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Abstract

Suppose that the integers are assigned i.i.d. random variables {w;} (taking values in the unit
interval), which serve as an environment. This environment defines a random walk {X,,} (called
a RWRE) which, when at z, moves one step to the right with probability w,, and one step to
the left with probability 1 — w;. Solomon (1975) determined the almost-sure asymptotic speed v,
(=rate of escape) of a RWRE. Subsequent work provided limit theorems for the RWRE {X,}. We
review in this article recent results on the asymptotics of the probability of rare events of the form

P(Xn/n € A) or Py(Xyn/n € A), in the situation where P(X,/n € A) — 0. It turns out that

the RWRE exhibits a wide range of non-trivial behavior, and different regimes are possible.
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1 Introduction

In this review, we consider large deviations from the law of large numbers for a nearest-neighbor

random walk on Z with site-dependent transition probabilities.

Let ¥ = [0,1]%, let w = (wi)icz € ¥ be a collection of random variables which serve as an
environment. We write p for p,. Here and throughout, we omit w from the argument of functions

if no confusion occurs. We denote by 6 : ¥ — X the shift on 3, given by (fw)(i) = w(i + 1).

For every fixed w, let X = (X;,)n>0 be the Markov chain on Z starting at Xy = 0, with transition

probabilities
Wy ify=o+1
P,(Xpr1i=y|Xp=2)=¢ 1l-w, ify=2—-1. (1)
0 otherwise

Let n be a stationary, ergodic probability measure on 3. In the particular case that 7 is a product
measure, we denote its marginal by «, and write n = a%. We denote by wmin = Wmin(N) := min{z :
z € supp 1o} where 79 denotes the marginal of 7, Wmax = Wmax(n) := max{z : z € supp 7o},
pi = pi(w) == (1 — w;)/wi, i € Z, and let pmax = Pmax(n) := (1 — Wmin) /Wmin- We write, for any
function f of the environment, (f) = [ f(w)n(dw).

Throughout this paper, we call a probability quenched if it is taken under P, i.e. conditional on
the environment. A probability is called annealed if it is taken according to P, that is when the
environment w is averaged according to the measure 7. We will sometimes use the notation P; to

emphasize the measure 7 used in taking expectations over w.

The RWRE model, which seems to have been first considered in a particular case by Temkin [45],
exhibits a number of phenomena not shared by classical random walk. Assume first that 7 is a
product measure. It was established by Solomon [41] (see also [24] for a particular case) that X is
P,-a.s. transient, for n-a.a. w, iff (logp) # 0. In the transient case, for n — a.a.w, lim, X, = 400
P,-a.s. if (logp) < 0 (and lim, X,, = —oc P-a.s. if (logp) > 0). An easy proof of the transience
may be obtained by noting that the function

pot -+ pop1-pu-t, >0

fl)=10 z=0
1 1

(1454t ), 2 <0

is P,-harmonic.

With v, = lim, X, /n denoting the (almost sure) speed of the RWRE, there are two speed regimes,

namely,



() va = (1 = (0))/(1 + {9)) when (g) < 1 and v, = ((5~1) — )/((p™") +1) when (1) < 1.
(i) ve = 0 when (p) 1 <1< (p1).

Similar results hold if 7 is a stationary, ergodic probability measure on .. Assume (log p) < 0: then,
the RWRE (X,,) is (almost surely) either recurrent (if (logp) = 0) or X,, — +oo (if (log p) < 0),
see [28, Chap. IV, Theorem 2.3 and Corollary 2.4] or [2]. Further, let T, = inf{n : X,, = k},
k=0,+1,+2, - and

T, =T — Th_1 k>0

Tk = T — Trya k<0,

with the convention that oo — oo = oo in this definition. Let Z; := p; + pjpi—1 + pipi—1pi—2 + .. ..
Note that if the walk is transient to the right, i.e. if (log p) < 0, then Z; < oo, 77-a.s.. It can be
shown that if

’U;l = /(1 +2Z; )n(dw) = /(1 +Zy + Z_;)n(dw) < o0, (2)

then the random walk has the positive speed vy, i.e. for 7-a.e. w, we have X,,/n — v,, P,-a.s., cf.
[2]. In fact, we will see, cf. the proof of Lemma 1 below, that E,(71) = 1+2Z;, and one could use
this to rerun the argument of Solomon [41] yielding the speed of the RWRE. In particular, if 7 is a
product measure, one recovers Solomon’s formula for the speed: [(1 + 2Z; )n(dw) < oo if (p) < 1,

and in this case,

In the i.i.d. case, i.e. when 7 is a product measure, this law of large numbers is supplemented
in [22] by central limit type theorems. For instance, in regime (i) above the classical central limit
theorem holds if (p?) < 1. In regime (ii), on the other hand, under some additional hypothesis,

n~*X,, converges in law where s € (0,1) is the unique solution of (p*) = 1.

