, let ¢ = log ¢, q = log p, then, in terms
of ¥ and ¢, the equation (24) is

20— ol 8(z)) =

Thus, for any z, € (0,1),

Yol@) = ¥lw0) + a(2,9(0)) — 40, $(z0)) =2 [ a(s, 6(5)) ds
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il.e.

y _ (0, 9(T0)) a:&
bw) = dlao) 270 expl2 [ P25, 0(s)) ds].
Now if sup,, , p(z,y) = M, inf, , p(x,y) = m and sup,,, |‘ZT”‘(:E, y) = N, we get the bound

Heo) P20 i aN) < (o) < ) T2 20 oy

Since fol é(x)dz = 1, we get

20,0) exp[—2N] < ¢(0) < 20.0)

exp[2N].

Finally let us show the last statement of the theorem: Let ¢; and ¢2 be two solutions of the
variational problem and suppose that ¢;(zg) = ¢2(zg) for some zy € (0,1). Then ¢(z) = ¢1(x),
x < zg and ¢(z) = ¢2(z) x > w, is again solution and solves the Euler equation (24). But this

implies ¢(o) = 1 (o) = da(ao) and by uniqueness of the Euler equation ¢y () = ¢o(x),0 < z < 1.
O

The following is an immediate corollary:
Corollary 1 (A1)—(A3) imply (A4).
Proof : Use the lower semicontinuity of G(¢) together with the continuity of the solutions of the

variational problem which was proved in Theorem 4. ]

4 Examples

In this section, we provide some examples of densities p(z,y) which satisfy the assumptions (A1),
(A3) and either (A2), (A2’) or (A2”).

The uniform case

Let p(z,y) = 1. Obviously, p(z,y) satisfies (A1)-(A2). Moreover, we claim that the optimization
problem (3) possesses the unique solution ¢;(x) = z. Indeed, suppose there exists a 1 > § > 0 such
that ¢(t) =t + J for some ¢t € [0,1 — J] (the symmetric case ¢(t) =t — § works in the same way).
Then, Jensen’s inequality implies

/01 d)2ds = %/Ottq's(x)l/? dx+li_t/t1(1—t)¢(x)1/2 dz
(t/()té(x)dx)l/2+ (-9 /tl $(@)dz) "

IN
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2t + 6 — ¢(0))1/2 T (1= )Y2(H(1) —t — 6)1/2
< 2+ 5)1/2 + 1=t -t- 5)1/2
< (1-8%)Y2, (28)

N

where the maximum is achieved at ¢(0) = 0,¢(1) =1 and ¢t = 1—5‘5. Since J(¢1) = 1, this proves
the claim.

The piecewise constant case

Let {S;;} be a finite partition of [0,1]% into squares and let p(z,y) be a positive constant on each
square S;;. By the same Jensen inequality argument as in the uniform case, it follows that the
minimizing curve (curves) are piecewise linear, with constant slope on each square S;;. Moreover,
the optimization problem (3) becomes then an optimization problem over the set of slopes. We
shall prove that in this case (A3) is always satisfied.

More precisely let S;; = [i/N, (i + 1)/N) x [j/N,(j + 1)/N) and assume that p(i,j) > 0. We
choose first an increasing collection of squares {S;, j,,k = 1,...,2N — 1} crossed by the trajectory:
with i1 = j1 = 0, ionv—1 = jon—1 = N — 1 and ix11 > g, Je41 = Jky Tkt1 — 0k + Jrp1 — Je = 1.
An optimal trajectory is an increasing line with constant slope on each Sj, j passing through
{(zx,yx) : K = 0,...,2N — 1} with (zo,y0) = (0,0), (x2n_1,92nv-1) = (1,1). From Lemma 6,
we know that wy = xp — xp—1 > 0 and 2z = yr —yp—1 > 0,k = 1,...,2N — 1. (Note that
when proving that the number of optimizing curves is finite, we may assume that interior points
{(zk,yx) : k =1,...,2N — 1} do not fall on the corners of squares Sj, j,, i.e., one, and only one, of
zy or yy intersects the grid {(ix /N, jx/N)}, since allowing for path crossing the corners only adds
a finite number of possibilities. See Figure 1). Write

2N—-1

1/2 1/2 1/2

J(w,2) = Z pk/ wk/ zk/ )
k=1

where py, is the value of p(ix, ji) in the square S;, j, .

