Conditional exponential moments for iterated Wiener integrals
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1 Introduction

Throughout this paper, {X} denotes a canonical, IR? valued Brownian motion on Cy ([O, 1]; ]Rd)
and P denotes Wiener measure. The r-th (Stratonovich) iterated integral of X at time s € [0,1] is

given by

1.(s) :/ dX,, - dX, € R@), (1.1)
0<uy <-<up<s

where all integrals are understood in the Stratonovich sense. We denote also I, := I.(1). Our goal
in this paper is to consider various limits of exponential moments of I, under the conditioning that

X possesses small norm.

To state precisely our results, we need to introduce some notations. Let {¢n & }n=0,1,2,-1k=0,1,2,---.2n—1

denote the Haar system, namely the set of functions

doolt) = 1,
Vo, te [, )
benlt) = 4 - 2", te [gﬁi}, g’;ﬁ) (1.2)
0, otherwise,
and let
Xkn = /01 Prn(t) Xy (1.3)

Then {xk,} are i.i.d., standard N (0, I;) random vectors, and furthermore,

X& +Xppa
Xy = 22— 4 2_(n+2)/2Xk,n . (1.4)
onFT 2

Equation (1.4) is the Lévy-Ciesielski construction of Brownian motion, c.f. [8] for sharp results
concerning the convergence of interpolation based on (1.4) to the Brownian motion X;. We let F,

denote the o-algebra generated by the random variables {X;;/on }]2-';0.

In what follows, | - |, denotes the usual LP norms on IR?, with |- | := | -|2. (-,-) denotes the



standard inner product in R%. For any f € C) ([O, 1]; IRd), let

k+1 k
) - f

1
XQ=A¢M@#@,A@=ﬂ ).

We say that a measurable, separable norm || - || on Cp([0, 1]; ]R?) belongs to Np, p € (2, 00] if it

satisfies the following properties:

(P1) There exists a constant Cp, such that

IFl <1 sup,  max AL [2"7 <Cp. (15)

(P2) There exists a constant C' such that P(||X|| < co) =1 and

2p

(X[ < &) 2 C. > exp (—Cs_ﬁ> . (1.6)

The assumptions (P1) and (P2) are quite different in nature: (P1) is a regularity assumption on
the norm, while the assumption (P2) is a lower bound on small ball probabilities, and in particular
allows one to condition on the event {||X|| < ¢}. It is easy to check that the standard Holder norm
of exponent 1/p, as well as the variants described in [1], belong to A,. Note also that another

formulation of (P1) is that ||f[|1/, < Cpl|f|| for all f € Co([0, 1];RY), where || - ll1/p denotes the

standard Holder norm of exponent 1/p.

Our main result is the

Theorem 1.7 Assume ||-|| € Np with 3 > p > 2. Letr < 4(2)__1)). Then, for any C € RY) and

M < o0,

sup E (1) ||| X|| < ) < o0. (1.8)
e<M
In fact, for any C, M as above, any a < 4(p — 1)/(p — 2)r and any integer r,

sup E (@) || x|l < &) < oo. (1.9)
e<M

Ifr=4(p—1)/(p—2) then for any C € R\¥) there exists an M = M(C) such that (1.8) remains

valid.



Remark 1.10 Note that for r > 2, there exists a C such that E(e<C’I'>) = 00, hence the condition-
ing plays a definitive role in (1.8) and (1.9).

Remark 1.11 It is obvious from the proof that the estimates in Theorem 1.7 hold also for I,.(s),
uniformly in 0 < s < 1. That is, under the hypotheses and notations of Theorem 1.7,

sup sup E (e<C’Ir(5)> 1 X1 < 6) < oo, sup sup E (eKC’Ir(s))'a N1X]| < 6) < 00. (1.12)
e<M s€[0,1] e<M s€[0,1]

An application, which served as our motivation for deriving Theorem 1.1, is as follows. Let

b: R? - R? be smooth, and denote by {Y;} the solution of the Tt6 stochastic differential equation

dY; = b(Y;)dt + dX;, Y,=0. (1.13)

