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Abstract

We consider a Markov chain X, obtained by adding small noise to a discrete time dynamical
system and study the chain’s quasi-stationary distribution (gsd). The dynamics is given by
iterating a function f : I — I for some interval I when f has finitely many fixed points,
some stable and some unstable. We show that under some conditions the quasi-stationary
distribution of the chain concentrates around the stable fixed points when ¢ — 0. As a
corollary we obtain the result for the case when f has a single attracting cycle and perhaps
repelling cycles and fixed points. In this case the quasi-stationary distribution concentrates
on the attracting cycle. The result applies to the model of population dependent branching
processes with periodic conditional mean function.
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1. INTRODUCTION

This paper deals with quasi-stationary distributions for Markov chains X¢
X5, = f(X5_1) +E(X52)s (1)

obtained by adding small noise £¢, which is generally state-dependent, to a discrete time dynamical
system
Tni1 = f(za). (2)
The function f maps some interval I into itself, and we consider the case when f has finitely
many fixed points, some of which are stable and some unstable. The dynamical system defined
by (2) models a particular physical phenomenon, when the variable of interest is confined to the
range with set I. For example, in population dynamics z,, denotes the population density in the
n-th generation. The Markov chain defined by (1) models small random perturbations to that
phenomenon. Therefore in applications it is often of interest to study the long term behavior of
the chain (1) as long as it stays in I. This is done by studying the quasi-stationary distribution
(gsd) of the chain,
p°(A) = lim P(X; € A|X; €1I), (3)

n—oo

defined for any Borel set A C I.

Our goal in this paper is to show that under some conditions the quasi-stationary distribution of

the chain concentrates around the stable fixed points of f when € — 0.

Our motivation comes from the population density process in density-dependent branching models.
A density-dependent branching process is a branching model, where the law of offspring distribution
depends on the population density. These processes are stochastic analogues of the deterministic
models of population dynamics given by (2), and were studied in [6], [7], where the Law of Large
Numbers, the Central Limit Theorem and convergence to a Gaussian process were established. The
basic feature of the deterministic models is the decline in the reproduction rate from a constant,
when the population density is small, to zero when the population density increases to its threshold.
This decline is due to competition between individuals. The logistic model with f(z) = rz(1 — z),
one of the more famous models, eg. [10], provides a perfect example of this phenomenon, and
we shall use this model in our representative examples. Density-dependent branching processes
incorporate the same principle, by making the offspring distribution decline with an increase in
population density. If m(z) denotes the mean of offspring distribution when the population density
is z, then the expected density of the next generation is given by the conditional mean function
f(z) = m(z). The precise definition of the density-dependent branching processes is given in the
section on applications, it suffice to say here that these models can be represented in the form

of (1) with the dynamics being that of the corresponding deterministic population model with



f(z) = zm(z). Under broad assumptions density-dependent branching processes become extinct
with probability one. We show that the gsd exists and describes the long-term behavior of the

process prior to extinction.

In [8], the Large Deviation Principle was established for the Markov chain (1), and this reference
is central for this paper. It was shown there that if the deterministic system has a stable periodic
orbit then the perturbed system will follow approximately a limit cycle for a time exponentially

long in the level of noise before switching to another cycle.

We also consider the model with additive state-independent noise, it may also have an independent

interest in applications. This model is conceptually the same, but technically it is easier to treat.

It is not hard to establish the existence of qsd under some broad assumptions, cf. Theorem 1, the
main tool being the Krein-Rutman theory of positive operators. It is also rather straightforward
that any weak limit of the qsd as the noise converges to zero must be an invariant measure of the
deterministic system, defined by p(A4) = p(f~1(A)), cf. Theorem 2. Therefore if the deterministic
system has a unique invariant measure then the gsd concentrates around it. We, however, consider
the case when the deterministic model may have many invariant measures. The main result of this
paper, Theorem 3, is to establish conditions so that the qsd does not put, in the limit of small
noise, mass around the unstable fixed points. The technique of proof relies on an adaptation of

the discrete time Freidlin-Wentzell theory, e.g. as developped in [5].

We use the main result to treat the case when f has an attracting stable cycle (an attracting fixed
point is a cycle of period 1) to which all the trajectories converge (except unstable cycles and
their inverse images), and show that under suitable assumptions the gsd concentrates around the

attracting cycle. Thus the limit of the gsd is uniform on the stable periodic orbits.