We are going to show that J(w,z) is strictly concave on admissible (w,z). Thus for a given
collection of squares {S;, ;. }, there exists a unique non-degenerate maximizing curve. Since there

are only finitely many possible choices, we see that both (A3) and (A4) are satisfied in the piecewise
constant case.

To see the strict concavity of J(w, z), note that if {(zy,yx)} and {(},,y;} are admissible (i.e.,
positive, in [0, 1]?, and such that the corresponding {(wy, z¢)} and {(w}, z,)} are strictly positive),
s0 is their convex combination, and the latter leads to the same convex combination of the {(wy, zx)}
vectors. On the other hand, note (by computing the Hessian) that the function ,/zy is concave, and
strictly concave for pairs (z,y) and (¢, y') such that z/y # z'/y’. Since for some m € {1,...2N—1},
it holds that either wy, # w!, or zm, # z,,, and since for the smallest such m, 2y, /Wy, # 2, /wh,,
the strict concavity follows.

To see an example where the solution to (4) is not unique, consider the density p(z,y) = p1
for (z,y) € [0,1/2]2 U[1/2,1]? and p(z,y) = p2 otherwise. It is easy to check that the solution to
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Figure 1: Piecewise constant example - N = 2

(3) is the diagonal ¢(z) = z if p; > po, whereas if ps > p; then the following curves are the only
maximizing curves:

p2z/p1 0<z<p1/2ps
pi(z) = 3+ (¢ —£) p1/2p2 <z <1/2
v+ 2z -1)(1-y*) 1/2<z<1
where »
1
y* =1--— ’
2ps
and, since by symmetry ¢o(z) =1 — ¢1(1 — ),
p1z/p2 0<z<1/2
¢2(m): p1/2p2—|—(:1,‘—1/2) 1/2<.’E§y*
3+ 2o y<z<l

Note, in this set-up, that although the density is symmetric, the maximizing curve is not the
diagonal!

Checkerboard

As another piecewise constant example, let 1 <4,j <7,1et S; ; = [(i —1)/7,i/7) x [(j —1)/7,5/7),
and let

p(m, y) — { 49/9 (.’B, y) € Sij; (Za]) € {(la l)a (2’ 3)’ (3’ 2)7 (3’ 5)7 (474)’ (57 3)’ (57 6)7 (6’ 5)7 (7a 7)}

0 otherwise

(note that p(x,y) > 0 on all possible increasing paths of a knight, starting at (1,1) and progressing
to (7,7), on a 7 x 7 checkerboard). It is easy to check that in this case, the optimal paths are all
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composed of diagonal segments of the S;;’s where p(z,y) > 0, and every nondecreasing arrangement
of such diagonal segments with ¢(0) = 0 and ¢(1) = 1 is optimal (the value of the path on squares
with p(xz,y) = 0 is of no importance since there are (a.s.) no samples in these squares. For

consistency, it should be chosen such that the resulting path is in B/ )-

Figure 2: Checkerboard example

Convex problems

Next, we consider the case of p,, < 0. It is straightforward to check that in this case, J(¢) is
strictly concave. It follows that the maximizing curve is unique. The problem being symmetric
with respect to the & and y coordinates, it is obvious that the same conclusion may be drawn if
Pz < 0.

Independent coordinates

Although the case of independent coordinates, characterized by p(z,y) = f(x)g(y) > 0, may be
reduced to the uniform case by a change of coordinate, it is interesting to note that in this case,
the unique solution of (24) is provided by the equation F(x) = G(¢(x)), where F(z) = [y f(6)df
and G(y) = [¢ g(6)db.

An explicit, continuous example

We describe below an example where p(z,y) satisfy (A1)—(A3), yet the optimal curves do not
include the diagonal (although the diagonal is a solution of (24), it is not a maximizer). This
example also illustrates the case of multiple maximizers.
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Consider a density of the form

p(.’L‘,y) = k%‘ exp[F((m - y)2)]7

where F € C} with F(0) = 0 and kr > 0 is a normalizing constant. In this case (24) becomes

¢ =2F'((z — ¢)*)(z — $)($ + )
with boundary condition ¢(0) = 0, ¢(1) = 1. Note that ¢;(z) = z is a solution to the equation.

In case F' < 0, ¢ is the unique solution: namely suppose that ¢(z) < = for some z € (0, 1),
then ¢(z) < 0, i.e. the curve is concave and remains below the diagonal, i.e. ¢(1) # 1.

