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Abstract Consider the Wonham optimal filtering problem for a finite state ergodic Markov process
in both discrete and continuous time, and let ¢ be the noise intensity for the observation. We ex-
amine the sensitivity of the solution with respect to the filter’s initial conditions in terms of the gap
between the first two Lyapunov exponents of the Zakai equation for the unnormalized conditional
probability. This gap is studied in the limit as ¢ — 0 by techniques involving considerations of
nonlinear filtering and the stochastic Feynman-Kac formula. Conditions are given for the limit to
be either negative or —oo. Asymptotic bounds are derived in the latter case.

1 Introduction and statement of results

Let {X,,}22, denote a finite state space, discrete time homogeneous Markov chain, with transition
matrix G and initial distribution pg. Without loss of generality, we take the state space of the
Markov chain to consist of the set {1,...,d}. Denote the law of the chain X, on {1,...,d}#Z by P.
Throughout this paper, we assume that G leads to an ergodic non cyclic chain. That is, we assume

(A1) there exists a k > 1 such that G*(i,5) > 0 for all 4,5 € {1,...,d}.

We denote by Ej expectations under the unique stationary measure of {X,}.

We assume that the Markov chain X, is observed through the sequence {Y,,}22,, where

Y, =0hx, + \/Em/n.

Here, h : {1,...,d} — IR is the observation function, § > 0 is a parameter (which, for as long as
one deals only with discrete time, may be taken as § = 1), ¢ is an observation noise parameter
related to the Signal to Noise Ratio (SNR), and {v,};2; is a sequence of i.i.d., standard Gaussian
random variables.
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research at the Technion.



Let ), denote the o—algebra generated by the observations Yi,...,Y,. The nonlinear filtering
problem consists of computing the conditional law p;(n) = P(X, = j|V,). Let D, denote the

diagonal matrix with D,(i,7) = exp[o~%(h;Y, — h?§/2)], and define
p(n) = DuGp(n— 1), (1)

where G* denotes the transpose of GG, and p(0) = pg. It is a straight forward consequence from
Bayes’ rule (see e.g [1, page 460] and also the continuous time case in [9]) that the vector p(n) =
(11(n) .- pa())" satisfies p(n) = p(n)/(p(n), 1) whete p(n) = (p1()s- - -»pa(m)*, 1 = (L., 1)"
and (-,-) denotes the standard inner product in IR,

Often, one has no access to the initial distribution pg. A common procedure is then to initialize
(1) with some initial condition gy € S, where S%~! denotes the (d — 1) — dimensional simplex.
Denote by p%(n) the solution to (1) initialized this way, and denote by p?(n) the corresponding
normalized (random) probability vector. Natural questions are then how far is p?(n) from pPo(n);
what are the conditions for stability in the sense that |[p?(n) — pP°(n)|| —n—eo 0, and under these
conditions, what is the rate of convergence. We emphasize that we deal here with the dependence
of the optimal filter on its initial conditions, and not with its dependence on perturbations of the
state process, { X, }. The latter is a different problem which we do not deal with here.

Motivated by the approach taken in [4], (see [6] for a related computation in the continuous
time, linear case), we couch the question in terms of Lyapunov exponents. That is, for any two

qo # g € 771, define
. 1 )
Yo(d0. 4o, w) = lim sup —log ||p™(n) — p*(n)]]

Although here and in the sequel we take ||-|| to denote the Euclidean norm, note that the definition
does not depend on the precise norm used, and in particular one could use here the variation (£!)
norm.

We will see that, under mild conditions, v5(qo, ¢}, w) is almost surely deterministic, 75 =
v5(qo, ¢, w) is independent of qo,q) for a.e. qo,q, (when qo,q) are distributed uniformly over
the simplex), and is related to the gap between the top two Lyapunov exponents associated with
the Zakai equation for the unnormalized conditional probability. The deterministic quantity —1/v5
can then be interpreted as the “memory length” of the filter. Obviously, this approach is mean-
ingful only if v < 0. We will identify below sufficient conditions for this to happen. An analogous
continuous time question is examined as well.

We remark that in order to deal with the filter’s memory length, we introduce and use tools bor-
rowed from the theory of products of random matrices. Especially, we formulate the (qualitative)
question of stability, and the (quantitative) question of memory length in terms of Lyapunov ex-
ponents of the solution of Zakai’s equation. While the question of computing Lyapunov exponents
is, in general, difficult, we study the above mentioned gap in the limiting cases, i.e. the regimes
o — oo and 0 — 0. Under appropriate conditions, we obtain the exact order of the memory length
as a function of ¢ in the latter case.

A natural guess is that 75 becomes more negative as the SNR increases (i.e., as 0 — 0). As
pointed out in [4] for the continuous time setup, this is not always the case, and one may even have



situations where lim,_g75 = 0 though 4% < 0 for all positive o. We identify below conditions for
the memory length —1/9¢ to remain bounded as a function of o, and conditions for it to decay to
zero as 0 — 0.

The structure of the paper is as follows. In the rest of this section, we describe the results for
the memory length in both discrete and continuous time. In particular, in both cases, we provide
the uniform bounds on 7¢ alluded to above, and determine under appropriate conditions the limits
of 4% under both high and low SNR. Sections 2 and 3, respectively, are devoted to proofs of the
discrete and continuous time results.

We begin with the following rather straight forward consequence of Oseledec’s theorem (see [2]
p. 181 and [3]):

Theorem 1 Assume (A1). Then there exists a deterministic function of o and 6, 75, which admits
the following:

1. Let qo,q} be random, uniformly distributed (U) on the simplex S%~', independent of each
other and of the chain Xo,{X,,Y,}22,. Then

Af/g(q07Q67w) = 737 UxUXP—a.s.
2. For any delerministic qo # qf, with all entries strictly positive, one has

6 5
Hffa(q07q67w) < Yo s P —a.s.