To put our results into perspective, we point out a general result of Kifer [4], which shows, amongst
other things, that for diffeomorphisms under a bit different conditions of hyperbolic sets and a more
special form of random perturbations, i.e. perturbation by a diffusion, the quasi-invariant measures
concentrate in the limit on the attractors. While our conclusions might possibly be obtained from
general arguments (see [4, Section 5]), the case we consider does require some care, as the example

provided after the statement of the main Theorem 3 demonstrates.

While working on this paper we learnt of a recent, independent work of Hognés [3], where he
obtained similar results for the stochastic Ricker model, by techniques not far from ours. The main
difference of his work with ours lies in the greater generality and applicability of our assumptions.
On the other hand, [3] explains how to extend the assumption (A6) below to allow for an application

to the situation of stable periodic orbits of period larger than 2. This extension caries over to the



results in this paper, see the comment at the end of Section 2.
2. ASSUMPTIONS AND RESULTS

Let I = [0,1], and consider a continuous, piecewise C? function f : I — I. (I, B, f) defines a
standard dynamical system. For any é > 0, let Bs = [§,1 — 6]. Throughout this paper, we make

the following assumption:

(A1) f(0) = f(1) =0, maxzes f(z) < 1, and f possesses a finite number of unstable fixed points
z5 = 0, #7,..., ] where k may equal zero, and a finite number of stable fixed points sy, ...,5 €
(0,1). Further, for all §o > 0 small enough, there exist 53 > o > 0 such that f(Bs,) C Bs. (By

z} unstable, we mean that |f'(z})| > 1).
(A2) All trajectories of the dynamical system converge to one of the fixed points of f.

Consider the following Markov chain, which is a random perturbation of the dynamical system.
Let
X5 = f(X5q) +€(X5-0)-

Here, £°(z) are random variables, whose law, denoted Q¢ ,(-), depends on €,z only. Let A(z,\) =

log(Ee*"(®)) and define the kernel P, on (I, B(I)) by

P.(z,A) =P, (X;€A), xel, AeB(I).

We make the following assumption on Q¢ ,(-):

(A3) For all € > 0, and for some nonzero probability measure V; on (I,B(I)), there exists a

non-negative function m.(z,y) on I x I such that for all z € I and for all A € B(I),

a@m=éwwwm@.

Further, there exist integers ng(¢) and real numbers a(¢) and b(e) such that for all z,y € I,

0 < a(e) < M (z,y) < b(e) < oo,
where for any n, mgn)(x,y) is the density of P"*(z,-) with respect to V.. Assume further that for

all § > 0 small enough, for all € > 0 small enough, V;(Bs) > 0.

(A4) There exists a Ao > 0 such that, for all |A| < Ao, sup,c; . A(z, M/€) < 0.



Note that by Chebycheff’s inequality, (A4) implies that £°(z) converge in probability to zero as

€ — 0 uniformly in z € 1.
Let Us(z) = (z — 6,2+ 6) N[0, 1].
(A5) There exists a 8 > 0 independent of € such that for all § small enough, and all € small,

inf Q% ,(e,00) > 8,

zeUr_ Us(z})

inf Qg,w(—oo, —€) > f.

z€UF_oUs(z})

(A6) For each i = 1,..., k there exists an m; > 2|f'(x})| such that for all §; > 0 small enough, with
Ai = Upn,s,(23)\Uss, (z}), there exists a j(i) < oo such that fU)(4;) C UL, Us; (s:)-
2

For i = 0 we set mg = 3|f'(0)|-

For each i = 0,..., k, define

751 = min{n : X7 & Uss, (2})}

and

7o = min{n : X € Us, (z)}.

In what follows = denotes the weak convergence.

Theorem 1 Assume (A1)-(A4).
a). The gsd p\9 (cf. (8)) exists, it is a probability measure on (I, B(I)) and there exists a number
R©) > 1 such that for all A € B(I),

AWM=R@/amAmwwy
I

b). lim._o R =1.

Let mgl)(a:,y) = me(z,y) and mgn)(a:,y) be the density of P for n > 2, i.e. P"(z,dy) =
m{™ (z,y)dy.