In case F' > 0, we have two other solutions ¢o and ¢s. ¢ is strictly concave with ¢2(0) > 1,
do(x) > x,z € (0,1), and ¢3 = ¢; ! is strictly convex with ¢3(0) = #(0) < 1 and ¢3(z) < z,z €
(0,1).

Let us show that for F'(0) > 3, ¢; cannot be optimal. For 0 < € < oo consider the piecewise
linear curve (z, 9(z)) passing through (0,0), (¢(¢),1 —t(€)) and (1,1) where t(e) = 2+L6 Of course,
%o = ¢1 and

t(e)
J(e) = 2kp(1 + 6)1/2/ exp[F(2x?) /2] dz.
0
This yields

EIWe) = 5(1+ )7 (W) + 2kp(1+ €)'/?t (¢) exp[F(€”H(e)?) /2]
+2ekp(1 + €)/? f(f(f) exp[F(e2x?) /2] F'(22?)2? dx.

At e =0 we get

d 1 ke _
27 We)| _, = 5/ (0) — 5 =0.
Next
& 1 ke ke 12 o ke | ki,
W]y = 5700 =+ 5+ 2k [ explPO))F(0)a" do =~ + TLF(0) > 0,

thus for sufficiently small € > 0, J(¢¢) > J(¢1).

We believe that the condition F’'(0) > 3 for the existence of multiple solutions is redundant:
indeed, in the case F(z) = ¢y/z, ¢ > 0 (which unfortunately does not satisfy the smoothness
assumption in (A2)), one can show that

dJ (1) /dele=o > 0.

It follows that the off-diagonal solutions of (24), namely

z 1 1
¢2(x) = ‘/0 (1 n eiC)GCt . 1dt = E log ((1 + e—c)ecz - 1) +1- T, ¢)3($) = ¢2_1(.'I7),

are optimal.
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5 Longest increasing subsequence

In this section, we consider the length and location of the longest increasing subsequence of an
i.i.d., two dimensional sample. We provide here the

Proof of Theorem 2: We begin by fixing some notations. Let £pax(n) denote the length of
the longest increasing subsequence, and denote the corresponding increasing subsequence (which
may not be unique) by Z = ((i;, i1 ), (Tiy, Yis)> - - - » (Tlrman(n) Yemax(n)))- A famous result of Ver-
shik and Kerov (see [8, 9]) states that if P(:,:) is the uniform measure on the unit square, then
Lmax(n)/v/N —n—co 2 in probability.

As in the proof of Theorem 1, we will use upper and lower bounds on the probability of the
longest increasing subsequence being around a given path ¢(-). Before doing that, we need the
following lemma.

Lemma 7 Assume (1 —90) < p(z,y) < (14 0). Then there exist cs > 0, which depend on § only
(and not on the specific law P(-,-)), such that

lim P(|£ma"(")
n—00 \/ﬁ

—2|>¢5)=0,
and limg_.g cs = 0.

Proof of Lemma 7: Note that by a suitable change of coordinates in the x-axis, we may and will
assume that p(z) = [p(z,y)dy = 1. We use a coupling argument and the result of Vershik and
Kerov. Let 7 be the (random) permutation such that z,(1) < Zr(2) < :++ < Tx(n), let P;(-) be the
law on [0, 1] with density p(y|z(;), and note that, for § small enough, 1 — 9" < p(y|z) <1+,
with §' = 2§/(1 — §). To see first the lower bound in the statement of the lemma, note that
P; may be written as a mixture of a uniform law (with weight (1 — ¢')) and another law on
[0,1], denoted g;. Thus, the sample (Zx(1);Yr(1))s- - (Tr(n), Yr(n))) DOssesses the same law as