In the recurrent case the motion is extremely slow. Sinai [37] proved that in this case (logn)2X,

converges in law, and Kesten [21] identified explicitly the limiting law.

We will concentrate here on one topic, namely, large deviations from the law of large numbers.
For more about the history of the model, connections with other fields and various limit laws
not mentioned above (and, of course, more references!), we refer to [18] and [36]. Some recent
asymptotic results, of a nature different from ours, may be found e.g. in [17] or in [1]. We also
note that a direct relationship exists between results on RWRE and on certain branching processes
in random environments (BPRE), see [24], [25] for an early account of this relationship and [4] for

recent results and references.



Recall that a sequence of measures y, on IR is said to satisfy the Large Deviation Principle (LDP)

with rate function I(-) if for any measurable set G,

1
log un(G) < — inf I(x),

. N .
— inf I(z) < hnlggéfﬁ log pin(G) < hrrblls(gp - Inf,

TEG®
where G° and G denote the interior and closure of the set G. For a product measure n = oZ, the
study of large deviations for the law of X, /n was initiated in the seminal paper [16], where a large
deviation principle for the distributions of X,,/n under P, was derived, for 7 -a.e. w. The resulting
rate function turns out to be deterministic, and in the case where v, > 0 and a(wy < 1/2) > 0,
it vanishes on the interval [0,v,]. This paper motivated refined estimates, i.e. estimates in the
subexponential regime, where the rate function vanishes, both in the quenched and in the annealed
case, cf. [9], [14], [35], [34]. Further, a large deviation principle for the distribution of X,,/n under

the annealed mesure P was recently derived in [7].

Our goal in this review is to describe the recent results concerning large deviations for the law of
X, /n, in a unified framework, starting from the paper [16]. We present at the end of this review
several open problems concerning RWRE in one dimension, and the only new result we prove here,
Theorem 9, is intended to raise the interest of the readers in proving Conjecture 1. Maybe more
importantly, we briefly mention at the end of the paper several questions of interest in extending

the picture emerging in the one dimensional case to the multi-dimensional situation.

The approach of [16] to large deviation statements involves looking at the RWRE as a Markov
chain in the space of environments, and the quenched Large Deviation Principle (LDP) is obtained
by an appropriate contraction. More precisely, the rate function is the solution of a variational
problem and is shown to be the Legendre transform of certain Lyapunov exponents. We follow
here a different path, initiated in [9] and fully developed in [7]: namely, we derive a large deviation
principle for X, /n by first considering a large deviation principle for T;,/n. The fact that the walk
is one dimensional and only moves to nearest neighbors, allows for a recursive decomposition of
the hitting times T},. This leads to rather simple proofs of the LDP’s in the exponential regime, of
Solomon’s speed formulae, and of the annealed tail estimates in the subexponential regime. We will
indicate some additional arguments, appearing in [14], for handling the quenched sub-exponential
regime, and also briefly describe how the techniques of coarse graining are used in [35], [34] to

obtain sharp tail asymptotics (including constants) in the subexponential regime.

It turns out that a full description of annealed large deviations, even in the i.i.d. case, forces
us to first handle quenched large deviations for certain ergodic measures. This is why we start
with a description of the (quenched) LDP results for a rather general class of ergodic measures 7,

contained in [7]. Specializing to product measures, we derive then annealed LDP’s. These results



form the content of Section 2. In Section 3, we turn our attention to annealed sub-exponential
estimates, while Section 4 contains the corresponding quenched sub-exponential estimates. The
following summary shows what is known in terms of subexponential asymptotics for a product

measure 1 = oZ.

Case I: (p®) =1, some s > 1: the support of o contains values > 1/2 and values < 1/2.
Case 0: pmax = 1,a({1/2}) > 0: « is concentrated on [1/2,1] with a positive weight on 1/2.

v € (0,vq)
| Annealed | Quenched
CaseT | [9,Thm.1.1]: llogP (%2 <o) 5 s—1 | [14,Thm.1]: V6> 0, o log P, (%2 <)
0
| | 7\ —
| | (Random fluctuations for n* ' log P, (X2 <v)?)
| |
Case 0 | [9,Thm.1.2],[35,Thm.2] : | [14,Thm.2],[34,Thm.1] :
2
| Az logP (%2 <) | (egn? 1og P, (%2 < o)
| = =3 —v/va)PlFloga({1/2})P® | — —g(1 —v/va)|rlog a({1/2})]?

Section 5 is devoted to extensions, comments and open problems.

A cknowledgments We would like to thank our collaborators Francis Comets, Amir Dembo, Yuval
Peres, Agoston Pisztora and Tobias Povel for their contributions, and Didier Piau for his remarks
concerning the proof of Theorem 9. We would also like to thank the organizers of the school, Pal

Révész and Balint Toth, for the stimulating program and very enjoyable meeting.