Proof of Theorem 1: a). By (A3) and Theorem 10.1 of [2], P; has a positive eigenvalue &7, larger

in magnitude than any other eigenvalue, and corresponding uniquely defined left eigenfunction ()



satisfying [; 79 (y)dy = 1. Moreover, still by [2] Theorem 10.1, with u(¢)(-) denoting the (uniquely

defined) corresponding right eigenfunction,

=)™ (@) ()[1+ o(1)], @)

(n) _
me (way) - (R(s
where the convergence of the error term in (4) is uniform in 2, y. Then for A € B(I) define
p(A4) = [ ) 59 (y)dy, so that it follows directly that p(®) is a qsd by using (4) in

P(X: e A)

n

b). With 6o, 6, as in (Al), it holds that for any z € Bs,,
P(X5 € Bf,) < QF 100,80 = 85) + QS (5) — B, 00) < em Nl Sl/e(eheX0/0) 4 A%(x:X0/0),
Hence, by using (A4), for some constant ¢ > 0,
sup P, (Xf € B§) < e /. (5)
z€Bs,

Hence,

ae = sup (1 — P,(X] € Bs,)) = 0, e > 0.
z€Bs,

Then since p(¢)(B;,) > 0 for all ,
p9(Bsg) = R [ P.(X; € Ba)p(d) 2 R [ (1= s (ds)
5o
implies

R <

-1, e >0, 6
— L (6)

and since R(®) > 1, b) follows. O

Since I is bounded, p'© is tight. The following identifies the limit points of subsequences of p(©).

Theorem 2 Assume (A1)-(A4). Then, any weak limit p of p'® is an invariant measure for f,

i.e., for any A € B(I),

Remark 1: Kifer [5, p. 8] proves this result in the case of stationary distributions of Markov

chains under somewhat different assumptions, that are not satisfied here.

Proof of Theorem 2: Let Y, and Y be random variables with distributions p(¢) and p respectively,

with Y, =0 Y. For any A € B(I),

P(Y, € 4) = R / Py(X{ € A)p)(dz) = ROP(f(Y.) +£(Y.)) € A). (1)
I



By continuity of f and (A4), see the comment to (A4), f(Y:) + £5(Y:) = f(Y) along the subse-
quence. Hence for all A € B(I) such that P(Y € 0A) = P(f(Y) € 0A) = 0, taking € to zero along

the subsequence in (7) along with part b) of Theorem 1 gives

p(A) = p(f71(4)). (8)

Hence we can now show that (8) is true for any interval in I° by approximating the interval where
necessary by sets that do satisfy it. Hence, by Caratheodory’s Extension Theorem, it extends to

all A € B(I°). Now, with 0 < § < 1 — max,¢; f(z) fixed,

PI(1-51) = RO / Py(X{ € (1-5,1))p (dz)

< R mea?cP(fﬁ(x) >1-§-— mEaIXf(ﬂc)) —re—0 0,

and so p({1}) = 0. Hence (8) is true for A = {0} and A = {1}, and so it is true for all 4 € B(I).
O

It is rather straight forward to check that any weak limit of p(®) then satisfies Ef:o p(z) +

22:1 p(sf) = 1. The following is our main result.

Theorem 3 Assume (A1)-(A6). Then, any weak limit p of p(¢) satisfies p({z5}) = 0, for each
j=0,.. k.

Remark 2 To see that one needs some structural assumptions on £¢(-), consider the case of
f(z) =rz(l—1z),1 <r < 3. For z € [¢,1] let £¢(z) be a uniform random variable on (—¢/2,¢/2),
while for z € [0, €) let the law of £¢(z) be c U (—rz, —(r —1)z) + (1 — ¢)U(1 —€/2r, 1], where U(A)
denotes the uniform law on A and ¢ —._o 1 is chosen such that E£¢(z) = 0. It is not hard to

check that in this case, the gsd concentrates on the (unstable) point 0.

Proof of Theorem 3: We first need the following preliminaries. Throughout, we use the notations
introduced in (A1)-(A6). In addition, N := N(e) = K(log1/e)¥X for some K large enough (and

independent of ¢).