As is seen in section 2, 7% is just 67! times the difference between the two top Lyapunov
exponents of solutions of (1).

We turn to study 7% quantitatively. First is a bound which is uniform with respect to o.

Theorem 2 Assume that all entries of G are strictly positive. Then

1< - <0

NS

for some constant ¢ independent of h,o,0.

Remark: Actually, one may somewhat relax the condition that all entries of G' are positive and
still have the conclusion of the theorem. See Theorem 8 in Section 2 for such a statement, and
its proof there (which also serves as a proof of Theorem 2) for the explicit dependence of ¢ on the
matrix G.

While the above bound relies on the nature of the law of {X,}, and its mixing properties, the
next bound relies on the good quality of the observation. In fact, it is shown that under a condition
on h_, the decay rate tends to infinity as the noise parameter tends to zero. The condition required



on h is that it possesses one coordinate which differs from the rest (h one to one suffices). For each
i € {1,...,d}, define the set

mbr(i) = {7 # @ : [hi =yl = min [hi — hel},

and define hpp, ;) = h; where j is one of the members in the set nbr(z).

Theorem 3 Assume (A1). Then

. 1
lim sup 027:; < _§Es[hX1 — hllbr(Xl)]Q . (2)

o—0

If, in addition, det(G) # 0 then

. 1<
hgn_%lf 0273 > —§E3 ;[hxl — ). (3)

Note that while the gap between the upper and lower bounds increases with the dimension d
(and is nonzero as soon as d > 2), one may conclude from Theorem 3 that ¢ = Q(c72) as soon as
there exists an ¢ such that the set {j : h; = h;} consists of a single point. The memory length is
thus of the order of o2.

In continuous time, the behavior at low SNR (¢ — o0) is completely determined by the top,
non—zero eigenvalue of G (see [4]). An analogous result is shown here to hold for the discrete time
case.

Let 7 be the Birkhoff contraction coefficient (see section 2, equation (11) for definition).
Theorem 4 Assume (A1). Then

1

. 5 . m
msup . < — P :
h S Yo 771111;1 610g7’( )< 0

o—00 m

In continuous time we prove results analogous to theorems 1, 2 and 3. Though the statements are
similar, the proofs are harder and involve different techniques; in particular, a naive discretization
approach fails. Let {z;} denote a Markov chain, with state space {1,---,d}, and transition matrix

(. We assume that G leads to an ergodic chain, that is,
(A2)  for every 6 > 0, (exp(G6))(4,7) > 0 for all 4,5 € {1,...,d}.
The above holds iff all states are communicating. Next, assume that {z;} is observed via
dys = hy,dt 4+ oduyy,

where vy is a standard Wiener process independent of {z;}, and h is as in the discrete time case. Let
H denote the diagonal matrix with elements H(7,7) = h;, then the Zakai equation for the problem
is

dps = G*pydt + 072 H pydy, (4)



with p; = p¢/(ps,1). Now define for every gy # ¢} € S971

) 1 !
Yo (40, 40, w) = lim sup —log [[pf — pi°||,
t—00
then a result similar to Theorem 1 holds:

Theorem 5 Assume (A2). Then there exists a deterministic function of o, v,, which admits the
following:

1. Let qo,q} be random, uniformly distributed (U) on the simplex S%~', independent of each
other and of the chain {x¢,y:}52,. Then

Yo(g0, 40 w) = Vo, U xUx P —a.s.
2. For any deterministic qo # ¢, , one has
”f’a(‘IO,qé,w) <7, P—a.s.
A result analogous to Theorem 2 holds also:
Theorem 6 Assume (A2), then
Yo < —219_7]123111: i;’:j(gijgji)l/Q

where g;; = G(z,])

Remark: In [4] it is already proved that 7, < 0 under certain conditions, though not uniformly
in o.

Finally, a result analogous to Theorem 3 holds.

Theorem 7 Assume (A2). Then

1
. 2 2
11I§1j2)1p0 Yo < —§Es[hz0 - hIlbI‘(zo)] . (5)
Moreover,
d
1
H 2, 12
h(rjn_}gfa Yo > —§Es ;Zl[hzo — hi]* . (6)



2 Proofs - discrete time

Throughout, we let T,, = D,G* and M7 = T, ---T;. We denote by a A b the exterior product of

two vectors in IR?, and by A A B the exterior product of two subspaces of IR? (see [2] for definitions
of exterior products). For a d X d matrix A, ||A|| denotes the operator norm (with respect to

the Fuclidean norm on IRd). Finally, we use throughout ¢ to denote a constant, whose value may
change from line to line, which is independent of n, o, 6.

Proof of Theorem 1: Note first that it is enough to prove the theorem in the case that Xy is
distributed according to the stationary distribution of {X,}. Indeed, due to (A1), the stationary
distribution has all entries strictly positive, and thus all almost sure statements, once proved for
Xy distributed according to the stationary law, must translate to the case where Xg = j for any
7 =1,...,d. The case of general initial distributions follows immediately.