2 LDP’s - the exponential scale

2.1 Quenched LDP’s

We present first quenched LDP’s for the distribution of 7}, /n or T_,, /n, respectively. LDP’s in the
annealed case follow. The LDP’s for the distribution of X, /n follow then by “renewal duality”, see
the end of Section 2.3. The linear pieces of the rate function of X, /n near 0 in the transient case,
first discovered by Greven and den Hollander, can be explained in terms of the linear pieces of the

rate function for Tp,/n or T_,/n at infinity.



A crucial role is played by the function

P\ w) = Ey(e 11 <o0) - 3)

A characterization of ¢(\,w) in terms of continued fraction expansions is provided in Section 2.3,
Lemma 1. Let next

Ty = B, (11|11 < 00) (4)
(with the value +o00 allowed), and define

17w = sup Do — [ Tog o\ wn(aw)]. (5)

Let M;(X2), M7 (X) and M{(X) be the spaces of probability measures, stationary probability mea-
sures and ergodic probability measures, on .. All spaces of probability measures in this paper are
equipped with the topology induced from weak convergence. Let K C (0,1) be some fixed compact
subset of (0,1). We denote by M{(X)T := {n € ME(Z) : [log po(w)n(dw) < 0} the set of ergodic
measure on the environment making the walk recurrent or transient to the right, and, for any set

M C Mi(%), we let MK = M N {n:supp(ny) C K C (0,1)}.

Theorem 1. ([7, Thm. 4]) Assume n € M{(X)K. Then, for n-a.e. w, the distributions of Ty, /n

under P, satisfy a weak LDP with deterministic, convezr rate function I;9. Further, Ig’q(-) 18

decreasing on [1, [ 1,n(dw)] and increasing on [[ 7,n(dw), c0).

For a formal definition of a LDP and weak LDP, we refer to [10, Section 1.2]. A discussion of
different possible shapes of the rate function I;>?, as well as graphs of such functions, are provided

in [7].

Theorem 1 obviously implies also a LDP for T, /n, simply by symmetry (i.e., space reversal of
the measure 7). The logarithmic moment generating function of 7_; can be expressed in terms of

©(A,w); in fact, this is needed in the proof of Theorem 1.
Proposition 1. ([7, Prop. 1]) Assume n € M{(2)X. Then,

[ 108 B 1, coohn(d) = [ 1ogBu(e L cocln(de) + [log () (6)

where both sides may be infinite for positive values of . Further, if n € M{(X)X, then the distri-

butions of T_,,/n under P, satisfy, for n -a.e. w, a weak LDP with deterministic rate function

L7 (u) == I (u /logpo n(dw), 1<u<oo. (7)



We note that in both Theorem 1 and Proposition 1, the LDP’s are weak due to possible positive
probability mass at +o0o. The LDP of Theorem 1 can be strengthened to a full LDP if n €
Me(n)HE,

We may now turn our attention to LDP’s for the X,, process. Let, for n € M¢(3)TK

Ié(v) = { ol (3), o<

“ L (),

<

IN <
IN =

v<0,

where I;? and I,"™¢ were defined in (5) and (7), and the value at v = 0 is taken as

1
q — i Tq(_
I3(0) %1_1)1(1)1)],) (U)

Let the space reversal Inv : & — ¥ denote the map satisfying (Invw); = 1 — w_;, and let p'™v =

nolnv ', For n € Mf(Z)X \ M{(E)tK, define Ii(v) = I,q)mv(—’U), and note that ™ € M{(Z) ™K
while I79(-) = I79(:).

,r]Inv

Theorem 2. ([7, Thm. 1]) Assume n € M{(X)X. For n-a.e. w, the distributions of X, /n under

P, satisfy a large deviation principle with convez rate function If.

This rate function was derived in [16] for the i.i.d. case, i.e. the case where 7 is a product measure.

For some properties of the rate function I]/(-), see Section 2.5.

2.2 Annealed LDP’s

We next turn our attention to the annealed situation in the i.i.d. case, namely with n = o%.

Denote by h(-|a%) the specific relative entropy with respect to aZ € M;(X). Recall that by [13],
aZ satisfies the process level LDP, that is, denoting R,, = % Z;-L:_& dpin € M1(X), the distributions
of the random variables R,, (with values in M; (X)) under oZ satisfy the LDP with rate function
h(-|a?%).

For u > 1, let

L) = i}lff(z)[fﬁ (u) + h(n]a™)]. (9)

Theorem 3. ([7, Thm. 5]) Let n = a%. Then the distributions of T,,/n under P satisfy a (weak)

LDP with convez rate function 1.



The appearance of the quenched rate function for general ergodic 7 in the expression for the annealed
rate function is the reason why we were forced to consider ergodic 7 in the quenched situation. It
is possible to construct examples where (and formally it seems to be the rule that) the infimum in
the variational problem defining the annealed rate function is achieved on ergodic measures which

are not product measures.