Lemma 1 For eachi=1,..,k,

su}; PZ(X;.(,») € (U§:1U5i (Sj))c) —c500. (9)
TEA;

Proof: By (A4), sup,c; P(|¢(z)| > ¢) — 0. This implies that for all § > 0, sup,; Pr(| X1 —
f(z)] > 6) —emo0 0. Iterating this and using the fact that j(i) is independent of ¢, the lemma

follows. O



Lemma 2 [8, Lemma 2.1] For each i =1,...,1, for each j =1,...,1, for all k > 0,

sup PE(TEZ < k/€) 2e0 0.
z€Us, (si)

Lemma 3 For each i =1,...,k, for all K > 0,

sup sup P,(Xf e Uk _ Us, (z2,)) —=es0 0.
z€A; j(i)<t<K(log 1)K
Proof: Omit the 7 subscript for convenience. Take j as in (A6). Then for all z € A, using the

Markov property,

sup Pp(Xf € Us(z*)) < sup Pp(X5,, € Us(z))
J<t<N t<N

< sup  sup Py(X{ € Up_oUs, (25,)) + Po(X; € (Upey Us(sm))”)
yEUL, _ Us(sm) 1SN

m=1

< max sup P, (15 < N)+ P:(Xj € (Ufnle(;(sm))c) —es00, (10)
m=1 z€Us(8m)

where the last limit is due to Lemma 2 and Lemma 1. O

Lemma 4 For each i =0,...,k,
(i) SUP;cu;, (27) Pm(X‘ze—,-,l € Unm,s;(27)) —re—0 0, and
(i) for all K large enough, sup,cy, o+ Pe(7f1 > K(log £)%) —c 0 0.

Proof: Omit the i subscript for convenience.

(i) By the choice of m in (A6) (mg is defined immediately after (A6)), we have that for all § small

enough,

sup |f(z) —z*| <mé (11)
z€Uz5(z*)

and so there exists a constant A > 0 such that

sp P(XS, EUns(a®) = sup Palf(Xe 1)+ E(XE 1) ¢ Uns(a®)
z€Us(z*) z€Us(z*)
< s PEXE ) > A)
z€Us(z*)
< su;; P(|&(z)| > A) =e-00. (12)
zTE

(i) Let b, = e(loge)®. Define 7 = inf{t : |Xf — z*| > b.}. Without loss of generality, we assume
that inf,cy, (o+) f'(2) > ¢ > 1. Then, with ¢; = 4/logc,

z*gzlggarz* P, (T < c1loglogl/e) > 1I£1fP(§ (z) >¢) 65wlﬁt}l}&ﬂﬂ P,(T < c1loglogl/e—1).



Note that as long as z; € Us(z*), on the event {£¢(2;) > 0}, f(z;) + £5(z;) > cx;. Hence, since
eccrloglogl/e — ts(loge)4 > b,
one gets, using (A5),

—ci logloge
z*gzigziﬂ* P,(1 < c1loglogl/e) > (zellJlslfz) P, (& (x) > e)) > g—c1logloge

Arguing similarly, the case z < z* is handled (for 7 # 0). Hence,

inf Pz (T <c ]og log 1/6) Z ﬂfcl logloge ]
|z* —z|<be

It follows that, with co = 2¢;,

L Pu(r > e f 805 loglog1/¢) < (1— e ostore) T e 0. (13)

In what follows, we use c3, ¢4, c5 to denote some constants which are independent of €. Then, with

& = £5(X5), arguing as above,

inf P (15, <
z>betz*,z€Us(z*) Z( Hl = log\/E

v

P& <be/Ve, i=1,...,

. (1_9>10gbe/108\/5

be
cac

> ebe 0Bbe > ges/loge 1 (14)

Combining (13) and (14), we conclude that for some ¢5 independent of e,
inf Py(7f; > (log1/e)~5'8P) - 0.
z€Us(z*) ’

This concludes the proof of the lemma. O

Lemma 5 Foranyi=1,...,k

sup P,(Xy € UfZOU(;J. (:c;‘)) —¢500.
z€Us; (z])

Proof: For z € Uy, (z}), using the Markov property,

Py(X§ € Uj_oUs,(25)) < Pulrfy > N)+ Po(X5,, & Unisi (7)) +

sup sup P, (X; € U_,Us; (z}))- (15)
z€A; 1<t<N



Taking supremum on both sides over z € Uy, (z}), the first two terms on the right converge to zero
as € converges to zero by Lemma 4, while the convergence of the third is a consequence of Lemma

3. 0

Lemma 6 For any éy small enough,

sup P (X5 €[0,60)) —e—s00.
z€[0,50]

Proof of Lemma 6: Note that
sup Pp(Xy €[0,8)) < sup Pp(r5y > N)+ sup Pp(Xrs ¢ [2d0,3]f(0)0)])

z€[0,50] z€[0,d0] z€[0,d0]