We may thus assume that Xy is distributed according to its stationary law. In that case,
the sequence of matrices {D,G*}52, possesses a stationary law, which is also ergodic by (A1).
Moreover,

1
Elog™ ||D,G*|| < cE m_%alxcr_Q(Y(n)hi — §h?6)+ < 00.

Hence, we may apply Oseledec’s theorem (see, e.g., [2]) to conclude that there exists a (random)
strict subspace S1 C R such that if go ¢ SL then

1
“log[pm(n)ll — AT, P —as. (7)

Here and in the sequel, A7 denotes the i-th (non-random) Lyapunov exponent associated with the
product of matrices M7. As is well known (see [3]), the matrix series ((MZ)*MZ)'/?" has a (random)

o
2

limit a.s., the eigenvalues of which are e’ . Note that (M7)*M? is a non-negative matrix, thus by
the Perron-Frobenius theorem the eigenvector associated with the highest eigenvalue of (M7)* M7

has all coordinates real and non-negative. The last property thus holds for ((MZ)*M?2)'/?", too,
and for limnﬁoo(MT*Lj\/[n)l/Q”. Since S! must be orthogonal to the eigenvector associated with the

highest eigenvalue of limn_wo(LMT*Lan)l/Q”, it follows that S. can not include any probability vector
with all entries strictly positive. As for the case where gy does not have all its entries strictly
positive, notice that p? (k) does ( where k is such that G*(4,5) > 0 for all 4,5 € {1,...,d} ). Thus
(7) really holds for any ¢o € 971,

Using again Oseledec’s theorem, this time for the R? AIR? ~valued process p%(n) A p%(n), there
exists a (random) strict subspace 52 C IR? A IR? such that if go A ¢} ¢ S2 then

1 /
—log |[p®(n) A p(n)|] =nooo AT + A5, P —aus. (8)
n

Furthermore, for gy A ¢ € S2, Oseledec’s theorem implies

1 /
lim sup —log |[p?(n) A pPo(n)|| < AT + A5, P —as. (9)
n—oo 1



Next, note that there exists a dimensional constant ¢4 such that if a,b are two probability
vectors in S%1 then

1
—|sin(a,b)| < ||a — b|| < ¢4| sin(a, b)|,
cq

where (a,b) denotes the angle between the vectors @, b. Since for any two non zero vectors ¢, d (not
necessarily normalized) one has that |sin(c¢,d)| = ||c A d||/(]|¢|| - ||d]|), one may conclude that,

. 1 / . 1 / )
lim sup —log [[p™(n) — p*o(n)|] = lim sup —{log ||p*(n) A p(n)|| — log||p®(n)[| —log ||p*(n)]].

n—oo

Combining this and the fact that (7) holds for any probability vectors g, ¢ with either (8) or (9)
yields both parts of the theorem, with 75 = §71(Ag — A?). U

It is useful to state the last sentence of the proof of Theorem 1 as the following

Corollary 1

lo

v5 =671\ — \9) . (10)

As is clear from [4] (and is evident also in the course of the proof of Theorem 1), the gap between
the first and second Lyapunov exponents will play a crucial role in our study of the stability of the
nonlinear filter. Before providing the proof of Theorem 2, it is useful to recall some definitions and
a result of Peres concerning this gap. We follow the notations of [7], [8].

We say that a matrix A possessing non-negative entries is allowable if it contains no columns
or rows whose entries are all zero. Let Si_l denote those elements of S?~! whose entries are all

strictly positive. Hilbert’s projective metric is the metric A(-,-) defined on Si_l X Sff__l defined by

_ -
h(z,y)=log max i
1<i,5<d T ;Y;
Every allowable matrix A can be seen, by normalization of the linear action of A, as an operator

A: Sf__l — Si_l. We denote by A.x its action on z € Si_l. Define now the Birkhoff contraction
coefficient of an allowable matrix A by

T(A) = sup {7h(21(z, ;/él)y)

Lemma 1 (Peres [7]) Let {T},},>1 be an ergodic stationary sequence of non-negative, allowable

m,yesi‘lvw#y} - (11)

matrices, such that Elog™||T1|| < co. Let A, Ay denote the top two Lyapunov exponents for the
random product of the T;. Then,

Al — AQ Z —Elog T(Tl) s
where Ay = —oo if the right hand side is infinite.
Proof: See [7, Proposition 5]. U

We recall from [7] and [8] the following useful properties of the contraction coefficient 7(-):



1. 7(AD) =1(DA) = 7(A) for any diagonal matrix D with strictly positive diagonal terms.
2. For any matrix A with strictly positive entries, 7(A) < 1.

3. Let A be allowable, and define

. Apag)
/ = — 4
Vi) zn;uknl aqnajy (12)
Then
1—9Y(A
r(4) = 1=V (13)
14+ V9(A)

We are now in a position to state the extension of Theorem 2 alluded to in the introduction.

Theorem 8 Assume that 7(G) < 1. Then

§ < log 7(G)

<0.
To = s

Note that Theorem 2 follows at once from Theorem 8 by using property 2 for 7(G). Moreover, it
follows that ¢ may be taken as ¢ = log(1 — ¥)/(1 + V) with ¥ = min, ; G;;/ max; ; G;.

Proof of Theorem 8: Applying Theorem 1 and Corollary 1 in combination with Lemma 1 to the
recursion (1), one sees that

78 <67 Elog 7(D1G*) = 6 tlog 7(G*) = 6 log 7(G) < 0,

where the first equality follows from property 1 for 7(-), the second from property 3, and the last
inequality from the assumption. L]

Proof of Theorem 3: Suppose equation (1) is given two initial conditions ¢g, ¢} and denote

Gn :p%07 Q;L :szO, Tn = 4n — q?”L'

Now, ¢, = Tngn-1/{Tngn-1,1), and subtracting (T,,¢,,_1,1)q, = Tnq,,_; from (Thq¢n_1,1)q, =
T,.q,—1 one gets
<T7IQTL—17 1>rn + <ann—17 1>q'2 = TnTn—l-

Denoting a,, = (T,,¢,—1,1) and noticing a,, > 0 one then has that

T = a  Torny —a ¢ (Tyrp_1,1) = a; ' (I — ¢ 1)y =
a, (I = ¢, 17) DG ryp_y.