As in the quenched case, annealed LDP’s for 7}, /n imply immediately annealed LDP’s for X, /n.
Let

<

I9(v) = { oIz (3) 013 (10)

7
|U|I;—’I(ILIV (%) T

We have the following large deviation principle.

1
<0.

IN <
S

Theorem 4. ([7, Thm. 2]) Assume n = a% € ME(X)K. Then, the distributions of X, /n under

P satisfy a LDP with convez rate function I3.

We note that the quenched rate function I and the annealed rate function Ij are related by the

following variational formula:

Io) = _inf [15(0) + olh(r]a™)] (11)

where vh(n|a?) = oo if h(n|aZ) = co. In particular, we always have I3 < I?,. Further, I4(v) =0

only if I? , (v) = 0.

2.3 Properties of p()\,w) and sketch of proofs of the quenched LDP’s.

We begin by deriving a representation of ¢(A,w):

Lemma 1. For any A € IR, we have that whenever (A, w) < 0o a.s. then

_ 1] B po(w)| _p-1(w)
P = ST T @)~ et pa@) | (12)

Proof of Lemma 1. Pathwise decomposition yields the following formula for 7:
=123 + 1x, -y (1] + 71 + 1) (13)

where 7{ 4+ 1 is the first hitting time of 0 after time 1 (possibly infinite) and 7{ + 7{' + 1 is the first

hitting time of +1 after time 7| + 1. Note that, under P, the law of 7{ conditioned on the event



X; = —11is Py-1,(m € -) and, conditioned on the event 7{ < oo, 71" is independent of 7{ and has

law P, (1 € -). Therefore, we have
QD(A,(U) = Ew(e)\T1 171<OO)
= P,(X1=1) Ew(e)‘ﬂln<oo|X1 - 1) +P,(X; = 1) E, (e)‘T117-1<00|X1 - _1)

0f-1
= weet + (1 — wo)Ey (N7 )1_ yo1 o) By(eX 1, <o)

= we + (1 —wp)etp(\, 07 w)p(\, w).

Hence, if p(\,w) < oo then (), 0 'w) < oo, and

1
1+ po(w))e™ — po(w)p(X, 0~ 1w)

(A w) = ( (14)

In the same way,
1

N0 tw) = .
# ) (1+p-1)e™ — p_1p(X, 07 2w)

By iteration, we get the representation of ¢ as a continued fraction, i.e. (12). We refer to [16] for

the convergence of the continued fraction; for a reference on continued fractions, see [19] or [46]. [J

Remark: In the same way, taking expectations in (13) and iterating yields E, (7)) =1+ 2Z;, cf.

(2).

Various analytical properties of the function ¢(),w) are derived in [7]. In particular, the following

smoothness properties are proved there:
Lemma 2. Let n € M{(X)HX. Then

(i) For 1 <u < E(m) < oo, there exists a unique A\g = Ao(u,n) such that Ao < 0 and

u= / %log go(/\,w)‘/\:)‘on(dw). (15)

For u as above

inf  Ag(u,n) > —o0. 16
sy o) > e

(ii) There is a deterministic 0o > Aais > 0, depending only on 1, such that for A < Aeit, Bo(eM) <
oo for n -a.e. w, By(e*™) has the form (12) and for A\ > Acit, Ew(e?™) = oo for n -a.e. w.



(iii) Let ueriy = oo if [Ey(rier=it™) n(dw) = oo and U = [ %logcp(z\,w)‘)\ n(dw) else. For

—Acrit

E(11) < u < ucrit, there exists a unique A\g = \o(u,n) such that Ao > 0 and

n(dw) . (17)

u —/—log<p (A w)‘/\:)‘o

w) Ifn € ME(X)T X is a product measure and pmax < 1, then Aerit = A := -1 log(4wmin(1—wWmin)) >
1 2

—Acrit

0 and p(\,w) = Ey(er) < 00 iff X < Acyit. Further, ucny == [ = log <p()\,w)‘ N(dw) < o0

unless 1 is degenerate, i.e. unless w = const n-a.s.

v) If n € M{ (2 +K s a product measure and Pmax > 1, we have At = 0.
1

Remarks: 1. Parts (iv) and (v) of Lemma 2 continue to hold true even if n € M{(Z)™X is not
a product measure, provided it is locally equivalent to the product of its marginals, i.e. all the
finite-dimensional marginals of n have the same zero sets as the corresponding product measures.

2. wucris can be infinite in the general ergodic case, for instance if the environment is periodic: an

. _1 1
exa‘mple 81 = 56(...,(4)1,0.)2,&)1,(4)2,...) + 55(...,0.)2,0.}1,(4)2,&)1,...)'