+N  sup P (X{ €0,0)). (16)
z€[d0,1—d0]

The first two terms in (16) converge to 0 with € due to Lemma 4, while the third one is bounded

(due to (5)) by Ne ¢/¢ ., 0. O

Proof of Theorem 3: Fix any j =0, ..., &, and pick §; small enough so that

P (Us; (z3)) —remso p({2]3)-

First observe that R(9) <14 e~ ¢, giving

(RN 501,

for K large enough. Now,

P, () = (RN / P, (X € U, (23))p) (d2)

k
= ROVY [ PulXF € U (a6 o) +
i=1 U5i(z;)
l

(RN S /U P € U a5 ) +
5; (83

i=1
(RO [ Pu(X3y € U (@) ) +
RO [ P(Xf € Us (@)p (do) (17)
U50 (z(‘;)
where B = [0, 1]\ {UX_,Us, (z7) Ui, Us;(si)}, so that the third term converges to zero as € con-

verges to zero, the first term converges to zero as € converges to zero using lemma, 5, and for the

second term, for each 1 =1,...,1,

10



/ P (X5 € Us, (@))p@(dx) < sup Pu(X§ € Us, (7))
Us, (si) z€Us, (83)

sup  Pp(75, < N) —es0 0, (18)
z€Us, (s:) ’

IN

by Lemma 2. For j = 0, the last term converges to 0 with € as a consequence of Lemma 6, implying
that p(€) (Us, (25)) —e_o 0. Substituting again in (17) for any j # 0, this is enough to imply that
p(E)(U(Sj (x;)) —Fe—s0 0. O

Remark 3 We comment here on extensions of Theorem 3 which follow from [3]. As pointed out
in the section below, assumption (A6) is hard to check in general. It is used in the proof, however,
only to show that points in the neighborhood of unstable fixed points converge in finite time (under
the deterministic action) to neighborhood of stable fixed points. This assumption can be replaced
by the assumption of non-existence of heteroclinic orbits which include the unstable fixed point.
This assumption creates an ordering of the unstable fixed point in such a way that neighborhoods
of higher order unstable points are mapped to either stable points or neighborhoods of lower order
fixed points, and the lowest order unstable fixed points do satisfy (A6). See [3] for a development

of this approach in a particular case.
3. APPLICATIONS AND EXAMPLES
1. The logistic map with normal noise

Consider the case when f is the logistic map, f(z) =rz(1 —z), 1 <r <1+ 6.
X5 = f(X5 1) + €nm, (19)
where f as above and 7, are iid standard Normal rv’s.

(a) Consider first the case when 1 < r < 3. In this case 2§ = 0 is the only unstable fixed point,
51 = 1— 1 is the only stable fixed point and there are no other cycles. Assumptions (A1) and (A2)
are satisfied for this case, see [11], and as k = 0 (A6) is not required for this case. If £¢(z) = en,
where 7 is the standard Normal variable, then the assumptions (A3), (A4) and (A5) are clearly

fulfilled, and the result holds, ie. the gsd. of X concentrates around the attracting fixed point s;.

Remark 4 In this case it is possible to show that p(0) = 0 by using a Lyapunov function approach,
see [9].

(b) Consider the case 3 < r < 1+ /6.
In this case f has two unstable fixed points at zero and 1 — %, one stable attracting cycle of period

11



two, and no other cycles. We next show that Theorem 3 applies in this setup, implying that the
gsd of the X¢ in (19) concentrates on the stable attracting cycle.

Define the function f*(z) = f2(z), = € I. We shall apply the above results by replacing f with
f*. Tt is easy to see that f* has two unstable fixed points at zf = 0 and z} = 1 — L, two stable

fixed points s; and sz, and no other cycles.

First we verify assumption (A6) for f*. We start with

Lemma 7 Let f be the logistic map with 3 < r < 14++/6. Then the accumulation points of f~"(x%)

are zero and one.