The following recursion for r,, then holds :

To = QO_Q6
a, T G*r,_y (14)

'



where we denote
T! = (I - qgl*)Dn.

Now, in order to estimate the evolution of r,, one may write
1 1< 4 1 , 1 < . 1
—log||ra[| < =) loga; ' + — > log||T7|| + — > log [|G*|| + —log [|ro]l. (15)
K i L L K

Noticing that the third term is bounded by zero and the fourth tends to zero, we turn to bound
the two first terms. The first term tends for any ¢g, a.s., to —AJ, since

1 & 1
—Zlog a;' = —=log(T,Tr 1+ Tigo,1)
nia K

(c.f. the discussion following (7) above). Hence, it is enough to compute the limit of the last
quantity for gg = po. Denoting the density of (Y1,...,Y,) by fy»(67) and the distribution of

(X1,..., Xp) by P((X1,...,Xy) = (@1,...,a,)) = pxp(al) it follows from Bayes’ rule that

1 < -1 1 n 2ce\n/2 1 2
E;bg a;, = —glog[fYJ"(Yl )(2mo?6) / eXPmZYi]

7

1 . 1
= _; 10g[2 pXJ"(a?)(QFUQé) /2 exp — 2028 Z(Yz - ha¢6)2]

n
041 k3

1 2 1 2
—3 log2mo®6 — ST EYZ

7

1 " 1 2 1 1 9
< —;bg[len(Xl)exp—Eﬁ(am) - 20%;2%

% z

1 11
= ——log pxp(X{) = 55 Dh%. 6+ Wéovhx,]. (16)

Now we turn to the second term of inequality (15). Writing the diagonal terms of D, as

A = D,(i,1) we have the following expression for T:

Al(1—ql) AZ(-q)) s Ab(—glhy

Ab(=¢2)  AZ1-¢?) - Al(—¢?)
T =

A=) AX(=¢dy - Al(1-g)

It is useful to consider here the operator norm of 7/ : ¢ — ¢!, namely, || T/||; = maxy 3, [(T!)ik|-
Fix n and suppose X,, = j, then Y, = h;6 + ov, V6, and

1711 = max{AL[1 =g} + 3 g1} = 2max Ay (1 - g5).
[



Denoting the vector b, = (b},...,b%)* := G*¢/,_, one has that

17 _ bf{Af{
In = =4 0 A
El:l bnAn
and thus
: DEA Ak Ak
1—q7’j:z:]zl¢]7_min(1,%)§l{b]< v+ g }%, (17)
Sy bLAL bi, A7, nse n=d al,
for every fixed 0 < a < 1. Therefore,
) : 2
I(1 = g z k
2A1(1 —¢q)) < 2An1{b]< y al{bﬁzza} I?;;(An,
and, clearly,
2
Viji#j 2A5(1-gf)< AL
LiF n(l=dn) < Smax A,
Using the equivalence of the norms || - || and || - ||1, it follows that there exists a constant c,

independent of n such that
2¢
77| < [ (b<a }maXA +1gis, }maXA ]

and thus, defining hnax = max;{|h;|},

1 1,
_Zlog 7| < log i - ;1{6&< ) m]?x(hkhxié + hyoVév; — 5 hto)

=1 !

2
+— 21{6 50)? ir;éax(hkh), 6 + hroVov; — hké)

2c _ —
S 1Og E ‘|’ g ; 1{bf(i<oz}(o- 2(5hn1ax2 ‘|’ o) lﬁhmaxlyiD

1 n
+; 20_26(hnbr(Xi h hrzlbr( )) + U_l\/—hmaxll/z|
Now, in > (G)x,_,x; qz i ' so choosing a = % minu’U:(G)m}>0(G)uy one has that 1{b.Xi<a} <
1{ Xiot 1y Combining this with inequalities (15) and (16) one has, after taking expectation and
9i—1 2

limit, that

1 ) 1
Jim ;E log ||| §cl—|—62\/5/0—FEs(hXi — habr(x )) + cz07? lim —ZP qZ Tl 5)

n—oo

Since P (¢iX» < 1 ) —— 450 0 uniformly in n and since again by Oseledec’s theorem (see e.g. [2] p
181),

1 1
lim —log|| A" T, - - - 14| = im —E log || A" T}, - - - T1||  a.s.,
n n

10



the first part of the theorem is proved.

The second part easily follows from the following facts. First, the spectrum of the matrix
process certainly satisfies

d
A=A AL = AT 20 AT -+ AT —dA = YA — ).
=1

Second, since det T, --- Ty = det T}, - - - det T1, the sum of the exponents can be explicitly expressed
as

d d d
1 1
A7 = lim —log|detT,---Ty| = B, — (Y1 Y hi— = > hi6)+1log|det G
ZZ Jim_ —log | de 1 12 2;ZJrOgle |
6 1 )
=3k hAlzh——Zh )+ log | det G|,

=1 =1

while

. . ) v 6 /o
AT < B og ding(AL sl +og Gl < B max{— 25y, —hot+ o Yoy ¢ £ p g 48,

Thus we conclude that

d d
1 d 1
ot 2.6 2 2 2
h(ITn_%lfU Yo > F [hX1 iil hi — 5 i:EIhZ- — §hX1] = F, [—5 EZ (hX1 — hz) ]

O

Proof of Theorem 4: The last inequality holds since by the assumption, 3mg s.t. Ym > mg G™° >
0. As for the first inequality, like in the proof of Theorem 1, it suffices to work under the assumption
that Xy is distributed according to the stationary distribution. One may apply Lemma 1 for the
process of matrices that are derived from {7} by taking products of blocks at length m, where
m > mg:

Tme—l o 'T17 T2mT2m—1 o 'Tm-l—17

Ergodicity, stationarity and integrability follow from those of {7},}. Since (G*)™ is positive, that
is,

D (Givig (G igprig > 0

12405 tm—1

it follows that . .