Equipped with Lemma 2, Theorem 1 for n € M{(X) "X follows readily by standard large deviations
techniques (see [7] for a detailed proof). Proposition 1 allows one to extend the proof to n €
ME(2)E \ M¢(2)HK, and hence to complete the proof of Theorem 1. We note that the key to
the proof of Proposition 1, cf. [7], is again a hitting time decomposition. We give here the proof
of Proposition 1 for the particular case A < 0. The general case is more involved (one has to care
about the integrability which allows us to take expectations in the last step of the present proof)

and may be found in [7].

Proof of (6) for A < 0: Let
POw) =By (1, co0) - (18)
Note that for A <0, $(\,w) < 1 while it is easy to check that because 7y(1) = 0, one has also that

@(A,w) > 0. It is not hard to see that the same type of recursion as in (13) (using the indicators

in the definition of ¢!) leads to the formula
P w) = (1 —w)e +woe §(A, ) B(\, w) . (19)

One obtains from this recursion that, n-a.s.,

e o\ w)

P(A, W)@ (A, Ow) = o

- PO(‘U) )

10



and similarly from the equation before (14) that, 7-a.s.,

e (A, w)
wo

po(&))(p()\,w)go(/\,a_lw) = - 1.

Hence, n-a.s,

e rp(\w) |

po(@) (1= B\ w)e(\,07w) e\ w) = po(w)e(hw) — G\ w) + ¢ w)

wo
= (1 - (,0()\,(4))@()\, gw))(ﬁ(Aaw) .
Therefore, n-a.s,

log po(w) + log (X, w) —log (A, w) = log(1 — @(, dw)ip(X, w)) — log(1 — B(X, w)p(X, 07 w)) .

Integration with respect to 7 (due to the stationarity of 7, the integral of the r.h.s. vanishes!) yields
(6). ]

We conclude this section by noting that given Theorem 1, the proof of the quenched LDP forX,, /n

in Theorem 2 is standard by renewal duality: we have

X T, 1
P, (—nNU)sz(Tm,Nn):Pw( "”~—> (20)
n nv v
hence
1 X 1 T, 1
—log P, (_” ~ v) ~v—logP, ( LN —) ; (21)
n n nv nv v

leading to Ifl(v) = vI1 (%) This argument can be made precise, we refer to [7].

2.4 Annealed LDP’s - sketch of proofs.

Introduce the notation f(\,w) := logE, (e’ 1,, c00) = log (A, w). In what follows, wmin, Pmax,
etc. are always defined in terms of a, whereas if aZ € M{() ™K then At is defined as in Lemma
2, while if oZ € M{(Z)E \ M{(Z)HE then Arig := Aris (%)), Also, unless denoted otherwise,
expectations are taken with respect to aZ or P,z. We recall that M;(X) is equipped with the

topology of weak convergence, and define the compact set
Do :={p € M (2)E : supp g C supp a}.

The following lemma, whose proof can be found in [7], will be needed in the derivation of the

annealed large deviation statements.

11



Lemma 3. Assume oZ € M{(%)K is non-degenerate. Then, the function (u, A) — [ f(\, w)u(dw)

is continuous on Dy X (—00, Acrit)-

Sketch of proof of Theorem 3 We sketch the proof of an upper bound for % log P (% E?ZI T < u),

where 1 < u < oco. We have, for A <0,

1 & n A
P (ﬁ jz::lTj < u) <E (exp (AJZZ:I Tj) 1Tj<w7j:1,___7n> e (22)

n n
E (exp (A Z Tj) 1Tj<oo,j:1,...,n> = E H Ew <e)\‘rj 1Tj <oo)>
j=1

But,

where R, = Z o 00iw € M1(%) denotes the empirical field.

Since the distributions of R,, satisfy a LDP with rate function h(-|aZ), Lemma 3 ensures that we

can apply Varadhan’s lemma (see [10, Lemma 4.3.6]) to get

l1msup — logE (exp (n/f(/\,w)Rn(dw))> < sup [/f (A, w)n(dw) — (n|az)] . (23)

n—00 neEM; (X

Going back to (22), this yields the upper bound

IN

inf sup [/f (A, w)n(dw) — h(na?) —)\u]

n—oo N A<0 ne Ms

msup — 10 - E Tj u
p g et J =

= —sup inf
A<0 nEMF (%)

M= [ FOvw)n(do) + hiala®)] . (20

Since u — — [ f(\, w)p(dw)+h(p|aZ) is lower semi-continuous and M (X) is compact, the infimum

in (24) is achieved for each A, on measures with support of their marginal included in K, for