Proof: f maps [0, 1] onto [0,7/4], and /4 < 1! f from [0,1/2] — [0,7/4] is one-to-one. Put g(z)
to be the inverse map from [0,7/4] onto [0,1/2],

i

7

DN | =

g(z) =

_ /L
4
and note that it is monotone increasing. Then, f~1(z}) = {z%,9(z})} = {z},1 — z}}. We prove
that
1—g®(a3) > r/4, (20)
hence the “other inverse branch” of f does not contribute, and all further inverse images of z}

come from g. The inequality (20) follows from

g(a1) < f(r/4). (21)

The monotonicity of (1 — z) implies that g(z7(r)) is monotone decreasing in r for any r > 2.
Therefore max,_, ., /5 9(21(r)) = 1/3 is achieved at r = 3. f(r/4) is monotone decreasing in r on
(3/4, (1++/6)/4). Therefore min;_, ., /5 f(r/4) is achieved at (1++/6)/4) and is f((1++/6)/4) =
0.409... > 0.4. The inequality (21) now follows, hence (20) is established. It follows by symmetry
of f that the accumulation points of f~"(z}) are the accumulation points of {¢"(z7)} and of
{1 — g"(z%)}. Since g is monotone increasing, {g"(z})} form a decreasing sequence. The limit y

must satisfy y = g(y), which implies that y = 0, and the lemma is proved. O

It is known that the iterates of all the points in I except the unstable fixed points and their inverse

images for all n =0, 1,2, ..., converge to the stable cycle, see [11] p.73.

Since f~"(z§) = {0,1} for all n, it now follows from Lemma 7 that for all § > 0 small enough, for
1

all z € Us(z%)\{z}},

fM(z) = {s1,52}, n = oc.

12



With A; as in the statement of assumption (A6), we have that for each 2 € A; there exists an
n(z) such that (f*)/(z) € Uiz Us (s;) for all j > n(z). Using the continuity of f, there exists thus
a r(z) > 0 such that

Vy € By () (2), ¥j > n(2) +1, (f*)(y) € U Us (s:).-
Covering A; by the balls B,(,)(z) and taking a finite subset by compactness, (A6) follows for f*.

Consider V¢ = X5, . It is easily verified that assumption (A3) holds for (19), and that by Theorem
1, the gsd. of X exists. It is clear that X§,, and X have the same gsd. Let

& () = f(f(2) + em) + e — f2(2).

With this choice of £(z) we can write that

To verify assumptions (A4) and (A5) notice that the iterated noise satisfies, by the mean value

theorem,
&) = f(f(@)+em)+en— (o)

ena + f'(0)em
e(m2+ f'(O)m),

Il

where 0 € (f(z), f(z) +en1) can be random. Since the derivative f' is bounded on I, —r < f'(z) <
r, |f'(8)| < r. Using this (A4) is straightforward. To verify (A5) write with 8 = P(n2 > 1+ 7|n1|)

inf P(£%(z) >€) = _inf P(n2+ f'(O)m > 1
ity PO >0 = ol Pl S Om > )

> inf P(pe >1+rm|)=8>0.
U5($*)

The other side of (A5) is similar. This completes checking (A1)—(A6).

Theorem 3 implies than the limit of the gsd is of the form ads, + (1 — a)ds,, where 0 < a <1 and
ds, denotes the point mass at s;, ¢+ = 1,2. Since s1, so are points of the cycle for f, it follows that

a =1/2, ie. the limit is the uniform distribution on the stable cycle. O

Remark 5 The following is useful for checking assumptions (A1), (A2). The dynamical system
defined by iterations of f € C? is called simple if for any starting point the trajectory converges to
one of the cycles of f. f is said to belong to class Gam if it has a cycle of period 2™ and no cycles of
period greater than 2™. The result [11] p.73 states that if f € Gam for some m, then the dynamical
system defined by iterations of f starting from any point in 7 is a simple dynamical system. On
the other hand if f is C! and if the dynamical system defined by iterations of f starting from any

point in I is a simple dynamical system, then f € Gam, Theorem 3.3 in [11].

13



2. Density dependent branching processes

In this section we apply the main result to the model of density dependent branching processes.
Let {X¢} be the population density in a density dependent branching process, defined as follows.
For any fixed > 0, let Y; ,(z) be independent and identically distributed random variables for all
Jj, n with distribution Y (z), where for all z > 0, Y (z) is non-negative and integer-valued, and for
allz > 1, Y(z) = 0. Y(z) represents the law of offspring distribution when the population density
is 2. Then for fixed K € [2,00) define a population density dependent branching process {ZX},
n =0,1,2,... with threshold K inductively by taking ZX to be a positive integer less than K and

zEK zZEK
A Yt Yint1 () 2y >0
e 0 L ZK =0

where we assume that for any fixed z, K and n+1, that the Y} ,11(z), j = 1,2,..., are independent

K
of ZK,ZK | ..., ZK. Let XX = Z2 denote the population density.