For a deterministic 1 € L2 ([O, 1]; ]Rd), let o (t) = fg ¥(s)ds, and define the Onsager Machlup

functional of Y at 9! as

Iy — oo 1i PUY =271 <€)
Jj () = loggl_l)l(l) PIX[ < 2) (1.14)

if the limit exists. J(-) can serve as a “prior” on path space, and was introduced in the context of
Gaussian diffusions by Onsager and Machlup [9]. For the supremum norm | f|[co = supg<;<1 |f(%)],

and smooth 1, Stratonovich (cf. the proof in [5]) has shown that

1 1
e =5 [ o) —sw@nf @+ g [ avswl@)ae. (1.15)

This result was extended to general ¢ € L2([0,1]; R?) in [11], to more general norms, including
Holder norm up to exponent 1/3 in [12], and to a wider class of norms (including the Holder norm
up to exponent 1/2) by [2]. The latter paper imposed on the norm the restriction that it must be
invariant w.r.t. rotations in IR?. We show below how this restriction can be avoided by relying on

Theorem 1.7.

Recall that a norm is completely convex if for every i = 1,2,...,d, every € > 0 and every fixed

component

(&i('),---,¢~5F1('),95i+1(')a---@d(')) € Co ([0, 1];]Rd_1) :



the set
B; = {() € Co([0, 15 R) : || (1(),- -+, Gi-1(-), 6(), Bis1 (), - a()) || < e}

is symmetric (due to the properties of the norm, it is always convex). Using Theorem 1.7 and a

weak convexity requirement, one obtains readily the

Corollary 1.16 Assume || - || € Np, p € (2,3). Further assume that || - || is completely convez.
Then, J). (¢!) ezists and equals Jj_ (¥7).

Extension to diffusions on manifolds (c.f. the recent preprint [3]) require different techniques

and we do not pursue this direction here.

Our proof of Theorem 1.7 avoids the use of correlation inequalities (these are used however
in the proof of Corollary 1.16). Rather, our proof relies on the pathwise analysis on rough paths
described in [7]. The key idea is to bound the r-th iterated integral by estimates on the Lévy
area at different scales, c¢.f Lemma 2.1. While correlation inequalities can be used at each scale to
obtain uniform bounds on the Lévy area, they are not sharp enough, and a multi scale analysis
is required. This analysis is reduced to estimates on dyadic partitions by a technique borrowed
from [4], and the key estimate is obtained by separately dealing with the “coarse” elements (in
which the conditioning is dominant) and the “fine” elements (where conditioning has litle effect

and unconditional bounds on the Lévy area are tight enough).

Notations: throughout the paper, Cy, Cs, ... denote various deterministic constants (which may
vary from line to line) and which are independent of ¢ or n,m,k. Constants Cy, Cyp,--- denote
constants whose value is independent of € or n, m, k and is kept fixed throughout the paper. For a

matrix A(%, j), |A| = max; ; |A(3, §)|-
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2 Proof of Theorem 1.7 and Corollary 1.16

In order to provide the proof of Theorem 1.7, we need to consider conditional estimates for the

Lévy area. Define the matrix

A

v

Ay = / dX, dX,
t<u<v<s

where ~~~ denotes the anti-symmetric part of the integral.

The key to the proof of Theorem 1.7 is the following lemma.

Lemma 2.1 For any r and 3 > p' > 2 there ezist constants Cx = Ck (p',7), Cy = Cy (p',7) > 1

such that
p’/2) r/p
on 1

o
+Cx (Z n 3 X~ X

n=1 k=0

!

00 2n -1
C.
I, < Ck ( E n-7 kE_O ‘Azin,k;rll

n=1

o r/p'
) 2 oxI'? + OxIr/? (2.2)

Proof: Rewrite, in the obvious way, I, = I,(0,1), and more generally I,.(s,t) is the r-th iterated
integral over the interval (s,t). Let D;; denote all partitions of the interval [s, ¢], that is if D € D,

then D = {[t;_1,t;]};y, with to = s,¢,p| = ¢ and ¢; < t;41. Define

w(sat) - Dseug) Z(‘th - th—l‘p + |Atj—17tj P /2)'
st D

Recall the definitions for I, given in (1.1) defined for almost every path via Stratonovich inte-
grals. Then almost surely, the sequence (I,);'_, forms a geometric multiplicative functional in the
sense of [7]. Moment estimates (eg., see [10]) can be used to show that for every n and almost
surely, this functional has finite p-variation in the sense of 7] for p > 2, that is

sup Z|Ir(tj,tj_1)\p<oo, a.s.
DeDo,1 p

Now, by Theorem 2.2.1 in [7], for p’ < 3, and for any multiplicative functional (I,n)f:0 of finite p'-

variation there is a unique multiplicative functional (I,);_, of finite p’-variation extending (IT),%:O.