12



otherwise h(n|a?) = co. Further, by (16), the supremum over A can be taken over a compact set
(recall that oo > u > 1!). Hence, by the Minimax Theorem (see [10, Pg. 151] for Sion’s version),
using the fact that the expression in the r.h.s. of (24) is convex-concave, the min-max is equal
to the max-min in (24). Further, since taking first the supremum in A in the right hand side of
(24) yields a lower semicontinuous function, an achieving 7 exists, and then, due to compactness,
there exists actually an achieving pair X,7. One then checks, using approximations of stationary

measures by ergodic ones (such that h(-|aZ) converges along the approximating sequence), that

inf  sup ([)\u — /f()\,w)n(dw)] + h(n|az)>

neM;i (2)¥ x<o

= inf  sup (
neEM; (2)X x<o

yu— [ F0vw)n(do)| +hria™)) (25)
Then, the r.h.s. of (23) equals

. Z _ . . T, Z
= ant s (v [ O] +hla®)) = = int - int [1590) + hoja®)] (20

where we used

il;% [)\u—/f(/\,w)n(dw)] = Ui]I%EAI,;’q(w). (27)

Hence,

1 1 &
: - - . < < 3 : T,q Z — 3 T, .
hgi)sup - logP (n jE_l 7; < u) < l}}rgme 1?(fE)K [In (w) + h(n|a )] J]I%EIQ (w). (28)

This completes the proof of the upper bound for the lower tail (the case u = 1 being handled

directly by noting that n ! 7-17; < 1 implies that 7; = 1,7 = 1,...,n). A similar argument
holds for the upper tail % log P (% 2?21 Tj > u), and then, once one checks that I7>%(:) is convex,

the upper bound in Theorem 3 is established.

The lower bound in the LDP for T}, /n is proved by a standard change of measure, and we omit it
here. Finally, the LDP for the distributions of X,,/n is derived by the standard duality from the
hitting time LDP, exactly as in the quenched case.

Remark

For simplicity, we have restricted ourselves here to product measures. What we needed in the
proof was the process level LDP for the empirical fields and an approximation property used in the
proof of (25). In fact, these two requirements lead to mild assumptions on ergodic 7 under which

Theorem 3 holds; we refer to [7] for details.
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CASE A: Recurrent walk or CASE B, transient to right, zero speed
1 T T T T T T T T

\ —--—- quenched, - annealed
08F i

9 10 11

2.5 Properties of the rate functions

The various rate functions for the RWRE can have rather different shapes according to the law of
the environment. A detailed discussion (and figures!) of the rate functions 179, I7¢, If, I3 can
be found in [7]. Since the rate functions for the positions are simple transformations of the rate
functions for the hitting times, we discuss here only the latter. Further, we limit ourselves here to
some intuitive arguments that explain the shape of the quenched rate functions. The analysis of

the annealed rate function is technically more involved.

It turns out that the shape of the rate function I7>? shares many properties with that of Cramér’s
rate function for positive, i.i.d. random variables Y7,Y>,.... More precisely, let Y7,Y2,... be
positive, i.i.d. random variables, let A(A) := E (exp(AY7)) < oo and

A*(y) == sup[Ay — A(N)]

AERR

Then A*, which is the rate function for the LDP of n=! _% ; Y;, is convex, and we have the following
(ct. [10]):
Case 1
Assume E[Y7] = co. Then A*(y) > 0 for all y > 0, A* is decreasing, and limy_,o, A*(y) = 0.
Case 2
Assume my = E[Y1] < oo and E(exp(AY7)) = oo for all A > 0. Then A* is decreasing for
0 <y <mgand A*(y) =0 for y > my.
Case 3
Assume myg := E[Y1] < oo and, for some Aqi; > 0, E(exp(AY7)) < oo iff A < Agpit- Then A* is

decreasing for y < my, increasing for y > mg, A*(my) = 0 and A*(y)/y ed Acrit-

Note that 71,79, ... are independent, but not identically distributed under P,,. However, the shape
of the rate function I;>? is the same as if they were i.i.d. Since a single picture is worth more than

a thousand words, we include a plot of I;> and I»* for the various possible cases.
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Figure 1: Shape of rate functions for hitting time, quenched and annealed
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Case A

(log po) = 0, i.e. (Xy) is recurrent. Then E, (1) = oo a.s. and I;*? has the same shape as A* in
Case 1 above.

Case B

(log po) < 0 and Ey(71) = oo, i.e. (Xp) is transient to the right with zero speed. Again, I7>? has
the same shape as A* in Case 1 above.

Case C

Let 1 be a product measure, wmin(n) < 1/2, wmax(n) > 1/2, assume 7 is not concentrated on one
point and (log pg) < 0, i.e. (X,,) is transient to the right with positive speed and ”mixed drifts”.
Then, E(r;) < oo and, for 7-a.a. w, Ey,(exp(Ar1)) = oo for all A > 0, cf. Lemma 2, and I7»9 has
the same shape as A* in Case 2 above.

Case D

Let 1 be a product measure, ppmax(n) < 1 and assume 7 is not concentrated on one point, i.e. we
have “all drifts to the right”. This implies that (X,,) is transient to the right with positive speed.
Then E(71) < oo and there is A¢ig > 0 such that, for n-a.a. w, E,(exp(Ar)) < oo iff A < Mgy, cf.
Lemma 2, and I;? has the same shape as A* in Case 3 above.