For this application it is suitable to take I = (0, 1) to be the open interval. Then if XX € I, then,
with f(z) = zEY (z) = 2m(z),

K iy LN RO
X1 —f(Xn)+K (Y nt1(Xn) —m(X,;)) —f(Xn)+K E Y 1(Xn),  (22)
Jj=1 j=1

>

|

where Y'(z) = Y (z) — m(z) denotes the centered offspring distribution, and X% , = 0if XX ¢ I.

To apply the main result to the chain {XX}, set € = #, and put

z/€e?

]' <= ! 2 !
£ (@) = ﬁ;n(x) =e ;w). (23)

Taking f(z) to be the logistic map rz(1 — z) with 1 < r < 1 + /6, the assumptions (A1), (A2)

and (A6) on f(z) were verified in the previous section on the logistic map with additive noise.

To verify the rest of the main assumptions, we make the following assumptions on the offspring

distribution Y (z).

Assume (A3) with V. being a discrete measure on i/K, i =1,..., K — 1. Further, let AY (z,\) =
log E exp(A\Y'(z)), and assume that

(B1) supzel,e(x/ez)AY' (z, Xe) < 0.

14



To show (A4) write by using independence

z /e z /e
As(z,\/e) = logE(exp()e Z Y;(z)) = log E(H exp(AeYj(z))
j=1 7j=1
z/€e?
= log H E exp(AeY](z)) = z/€” log E(exp(AeY'(z))
j=1

= z/ENY (z,\e).

Thus (B1) implies (A4).

To give a specific example, take Y (z) to be a Poisson(m(z)) random variable, where f(z) = zm(z).
For the logistic dynamics, m(z) = r(1 — z) for ¢ € I, and zero for # ¢ I. Then AY (z,)) =
m(z)(e* — 1) — Am(z). So that

z/EAY (e) = f(z) (X — 1 = Ae) /€2

Using expansion for the exponential, (B1) clearly holds. (A3) also holds.

Before we verify (A5) we prove a result on sums of iid rv.’s.

Kz /e

Let v(z) = E(|Y'(2)|?) and 02(z) = Var(Y (z)) = E(Y"?(z)).

Lemma 8 Let A C I be such that

v(x)
sup ————= < 0. 24
ven 0°(@)V/3 Y
Then sums —— S"%% Y!(z) converge in distribution as K — oo to the N(0,z0%(z)) distribution
VK &j=177

uniformly in z € A.

Proof: Indeed, fix z, and using the Berry-Esseen inequality ([1], p.542), we have for any real a,
with ® being the standard Normal cdf,

3v(z)
o3(z)VKz

Replacing a by a/(o(z)+/z) we obtain convergence to the N (0, zo?(z)) distribution, moreover the

Kz
P 3. %)(0) S a0(a)VE) - 800l < (25)

convergence is uniform in z if condition (24) holds. O
An easily checked sufficient condition for (24) is (B2).

(B2) Assume that there is a small y > 0, such that with A = (y,1 — %), sup,c4v(z) < o0, and

inf,ca 0%(z) > 0.
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It is clear that (B2) implies (24). Now, the uniform convergence of the sums to the normal
distribution implies (A5). Indeed, as it was assumed that unstable fixed points z}, ¢ =1,2,...,k

are in the interior of I, there is v > 0 so that A includes all of these points. Now,

zeuk

i=1

Kz
inf | Q%.(e,00) 2 inf PIE@) > o) = ;ggm\/% ;m (2) —m(z)) > 1) = 8> 0.

(B2) is clearly satisfied for the specific example when Y (z) is a Poisson(m(z)) rv.

This completes the check of the basic assumptions for branching processes when f(z) = zm(x)
has a single attracting fixed point, eg. when f is a logistic map and 1 < r < 3. In this case the

main result implies that the gsd. concentrates around this point. We formulate this as
Theorem 4 Suppose the offspring distributions satisfy (B1) and (B2). Then p(z§) = 0.

When 3 < r < 1+ /6 such an attracting fixed point does not exist, but there is an attracting
two-cycle. The analysis via (), similar to that carried out in the additive case and details of
which are omitted, shows that the qsd. concentrates on the attracting cycle. These results for the

stochastic Ricker model were obtained independently by Hégnés (1996).
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