225009t m—1

and allowability follows. The Lyapunov spectrum for this series is {mA?}%_,, thus

1
78 < — B log (T Ty -+ Th), (18)

11



The diagonal terms A;- for which T; = diag(Aé)leG*, may be expressed as
: B 1 _ 1 - i
Al = expo?(hY; — 2 hi6) = exp[6o~*(hihx, — ) )+ Véothw] =14 ;.

Thus
T T - Ty = (I + diag(ay, ){Zy)G™ - - (1 + diag(a))iny )G = (G)"™ + M,

where M is a matrix satisfying

1M1 < 1GI™ (1 + [Idiag(an, )iz ll) - - (1 + [|diag(aq )2y () — 1].

Now,
: 1
Hdiag(a})f:lﬂ = max | exp[éa_Q(hihX] -3 h2) + Vo hiv;] —1| —s—00 0 a.s.,

therefore
Tme_l . 'T1 7 o—00 (G*)m a.s..

As T, Tp—1 ---T1 is positive, 1 is continuous, and so is 7, yielding
7—(Tme—l o Tl) ——70—00 T((G*)m) = T(Gm)
Since log(7(+)) < 0, Fatou’s Lemma may be applied to get

limsup F log 7(T,, T—1---T1) < E limsuplog 7(T,, 11 -+ -T1) = E log 7(G™) = log 7(G™)

g—00 g—00

and the result follows from inequality (18). 0

3 Proofs - continuous time

Throughout this section, ¢ denotes a t-independent deterministic constant (whose value may change

from line to line). pZ,. denotes the (unique, by (A2)) stationary law corresponding to G. We use
the notations z{ and yf to denote the sub o-fields generated, respectively, by {z;,0 < s < ¢} and
{y5,0 < s < t}. Ey denotes expectations under the product measure P, x P,, where P, denotes the
law of the Markov chain « (under the stationary measure) and P, denotes the law of the observation
process {y;,0 <1 < oo}.

Proof of Theorem 5: Aside from the conditions needed for Oseledec’s Theorem, that are
proved below, the proof is identical to that of Theorem 1. Notice that equation (4) is bilinear, thus
there exists a multiplicative process denoted U = {Ut}telﬁ+ such that p; = Upg. Assuming zg is
distributed according to its stationary law, the shift transformation 6; is measure preserving w.r.t.
{z,v} and thus w.r.t. U. Ergodicity of U follows from that of {z,r}, and separability follows from
continuity. It follows from Theorem 2.1 in [5] that Uy : R? — IR? is a homeomorphism, and thus
invertible. For Oseledec’s Theorem to hold, one needs to show also integrability of (see [2] p. 181)

U] = sup 1Og+HUtH7 Uz = sup 1Og+HUt_1H'
0<t<1 0<i<1

12



To show u; is integrable, it suffices to show supges<q ||Ut|| is. Note that by the Kallianpur-Striebel
formula, U; is a non-negative matrix, and hence the unit vector w maximizing ||U;w]|| has non-
negative entries. Thus, it suffices, by considering the projection on w, to show integrability of
SUPg<i<q ||Urv]| for some v all of whose entries are positive. Under (A2) all entries of pZ,, are
positive, so v may be chosen to be Priae- Oince this vector is also the initial distribution of z, it
follows that ||UspZ.illh = (pt,1). By the Kallianpur-Striebel formula,

' 1
(pe, 1) = Eo[exp/0 (he.dys — 5 hZ.ds)|yo] < Eo[exp hmax Y |Aui],

where Ay; = yrp) — Yry70 = 0,713 = min{t > 71 : x4 # ¥,_,} A1, and integrability follows
from the existence of exponential moments of the normal distribution and the exponential law of
7, — Ti—1. As for ug, denote, for a symmetric matrix A, by A;(A) the ¢th biggest eigenvalue of A,
then

logt |U7M < U7 = (U702 = (U077
L) o [ o (1
(|det U;UFNY/2 = JdetlUy] = [detU]"

Now, U; solves the following Stratonovich equation

- 1
dU, = (G" = 5 0 H*)Updt + 0~ *HU, 0 dy,,

thus
¢ A 1
| det Uy| = exp/ trace(G™ — 2 o 2H?*)ds + trace(c * H) o dy,
0
and combining this with inequality (19) and the Cauchy-Schwartz inequality, the integrability of
uy follows. O

A corollary analogous to Corollary 1 follows:

Corollary 2 Let A denote the Lyapunov exponents associated with the multiplicative process Us.
Then,
Yo = Ag — A({ . (20)
Proof of Theorem 6: By Oseledec’s theorem,
: 1 T o (o2
hgn glogH N U =AM+ -4+ A] as.