The case where (X,,) is transient to the left is slightly more complicated to describe (71 can be

infinite). We refer to [7] for details and to Figure 1 for a qualitative figure.

The rate function Ij! is given by Ii(v) = vI79(1/v). In particular, the flat piece of I77(u) for u
large in Case C leads to a flat piece of I{(v) for v between 0 and v, and the linear piece of 179 (u)
for u large in Case D leads to a linear piece of !(v) for v small.

In order to get I]l(v) for v < 0, we have to consider I,"™ instead of I;»4, cf. (8).

Remarks

1. In Cases C and D, we have the same behaviour if 5 is non-degenerate and locally equivalent to
the product of its marginals. This rules out the case of a periodic environment. Our LDP covers
the case of a periodic environment, but the shape of the rate function can be different, since we

may have E, (exp(A\71)) < oo for all A > 0, cf. Lemma 2 and the remarks following it.

2. Returning to the i.i.d. case, since Y7,Y5,... are positive, the probability that the arithmetic
mean is smaller than expected decays always exponentially - we have A*(y) > 0 for y < my.
Intuitively, in order to have 1/n) ;" ;Y; < mg, all the random variables Y7,Y3,... have to be
small, whereas for 1/n Y77 ; Y; > my, it suffices that one of the Y; is very large. This explains,

in terms of “extremal events” for the 7;, why there can only be a flat piece of the rate function I

between 0 and v,: “speeding up” the RWRE (which corresponds to 1/n) - ; 7; = T, /n being
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small!) has always an exponentially decaying probability, while the probability of “slowing
down” (which corresponds to 7T;,/n being large!) can decay slower than exponentially. Already
in the “toy example” of i.i.d random variables Y;, one can see that various normalizations are
possible, depending on the tail of the random variables Y;, cf. [33]. This corresponds to the
subexponential asymptotics for the RWRE.

3. Considering the rate function I,"™, we see that due to Proposition 1, I is symmetric in Case
A, ie. if (logpo) = 0, we have I7(—v) = I(v). This symmetry is not at all obvious, since 7_;

and 7y do not have, in general, the same distribution!

3 Annealed LDP’s - subexponential speed

In this section we concentrate on the situation where n = a%

, i.e. the environment consists of
ii.d. random variables. We further assume that (p) < 1, hence the RWRE is transient to +o00 with
strictly positive speed v,. As seen in Section 2, the rate functions IZ, Iy for the random variables
X, /n, both in the annealed and quenched situations, vanish on the interval [0,v,]. Our goal here

is to describe, following [9] and [35], the appropriate large deviation results in this regime.

How can the walk deviate significantly from its almost-sure limiting speed v4?

For ordinary RW, this is exponentially unlikely and given that such a deviation has occurred, it
is most likely to arise from movement at an approximately constant different speed. For RWRE
there are other possibilities- large deviations can arise from relatively short, atypical, segments in

the environment (“traps”).

The next two theorems characterize the subexponential slow-down probabilities P(n™'X,, € G)
in the mixed-drift cases for any non-empty open G C (0,v,) which is separated from v,. A
polynomial rate of decay is obtained when a negative local drift is possible, whereas for environments
which allow only positive and zero drifts, the large-deviation slow-down probabilities decay like
exp(—Cn'/3). These theorems (without the precise upper bound in Theorem 6) are taken from [9],
while the derivation of the precise upper bound of Theorem 6 (and, thereby, the existence of the

limit in Theorem 6!) is due to [35].

Theorem 5 (Positive and negative drifts) (/9, Thm. 1.1]) Suppose that (p) < 1 and co >
Pmax > 1. Then, there exists a unique s > 1 satisfying (p®) = 1 such that for any open G C (0,v,)

which is separated from v,

. 1 1
nh_)nolologP(n X,€G)/logn=1-5s.
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Theorem 6 (Positive and zero drifts) (/9, Thm. 1.2], [35, Thm. 2]) Suppose that (p) < 1,
but pmax = 1 and a({1/2}) > 0. Then, for any open G C (0,v4) which is separated from vg,

lim 73 log P(n"'X,, € G) = —g inf (1 v/va)' | loga({1/2))/*
v

n—oo

We sketch now the proof of Theorem 5. Since ppax > 1, the existence and uniqueness of s are due
to the strict convexity and monotonicity of the map A +— (p*). Maybe not surprisingly, hitting

time decompositions are crucial throughout the proof.