Zn = (Z'W(l), (1m1:1U1 + (1 - 1m1:1)Z1)); ey (m‘rr(n)a (1mn:1Un + (1 - lmnzl)Zn))a where {U'L}?:]_
is a sequence of i.i.d. uniform random variables, independent of the sequence {z;}} ;, {m;}j; is
a sequence of 1.i.d. Bernoulli(1 — §’) random variables, independent of the sequences {U;}?; and
{z;};, and {Z;} is a sequence of random variables whose law depends on the sequence {z;}I* ;
(explicitely, P(Z; € dx) = (Pi(dx) — (1 — ¢")1jq)(x)dz)/é". Let I denote the set of indices with
m; = 1, and let N, = Y i1 1p,—=1 = |I| denote the number of indices where a uniform random
variable is chosen in the mixture. Note that P(N,/n < 1 — 2§') =00 0 due to the law of large
numbers. Let Zmax(n) denote the length of the maximal increasing subsequence corresponding to
Zn, then fay(n) possesses the same law as fmax(n) and, on the other hand, is not smaller than
the length of the maximal increasing subsequence when one considers only those indices ¢ € I. The
latter is distributed precisely as the length of the maximal increasing subsequence of a uniform
sample of random length N,, which is independent of the uniform sequence. Hence, by the result
of Vershik and Kerov, limp,_co P(fmax(n)/y/n < 2¢/1 —28") = 0, which concludes the proof of the
lower bound.
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The proof of the upper bound is similar. Indeed, let m be as before, and decompose now
uniform random variables to a mixture of random variables distributed according to P; (with
weight 1/(1 +¢’)) and auxiliary random variables Z;. The argument used in the proof of the lower
bound applies now to this case with the obvious modifications.

O

We now return to the proof of the theorem. We begin with the following lemma.

Lemma 8 Let $ € B/ be a C’,} curve. For any é > 0, define the event

A, =
{w : Jincreasing subsequence of length > 2(J(¢$) — §)/n wholly contained in a § neighborhood of ¢(-)}.

Then,
lim P(4,) — 1.

n—o00

Proof of Lemma 8: Fix an integer K, and let Az = 1/K. Let Y; = ¢(iAz), and increase K if
necessary such that max; Y;1; —Y; < . Define the rectangles R; = [iAz, (i + 1)Az) x [Y;, Yit1),
i=20,1,...,K—1. Reduce K further if necessary such that, for §’ to be chosen below independently
of K,
max mgﬁ max(p(z,y)/p(iAz,Y;), p(iAz,Y;)/p(z,y)) < (1 + 51)7
g T,y %

and

K-1
S /p(iAz, ¢(iAx)) (&((i + 1)Az) — $(iAz)) Az > (1 - &) (9).
=0

Let n; denote the number of points of the sample {z,}2_; in R;, and note that by the law of large
numbers,
n;

np(iBe, (G + 1)A0) —elibayae > X0 =0

lim P(max

Note that (c.f. Lemma 2), the law of the sample conditioned on being in R;, is i.i.d. with the density
(on R;) p(z,y)/ [p, p(z,y)dzdy. Hence, Lemma 7 may be applied and leads to the conclusion that

P(There exists an increasing subsequence of length 2(1 — §”),/n; in each of the rectangles R;) =00 1,

where §" = ¢§"(8') —§ _0 0 independently of the value of K. Thus, choosing ¢’ small enough, with
probability converging to 1 with n there exists an increasing subsequence in a ¢ neighborhood of
¢, whose length is at least

K-—1
3 2(1-8")ny/p(iAz, (i) ($((i + 1)Az) — $(iAe)) Azy/T — 28 > 2(1-8')(1-6")v/nT (¢)/(1+28').
=0

The lemma follows by noting that §' is arbitrary.
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Much as in the proof of Theorem 1, we need also an upper bound on maximal increasing
subsequences. To this end, we introduce some definitions. Fix K a large integer as before, let 3
be a large integer and define Az = 1/K, Ay = Az/3. Let the multi-indices t = (¢1,...,tx) and
b = (b1,...,bk) be admissible if by > 0,bx < 1/Ayandt; > 0,b; <t; <1/Ay—1,i=1,....K
and b; > t;—1,7=2,..., K. Note that the number of admissible multi-indices is bounded above by
(1/Ay)?/A%. We say that a multi-index i = (i1,. .. s Umax(n)) forms a (t,b) increasing subsequence
if, for (@i, ..., %, ., ) Which is an increasing subsequence, the inclusion w;, € [iAz, (i + 1)Ax)
implies that y;, € [b;Ay, (t; + 1)Ay). Note that being a (t,b) increasing subsequence depends on
the sample {z,}, and that every (t,b) increasing subsequence defines a polygonal nondecreasing
curve ¢(-) : [0,1] — [0, 1].