By the above remarks, in the Brownian case, this extension technique can be applied almost surely

to (Ir)f:0 and by the uniqueness statement coincides with the integral defined via Stratonovich

integrals for almost all paths.

In fact, and crucially for us, Theorem 2.2.1 in [7] gives an explicit control over |I,.(s,t)| in terms
of the p’-variation of (Ir),%zo. To apply this result to our setting observe first that the symmetric
part of the Stratonovich I»(s,t) is given by the square of I;(s,t) and the antisymmetric part is A
so the p'-variation of (I,n)f:0 is controlled by w defined above. In this case and for some universal
constant C,,

1,(s,t)] < Crw(s,t)™/P" . (2.3)

(Note that this is where we use the assumption p’ < 3: if p’ > 3, one cannot control the higher
iterated integrals by means of the p’-variation of the path and the Lévy area only). Lemma 2.1

hence follows if we prove that for some universal constant C,,.,

oo 2" -1 p'/2
o01) < 0 (X0 X lag ")
n=1 k=0

[e's) 2n—1

E Cy E —
+Crr < 1n : |X2Ln Xk;l

n= =0

”'> . (2.4)

Fix a partition D € Dy ;. For any real z, let |z| ([z]) denote the largest integer less or equal to

(respectively, the smallest integer greater or equal to) z. Every interval [¢t;_1,t;) is a countable

union of disjoint intervals J;’+, J;:’f of the form

Tyt =120 )2 O, 22 = G T,

J;,i = ”t]'—12i—|2_i; [tj—12i_l—|2_(i_1)) = [T;’iaT‘;’i)a

with the convention that some of the intervals above can be empty. Denote DX;'-’:t = XT?',:I: —XT§,:E.
J J
Then,

S, - X, ) = ¥ (Sox0xi)
J 1

D 1=

< G Y Y i (IDXPTP + DX
j =1



2i—1

o0
< G Y9 Y Xk — Xeua P, (2.5)
i=1 k=0 #

where the first inequality is due to the reverse Holder inequality: for any a; non-negative and

C, >0,

(i ai)p’ < (i ,L'—C'y/(P’—l))P'—l iic., (ai)p’ )
i=1 i=1 i=1

A similar decomposition holds for the area term: recall that for any s < t < u,

(X — X)) A (Xu — Xi)]
2 )

As,t + At,u = As,u -

where for vectors a,b in IR%, (a A b) denotes the anti-symmetric matrix with entries (a A b);; =

a;b; — a;b;. Hence, with the obvious notation for A sz_',;l:, by a computation similar to (2.5),

00 p'/2
oAy lP 2 < Y (Z A it | + A i |+ (DX + |DX}’_\)2>
D i \i=1 7 !
o0 261 , ,
< AN (Mgl Xy~ X 29
The lemma follows by combining (2.5) and (2.6). O

Proof of Theorem 1.7. Choose a fixed p’ > p and fix M < oo (in the case r =4(p—1)/(p —2)m

we reduce below the initial choice of M when necessary). Note that under the conditioning,

n=1

. o0 2n -1 ) , o0 ) _n(,,_'fl)
ISC’lan"Zap-2_"p/p:Clan"8p2 p .

and so, again under the conditioning, sup,< Mf < (3 < 0. Therefore, Theorem 1.7 will follow if

we show that for any p’ > p, any M, any c, and any r < % one has

SEABIIEE (ec|1"*/P |> < 00, (2.7)
6_

whereas for any p’ > p, any ¢, and r = 4((;__21)), there exists an M = M (c, p,p’) such that (2.7) still
holds.



Let X = (X1, X2) € Co([0,1]; R?) and
- 1 t t
Ay = 4,1,2) = 5 { [ 066) - X1()aXa(6) — [ (0206) — Xa(s)dXa(6) |

We let Tkn = Jo drn(t)dX:.