This limit equals the limit on the discrete time series {né} for some é > 0, so if one looks at the

series of linear operators {A?} that satisfy

pP?(né) = ASpPo((n —1)8), p"(0) = po, (21)
then .
1im—610gH AAS LAY = A4+ N s,
non
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Stationarity, ergodicity and integrability of {Afb} follow from those of the continuous time process,
so the assumptions of Oseledec’s theorem hold, and there exists a Lyapunov spectrum for (21)

denoted {/\f’g ¢ . The relation between the spectra is %/\?,6 = A? and thus by (20),

1 0,6 0,6
Yo = E(AQ — AT

It is useful to consider here the well-known representation of the solution to the Zakai equation
as

pro(t) = Lify
where 1
Ly = diag{exp o~ %(h;y; — B hit) ;'1:1

and f:IRT — R is a C1[0, 00) function satisfying

ft = L;IG*Ltft
Jo = po.

Denote by {A¢} the matrices for which f,5 = Aif(n_l)(g. Now, by property 1, T(/if) = 1(LsA%) =

7(A%). As Uy is a homeomorphism, A? is invertible and so is A, which is thus also allowable. One
therefore has by Lemma 1

1
Yo < EE log T(Af),

and by Fatou’s lemma,

1 1
7o < limsup - E log 7(A}) < E lim sup - log 7(A}). (22)
6—0 6 §—0 0

Since f; belongs to C'[0,0), it follows that
Js= (I + Ly'G"Lo§ + M®) o,

where M? is a d x d matrix with ||M?|| = o(6). Tt suffices to prove the theorem for G for which
Vi, 7, ¢ # 7, g;; > 0. Under this condition, ¥ may be written as

: Ly + 956 + m8) (L + gri6 + m}
¢(Ai) = ¢(I+ G*6 + jwé) _ mill ( {i=3} 9; ’nl&])( {l=k} 9kl ’nll&k)
ISZJJC,ZSCI (1{2:]{:} —I_ gkzé ‘I’ mlk)(l{l:]} —I— g]lé _I_ ml])

where mf]- = (M?®);;. There exists a 8y such that for every 0 < & < &, the minimum is achieved on

1=k #1=j, thus
$(AL) = min g;;9;:6> + o(6%)

VEE

and

YA AS) = min (gijg5:)'%6 + o(6),

i, i
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and thus

1 1
“log 7(A%) = Zlog ————"92 — ~[_2 min (g;:gi 125 4 0(8)] —s—0 —2 min i1 1/2,
g T(Ay) 8 TF oAl 5l 2.7]#].(9]9]) (6)] —s-0 Z_ﬁjzi#]‘(g;gg)

and the result follows from inequality (22). U

Proof of Theorem 7: It seems natural to approach the continuous time case as a limit of the
discrete time problem. Note however that a change in the order of limits is needed to carry out this
approach, and justifying this change of order seems challenging. We thus take below a different
route. Although the general idea is similar to the discrete time case, extra care is needed due to
the fact that trajectories of the z process do not possess positive probability, and an appropriate
version of the Feynman-Kac formula is needed.

The first part of the theorem is a direct consequence of the following three lemmas, whose proof
is deferred:

Lemma 2 Assume (A2) holds. Then limsup,_,0°A] < £ Eh2 .
Lemma 3 Assume (A2) holds. Thenlimsup, o 0%(A{+A3) < $ER2 + Ehgyhypr(zg) — %Ehibr(zo)'

Lemma 4 Assume (A2) holds. Then liminf,_a%)\] > % Ehio.

Given Lemma 2 above, the proof of (6) is similar to the proof of (3) in the discrete time setup,
with trace G playing the role of log | det G| there. U

Proof of Lemma 2: Using (A2), and denoting by e; the unit vectors in IR?, it holds
that cos(e;, p%a) = ¢ > 0 for some ¢ independent of {. Therefore, since U; is nonnegative,
and using ¢; to denote another positive deterministic constant independent of ¢, || UipZ,e 1>
min; cos(e;, i, ) max; || Use; ||> ¢1 || Uy || and

1 1
A = tlim ;E log || Uy |I< tlim ?Elog [| UtpZiar || -

Let & denote the realization of the x process under Fjy, initialized at the stationary measure. Then,
by the Kallianpur-Striebel formula and Oseledec’s theorem,

t
A] < tlim %Elog Ey [exp <O'_2(/ Mzs)dys — %hQ(is)ds)> |y6] . (23)
— 00 0
Fix ¢ > 0 and define Ay = y(;41)5 — vis, |Ay|58 = max{|y; — yu| & t,t' € [i6,(i 4+ 1)6)}; let {r;}

be the jumping times of {Z;}, |Ay|£§;fx = max {|y: — yw| : t,U € [r; — 6,7+ &)}. Define similarly
A, |Av|5S L |Av|TS | and let hpax = max; |h;|. Let iy = [t/6] and Ny = max{i: 7; <t} = #{r; <

max’ max’
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t}. We control the integral in (23) by its discrete time skeleton, with errors occuring only around
jump times. That is,

[ (r@dn, ~ 3 weaas) (29

it Nt
S Z (h(qu)AzZ/ . h2(£26)6) + Z(thax|Ay|:ﬁfX + hmaXQ(S)

S [2max (2hmax® + 0| Av|7E) + 26
Thus, by Jensen’s inequality,

1 ¢ 1
?Elog Ey [exp (O'_Q/ h(zs)dys — 3 hQ(fs)ds) |y6]
0

it Nt
1 1 2 1 -2 2 T,‘,&
;2026EZ(A2-3/) + ;log Eq [exp (O‘ ;(5hmax 0+ 2hmaxo |AV|0) || - (25)

=0

<

On the other hand, using stationarity,

& 1
B(Aw) = B[ bag)ds + ovs)? = B[ ha,)ds)? + 0%
0 0
2 2 2 2
< Esh*(20)6" +0°6 + E [1{zt jumps in [0,5)}(2hma"6) ]
= BE.h*(x0)6* + 0%6 + 6°C}. (26)

with C’é 6——>0 0.