Finally, let

K
Jiog) = 3 \/p(ilAz, b Ay)(t; — b + 1) AzAy.
i=1
Note that limg_, o limaz 0 SUP (1, t) Jibit) < J.
Lemma 9 For any & > 0 small enough, all Ax small enough, and all admissible (b,t) (which
depend on Az),
P(3(b, t)increasing sequence of length greater than 2v/n(Jipt) +6)) —n—00 0-

Proof of Lemma 9 : Let R; = [iAxz, (i + 1)Az) x [b;Ay, (t; + 1)Ay), and let £;(n) denote the
length of the maximal increasing subsequence wholly in R;. Fix §; > 0, and define

©1((b,t)) = {i: (t: —bi + 1)Ay < 61},
O2((b,t)) ={i: 1> (t; —b; + 1)Ay > 61 }.
Since, for any (b, t) increasing subsequence of length £, £ < S°% | £;(n), one has

P(3(b, t)increasing sequence of length greater than 2v/n(Jp ) +6)) <

P(3i € ©1((b, t))such that £;(n) > 2\/5(\/p(iAa:, biAy)(ti — b + 1)AzAy + 6Az/2)) +
POY tm>ovm). ()

1€02((b,t))

Note that, for Ay < 67, |@2((b,t))| < ;> + 1. Hence,

P( Y ti(n)>dv/n) < (671 +1) max P(li(n) > 664/n/2).
i€Os((b,t)) i€62((byt))

Let Y. (n) denote the length of the maximal increasing subsequence in an i.i.d. sample of length
n of uniformly distributed random variables (on [0, 1]2). Since ¢=! < p(-,+) < ¢ for some ¢ > 1, we
have, by the result of Vershik and Kerov and an argument similar to the one in Lemma 7, that, for

any 7 € ©2((b,t)), and n large enough,
P(£i(n) > 681v/n/2) < P(LY,, (keAzn) > §61/1/2) =300 0, (30)
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as soon as vVk.Az < §6; (here, k. depends on ¢ only and is contributed by the fact that for large
n, the number of sample points in R; is certainly less than 2cnAx, while the conditional law in R;
is bounded above by c?). On the other hand,

P(3i € ©1((b, t))such that 4;(n) > 2\/5(\/p(iAw, b;Ay)(t; — b + 1)AzAy + §Az/2)) <

(Az)™'  max  P(ti(n) > 2v/n(y/p(iAe, biAy)(t: — b + 1) AeAy + 6Az/2)).
1€01((b,t))

Note that the law of (z4,¥q), conditioned on (z4,¥ys) € R;, is “almost uniform” in the sense of
Lemma 7. Hence, for §; small enough (first) and then Az small, one has by applying Lemma 7
that

P(ti(n) > 2v/n(y/p(ile, biAy) (t; — b; + 1) AzAy + 6A2/2)) =00 0. (31)
Combining (30,31) yields the Lemma.
O

The proof of both parts of Theorem 2 follows from Lemmas 8 and 9 in exactly the same way
that Theorem 1 followed from Lemma 1 and 4.

O
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Appendix

Proof of Lemma 2: By monotone class, it is clearly enough to show that for any disjoint sets
Ay X B, I,m =1,..., K, with Aj, By, closed intervals in [0, 1], it holds that

B([ fdLa) = B([ fdE,)

where f(z,y) = 32} 1 Cim14,xB,, (z,y). Without loss of generality, one may assume A; x By, to form

a partition of [0, 1]2 which refines the partition generated by Ax; x Ay;. It follows that it is enough
to show that, for any vector a;,, with integer entries satisfying >, aim = n, P(nm = aim Yi,m) =
P(fym = aim Yl,m), where ny, = [{a : zo € A; X Bp}| and nyy, = [{@ : Zo € A; X B, }|. Note
however that by a simple combinatorial computation,

P(nyy, = apm VI, m) HPIZ’@"” 0 n!
Im@
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where Py, = [4,, 5, P(dz). On the other hand, let A;; = {(I,m) : 4 X By, € Az; X Ay;}. Now,

PRy = apm Vl,m) = Z P(ly, = p)Py(Rpm, = @y, VI, m)
uis a type
= fA X B apP (dz)
Let ¢;; = E(l,m)E.Az’j Qm, and let Pj; = waiXij P(dz), P;j(l,m) = _IT

Let Q(i,j,qi;) denote the probability that, out of ng;; independent drawings on Az; x Ay;, each

distributed according to P;; on Az; x Ayj, exactly na;, belong to each A; X By, (I,m) € A;j. It
follows that

P(Tim = amm VI,m) = P(ln(i,5) = ai; V5, 5)(]] @, 4, ¢5))

1,5
_ gij n‘ D. . Qlm qU!
B HP J Hz]qZ] H( H Bj(l’m) l )( (I,m)eA;; al’m')
’ %, (l,m)E.Ai,- ,m ij
— Palm
H fm Hlm
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