Fix C; > Cy > 1, and note that for some Cy depending on d only, and for all z > 0 (we will

take below z > z( for some z large enough),

) 00 ' -1 02 .
PE(|I| > Cg.’E) < Z Cr* Z AAL”JL} ( 1)05
n—1 =0 an! ? an n
!
on’ _q - p'/2 z
< C 2”ImaxIP’5 A jn . 2.8
Define z, = (z/n'%%)2/P'2-20" /0" Awi’, (X_]__|_ k1l — X_j_l_i_ ) ,) and
an+n’ on' oan+n
Ahi’j:; = 27(n+n,+2)/2)’22n]’+k,n+nl. Then,
i, 2 — 1 (m)
Aj,n’ - A;T%,ﬁ ’n’}g)noo Ajynl,
where
(m) A 1 m 2"—1 , ,
m) = J57 J,m
Ajr =520 2 (Amly AAR )
n=0 k=0
One easily checks that
R 2m 1
Aj = AT 4 Z A;nJ_, PR (2.9)
On the event || X|| < € one has that for some C,
A D| < Cet22n/pam(-2/p) (2.10)
We can next express the Brownian path (f( 3) o, ., ,, as the sum of a
s€[j/2n' +k/2mtn! j/2n! +(k+1)/2m4n']

linear motion and a Brownian loop £(-) independent of the field F, ,, that is, for



s€ [j/27 4 k/2mHn /a4 (k + 1) f2mi],

Xo = Xjpont pp-tuemy + 27 Az™ (s — 27 — k27 ) 4 4(s).

,ym

Denoting

o , 3/2" (k1) /2m 3/ (k1) /2mtn
gn o= omin —/ @(s)ds,/ l(s)ds |,
k jj2n 4k j2mEn! jj2on' 4k j2mEn!

and denoting the area of the loop by Ai”:,;, we may rewrite the above expression as

( 1) 2m—1 , , 2m—1 ,
A — m— jan "'jan _jan
Ajan' - Aj,n’ + Z <Axk,m’ wk,m> + Z Ak,m '

Then,

g (lAj,n’l > .'Enl) < Pf (lA_g,n’_l)| > $n1/3)

om_1
. ~1 !
+P* (| E (Aa:?c;n,xfc;‘nﬂ > xn:/3)
k=0

2m_1
+P* <| > AT > xn:/3> . (2.11)
k=0
Recalling that p’ > p > 2, fix next zy such that, for all n/,
' p/(p—2)
(_zo_)z/p 92n/(1/p—1/p") 2/p' on'(1-2/p')
% > 2 ( o ) 2 >1. (2.12)
3C.M? - n/Cs 3 -

For = > =z, fix

m = |

P | 22/p'92n'(1/p—1/p")
(p—2)log2 8 3C.e2n"2Cs /7'

Tyt 22”’/?
3Cce?

.
(Hence, 2™ < ( )p_2). Therefore, c.f. (2.10), P¢ (\A§271)| > :En:/3) = 0. Next,

om 1
Pe (| Z (Awi’gn,i‘fc’gﬂ > xn:/3>
k=0

L E(P (IS0 e, 2| > 2w /351X < €| Fmin) )
< & .

10



On the event || X|| < ¢, using (P1) we have that
m__q -, )
Z ‘A:C‘I?c’::n|2 < 01622m2—2(m+n )P — Coxyyr

while the components of Zj, ,, are independent of 7, and i.i.d., Normal zero mean with variance

C12-(m*1) and so

om 1 exp (—C’12"’p/(p_2)xi$p_1)/(p_2)5_27’/(7’_2))
P¢ <| Z A%’m’xk m)| > Ty /3) < . (2.13)
k=0

-1
€ 7

on' (pp'—4(p—1))/ (¢ (—2)) p4(p—1)/p'(p—2)
S o | ~O NG e D e

for some constant Cj, independent of ¢, j,n', m. Hence, for x > C;, some C; large enough,

Z hid 2ma_)g P* <| Z Aa:]’ Zn >| > xn:/?,) < exp(—ij4(p_1)/pl(p_2)e_2p/(p_2)), (2.14)

k,m> km
n'=1

where we used the fact that pp’ — 4(p — 1) > 0 and the bound (1.6).