—

Conditioning on Ny, one has

N
%log Egexp (0—2 ; (5hmax26 + 2hmaxo| Av ;;fx)) < %log Egexp(Nico™28)
1 - o (B0
< glog;exp(nca (5)676 #
1 cb/o?
= Jloget p(e®/” —1), (27)
where i = max; )4, G;. Combining (23), (25), (26) and (27),
o 1 o? Cf 8/ 02
o*)\] < 3 Eh*(z0) + 2% + 75 + o*u (e 5le% _ 1) . (28)

Now take 0?/§ = € and §,0 — 0, then take infimum over {¢ > 0} to get

lim sup o?AJ < % Esh*(z0). 0

o—0
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Proof of Lemma 3: We use the same notations as in Lemma 2. Let dp; = G*ptdt—}—cr_QHptdyt,
dn; = G*ntdt + o2 Hudy; (the difference between p; and 7 lies in possibly different initial condi-
tions). In the sequel, we suppress the index {. Write p A np = %(pn* — np*), then

dpn* = Gpp*dt+ o *Hpn*dy, + pn*Gdt + o 2py*Hdy; + o 2 Hpy* Hdt (29)
dipnn) = [G(pam) = (G (pnm) | di+ o 2[H(pAn)— (H(p An))Y]dy + 0~ 2H(p Am)Hdt.

Let the (d — 1)d - dimensional vector

a2
a3
- Q14
Q =
a1
Q23
Q4(d—1)
be defined by
0 appayz3 -+ aig
azr 0 azs - @y
pAn=| . ,
(6 %51 0
then (29) can be written as
da=G adt+o0 ?Hiadt+ o 2H,ady, (30)
with G(i,7) > 0 for all i # j,
hyhy hi 4+ hy
_ hihs _ hi + hs
Hl = . ) H2 =
hdhd—l hd + hd—l

We may regard now a as a d(d — 1)-dimensional vector indexed by 77 with ¢ # j. Viewed this way,
the matrix G has off-diagonal entries

) Gy j=m#/L
Gijum = Gmj 1=L(#m
0 Jj# mandi #/(

The matrix G is not necessarily a transition-rate matrix. However, there exists a transition-rate
matrix GG which is equal to G off the diagonal. Thus (30) may be written:

da=G*adl+ o0 ?Hiadt+ 0 2Hya dy,, (31)
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with G* + O'_fol =G*+0?H;, f[g = H,. It follows that

hihy + 02Ag12
- hihs 4+ 0?Agi3

i =
hiha—1 4+ 0*Agga-1)

Note that while we are primarily interested in solutions to (31) which are in the anti-symmetric

(d-1)

subspace a;; = —a;;, (31) makes perfect sense for arbitrary vectors in R4 . This point of view

is particularly useful when computing upper bounds on Lyapunov exponents.

We now use h;(j k) (hi(jk)) to denote the j k-th element on the diagonal of H; (respectively,
H),i=1,2 Let § = {jk:j,ke{l,...,d},j #k}. Associate to the Markovian generator G the
S-valued process {Z;}, independent of {z} and of {y{}. We now introduce an auxiliary assumption

on G, which will be relaxed later on.

(A3) Let (A2) hold. In addition, for every ¢,7,¢,j', i # j,i' # j', there exist sequences
{ak}£:17 {ﬂk};;:l? taking values in {17 .- '7d}7 such that: (alvﬁl) = (ivj)v(afv ﬁf) = (ilvj/)vak 7£
Brs Gagongs 7 05Gpy iy 7 0 and {aggy = ap or Bryq = Bi}. (We refer to the existence of such
sequences by saying that the path ij — ¢'j" exists).

Note that (A3) implies that all states in S are communicating under G. (A3) trivially holds (for
d>3)if Gij # 0 for all ¢, 7, but (A3) is not implied by (A2), as the example d = 3,Gi3=G5 =0
shows.

By the stochastic Feynman-Kac formula of nonlinear filtering, (using, e.g., an argument similar
to Lemma 2.1 of [10]), if a;;(t = 0) = P(Z¢ = (ij)) then

(0,1) = X ay; = B [oxp (072 [ Rat@)dy, - 3 1B )ds + Fn(,)ds) ) 1]

,J

Let A; denote the linear map aq — a;. Let p%,, denote the stationary distribution of &, which
by (A3) has all entries strictly positive. Mimicking the argument used in the proof of Lemma 2,
one has by positivity and Oseledec’s theorem that

.1 o1
N4A] = lm ol sup [pan|< lim o Plog]|Adl (32)

t—o0 {po,mo:||poAmo||=1}

IN

.1 7
tlgglo ;Elog | Aepgias |

1 i 1- -
tlim ;Elog Eqy [exp (O'_Q(/ ho(Zs)dys — 3 h*(z,)ds + hl(xs)ds)) |y6] .
— 00 0

Define nn : R — {1,...,d} by n(a) = argmin;|h; — a|. Then there exists a constant rg > 0 such that
if |h; — a| < ro then argmin;; 4)|h; — a| = nbr(f(a)). Now, denoting g,, = max[Ag(-)],

t 1 t t
VIRES / ha(Zs)dys — 2 / hi(s)ds ‘|’/ ha(2s)ds (33)
0 0 0
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= [ Ptz + [ o*Ag(z)dn, - /(f%h?(f s + [ halz)o*ag(z.)ds