Finally, it remains to treat the term
2m
P* <| Z Al | > Ty /3)
k=0
For this we may use standard Laplace transform methods. The Laplace transform of Af;’?{; is (c.f
[6, Pg. 172])

S (2) = E(exp(—zAPT))

= E (exp <_ZA072—m—n’)‘ ‘X’2_m_n: — X’O‘ = 0)

9—(1+m+n'),

sin 2~ (1+m+n’)

for 72™+7'+1 > |2| . Let ¢ be the Legendre transform

((z) = z:[ggw]{zx log 5~ — /2},

11



then, by Chebycheff’s inequality,
am—1 ,
P <2m| > omaln| > xn:/3) < 2exp—2"¢ (2" /3) .
k=0

Since at the very least ¢ () > Ciz > 0 for > 1, one concludes that

IN

x2(P—1)/(P_2)2n’p/(p72) )

2m 1
- qim’ ,
P (2 ™| kE_O 2MAY | > xn:/3) 2exp <—C’1 n =)

z4p—1)/p' (p—2)9n’ (pp' —4(p—1))/p' (p—2)
< e (O gmagee ore s ) (21

Hence,

. Sl - 4 24(=1)/p'(p—2) on' (pp' —4(p—1))/p' (p—2)
P |;§Ak’m|>$n'/3 <207 exp { ~Cr 6y a6 0 ) . (2.16)

Combining (2.11), (2.8), (2.14), (2.16) and (1.6), one concludes that for z > Cj, some constant
Ck;

P(|1] > Cyr) < exp (—Coai-D/p (-2 =20/ 0-2)) |

from which (2.7) follows in the case r < 4(p — 1)/(p — 2). To handle the case r =4(p — 1)/(p — 2),

fix ¢ > 0, and reduce M if necessary such that Cy/M?P/(P=2) > cC’_g/ P, L

Proof of Corollary 1.16. We follow the notations and proof of [2], where the general argument
leading to the computation of the Onsager—-Machlup functional is presented. A norm satisfying the

assumption of Corollary 1.16 satisfies also (P1), (P2) of [2]. Following the proof there, it is clear
that with ¢ € L?([0,1];IR%), all that one needs to show is property (i) in [2, page 196], namely that

for any monomial M; of order 2 < k < [p/(p — 2] 2 kp in X, any ¢ € IR, and any deterministic
function ¥(t) with ¥(¢) € L2([0,1]; R), it holds that

lim sup B <exp (c /0 1 \Il(s)Mstl(s))> <1. (2.17)

e—0

(Strictly speaking, property (i) in [2] is stated in terms of Ito integrals; However, since k > 2, the
Ito to Stratonovich correction terms are all bounded uniformly on the set || X|| < & and converge

uniformly to 0 as ¢ — 0.)

12



Integrating by parts, we have that
1 1.
/ T(s)M,d X1 (s) = T(1)V; — / ¥(s)V,ds,
0 0

where V; = fot M,dX;(s). Therefore,

g (exp (c /01 \If(s)Msdxl(s)>> < (B (exp 2¢T(1)1)) Y2 (EE (eXp (‘2‘3/01 ‘i’(s)nd‘g)))m

12\ \ 1/2
(B (exp 2¢¥(1)V;))"/2 (]EE <eXpC’1 (/01 Vf) )) ,

where C; depends on ¢ and on the L? norm of ¥. Note that V; can be written as a (finite) linear

IN

combination of iterated (Stratonovich) integrals of order bounded by k, + 1. Further, c.f. (2.3),
(2.4), and Lemma 2.1, for all s € [0, 1],

I(s) < Cow(0,1)"/7" < C (TP + /7).

Therefore, using Lemma 1 in [2], and the uniform convergence to 0 with & of I on the set || X|| <,
c.f. the first line in the proof of Theorem 1.7, it follows that it is enough to show that for all
r<kp+1,3>p >p>2 andall C,

lim sup E° (exp C’1|fr/pl|) < o0, (2.18)
e—0
and that for all K > 0,
limsupP*(I > K) =0. (2.19)
e—0

(2.18) is an immediate consequence of (2.7) because (k, +1) < 2(p—1)/(p—2) <4(p—1)/(p—2).
To see (2.19), it is enough, c.f. (2.2), to show that

[e's) 2" —1 o' /4
3 nlr ¥ (\A%,@P) 0 0. (2.20)
n=1 k=0

2N

Using the complete convexity of the norm, it follows from [12] and (P1) that

(k+1)/2™
E (J4s sul?) < CE / (X1(s) — X1(k/2"))2ds | < C,C2e227m2~2n/p
2n > 2n k/2n
which, because 3 > p' > p > 2, implies (2.20). O

13



Remark 2.21 Note that in order to prove Corollary 1.16, one needs much less than the conclusion

of Theorem 1.7. In particular, one needs to consider only certain special functionals of the iterated

Stratonovich integrals I},.
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