—/—U4Ag ds—l—/h1

it

Z {hQ(-%zﬁ)Azy - h2( 25)6 + hl( 25) +o gmlAylmax + thaxojgmé}

1=0

IN

N
‘I’ Z(thaX|Ay|;rTax + thax 6) S Jtl —I_ JtQ

where
* A A Ay)))] Ay
1 _
Jpo= 26{[h< (5 ))+h<11br<n< ; -
1 (1(59) -5 (o (2(5%)))
—2h<n<6 —2h nbr | 7 5 +
+ ) { Al iyl + 26}
{i<is: |2 —hy|>ro Vi)
and

g g’m hlnax(5 + o|Av + thaxgm026
~ e Avfi) }

=1

+ Z {thax ( max(5 + U|AV|;¥3X) + tha.XQ(S} .
Having J! measurable with respect to yg, it follows using Jensen’s inequality that
1 -2 ¢ 11 1, 1 -2 72
;Elog Ey [exp (o Jt)|y0] < ;;EJt + n log Egexp (o™ %Jf). (34)
Now,

%EJ} < %E {(h(ago) + h(nbr(zo)))(8h(z0) + o AV) — ghQ(xo) - ghz(nbr(xo))} L e 4 cemibl2
(35)

where the second term is due to the fact that the probability of having a jump in the z process on
any é-interval is of order 8, and the last term is due to the Gaussian law of v. Next,

1 1
;logEo (eXpU_QJf) < ?logEoEo [exp(U_QJfﬂNt]

IN

1 AL A -1 7
n log Eg Ey [exp {Z (cé + CO‘|AI/|maX) + ;céa + co |A1/|max} |E\t]

=1

1 { t
= n log Fgexp <56(5 + 5620'26 + Ntcéa_Q + thCQO'_Qé)
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1
= c+cto?+ n log F exp cNtéa_Q

< e+ ot /\(ec‘s/‘j2 -1). (36)
Finally, combining (34), (35) and (36),

O +X9) < B |(hro) + hubr(ao))h(ro) — 5 W(a0) — 5 W (nbr(zo))| + b

4 Ce—rg6/202 t o+ ot + O_2C<ec5/02 _ 1) .

Take now 6%/ = ¢, §,0 — 0, then take € — 0 to conclude the Lemma under (A3).

As mentioned above, (A3) is not implied by (A2). In order to prove the lemma under (A2)
alone, note first that the above proof can be repeated assuming only that G possesses a stationary
distribution (not necessarily unique) with strictly positive entries, that is, & has no transient states.
We claim that the latter fact is actually implied by (A2). It suffices to show that for every two
states 15, kl € 5, if (Gm)m & > 0 for some m, then there exists an n such that (G”)M’ij > 0, or,
in the terminology we use in the sequel, if there is a path ij — kl then the path kl — 17 exists.
Note next that it suffices to show the above for j = [ and for ¢,k # j such that Gir >0 (that is
i — k in one step). Suppose then, that ij — kj in one step. It needs to be shown that kj — ¢j. If
there exists a path k — ¢ that does not contain j, then the claim is proved. Otherwise, since ( is
communicating, there exists a path k£ — j — ¢ such that £ — 7 does not contain ¢ and 57 — ¢ does
not contain k. Thus the following path exists too:

and it follows that Z has no transient states. This concludes the proof of the lemma under (A2).

O

Proof of Lemma 4:

The top Lyapunov exponent satisfies
o : 1 : 1 z
A = lim —Flog ||Uy]] > lim —FElog||UspZ .l -
t—oo t—oo {

Again, we compute ||Up,|| using the Kallianpur-Striebel formula. Fix a § > 0 and let I; be the
interval [67,8(7 + 1)) such that 7, € I;. Then, denoting, as above, by Z a copy of the process z
which is independent of y§ under Ej,

twt0n o [exp (072 [ @y, — 5 [ 1(2049)) 1]

2 Jo

1 Lt 1ot
> ~FElog Eo [Eo I:l{%szzstsEUi L, s<t} €XP <U 2(/0 h(Es)dys — 5 /0 hQ(xs)dS)) Iwé,yé] Iyé]

v

%Elog FEy {EO {1{505:“ Vseui I, s<t} exp (0_2 Bt($, ’y)) |$67 yé] |y6]
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where
t 1

t
Bi(e,g) = [ hedy =5 [ Ha)ds = SelAulh + co)

K3

Thus, by Jensen’s inequality,
L Elog Uil > 1 Elog Eo [1; exp (07 Bu(x,y)) |b, vi)
1 statll = 7 {Q’JS:I‘SVSQUI.L‘,S<25} s 07 90
1 ’ 1. .,
=y logk [1{5521‘5V5€Ui I,‘,s<t}|‘r0] + S Ec™ Bi(z, y).
Now,
LElog E2[1 ¢
7 og [ {#s=zs Vsl 1¢,5<t}|$0]

1 t
= ;ElogE [1{@5:%5v]’<t/5 st j6¢; L‘}|x0]

v

1

;ElogE [1{5]5:z]5Vj<t/6}|$6] .

The last quantity tends to —H({z;s}) where H({z;s}) is the entropy rate for {z;s}. Moreover,
o1 Lo

thm ;EBt(w, y)= 3 Eh*(zg) — cb,

and thus we have shown
2

1
o?A] 2 5 Eh*(zq) = c8 - %log d.
Now taking ¢ — 0 and then § — 0 yields the result. ]

Remark: The vector p A 7 has only (d — 1)d/2 degrees of freedom, the same as the vector a.
We have used a (d — 1)d dimensional vector o in order to write (30) as a matrix with non-negative
off-diagonal entries. For general (non-filtering) situations, this might not be possible.
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