We begin by describing the proof of the lower bounds. Essentially, the same proof works for all
sub-exponential LDP’s, both quenched and annealed, in different regimes. The strategy is to find
a “trap”, i.e. an interval where the random walk spends a lot of time, so that the probability of
being slower than expected will not decay exponentially. In Theorem 6 and Theorem 8 below,
this will be simply be an interval I consisting of fair coins, i.e. w; = 1/2 for all ¢ € I. The main
difference between the annealed and quenched setups is that the fluctuations in the environment
are of different order. This can be seen by comparing the proofs of the lower bounds in Theorem
6 and Theorem 8 below. While in the annealed case, we have, with probability «(1/ 2)”1/3, an
interval consisting of fair coins of length O(n!/?) at the origin, we have to use an almost sure limit
law (here, the Erdos-Renyi law for longest runs) in the quenched case, to obtain a “fair” interval
whose length is of order logn. In the proof of the lower bound of Theorem 5, the fluctuations in
the environment are given by the extreme values of the random variables {kRy} below.

For y € Z, let T, = min{n : X,, = y}. Let X, denote the Markov chain (reflected at 0), initialized
at zero, with the same w-dependent transition kernel as in (1) but now with the value of wy set to

be wg = 1. Let

Ty =inf{n: X, =k} (29)
and
m+k
Ri(m) =k™" ) logp(i), with Ry = Ry(0). (30)
i=m-+1

The following tail estimates for T and for L, = max{y — X,, : n > T,}, the longest excursion of

the RWRE path to the left of y, are straightforward:

Lemma 4. Foralln, k>1,y € Z, and any w,

T _ o= (k=1)Ri_1yn {p)*
Pw(Tan)Z(l € ) ,P(Lka)§1_<p>.
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Since G C (0,v,) is open and separated from v,, it suffices to establish the lower bound for

G = (v —27v,v) for 0 < 2y < v < vs. The event n 'X,, € (v — 2v,v) contains the event

{(v —2y)n

< Ty < n, the excursion distance L, ), <yn, and Ty > n} ,
Va

namely, that the RWRE hits (v — y)n at about the expected time, from which point its longest
excursion to the left is less than yn, but the RWRE does not arrive at position vn by time n.
By Solomon’s law of large numbers, P(T(,_,), € ((v — 2v)n/va,n)) — 1 as n — oo. Set & =
1 — (v —27)/ve > 0. Since T(,_,), is independent of {w, : x> (v —-)n}, it follows by stationarity
that

P(Tyn > n|T(y—_)n € ((v —27)0/va,7n)) > P(T,, > &n) .

Hence, by the exponential bound on P(L(,_,), > yn) (see Lemma 4), the lower bound holds as
soon as we show that

hnn_l)%gflog P(Ty, >&n)/logn>1—s. (31)

To this end, let y5 = (p* % logp)/(p*~°) for § > 0, and note that for every § > 0 small enough
ys is finite and positive. Applying Cramér’s theorem to the i.i.d. real-valued random variables
{log p(z)}zcz gives

P(Ry_1 > ys) > e Gs¥s o)k a5 | 5 o0 (32)

where s5:= 5 — & — (y5) " log(p*~°). Choose

1
k=k(n) =1+ 2"
vs

so that e~ (ssusto(W)k — p=ss+o(l) 55 1 and k tend to oo , and consider the event

= : _ > .
Ap = {w LA Ry—1(mk,w) > ys}

Since {Ry_1(mk)}m>o are i.i.d. variables, we obtain from (32) that

e 1 .
lim inf Tog logP(Ay) > lim inf Tog

log (%n—%) =1 s5. (33)

Decomposing the event 4,, according to m* = min{m > 0 : R;_;(mk) > y} and ignoring the time

which the chain X, spends outside [m*k, m*k + k), we get by stationarity that

P(T., > ¢n|A,) > inf P,(T\ > )
(T'yn > &n| )—kaf?(w)zyé (T) > &n)
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By Lemma 4,

inf  Py(Ty>¢n) > inf (1—e —(k=Dzy(Ent1) > (1 — pl)EntD) (34)
w:Ry_1(w)>ys 2>Ys

Combining (33) and (34) and taking d | 0 (for which s; — s), we establish (31), thus completing
the proof of the lower bound.

The upper bound on P(n~'X,, € G) hinges upon moment estimates on the hitting times T;. To

derive these observe that Ty, = >-¥_| 7; is the sum of the identically distributed, (dependent) random
variables 7;, the law of each of which is identical to the law of 7. Let C, = E(7]) and note that

by Minkowski’s inequality for all £ > 1
E(T}]) < Cyk" . (35)

The crucial observation is that C,, < oo for all v < s. Once this is established, standard estimates,
due to Nagaev in [33], allow one to obtain the correct tail estimates for 7}, /n, and the usual duality
transfers these to tail estimates on X,,/n. We thus concentrate in the remainder of this sketch
on the derivation of the bounds on E(7{). These bounds apply more generally in the context of
Branching Processes in a Random Environment, and may be found in [9]. For the purpose of this

review, we will prove a weaker result:
Lemma 5. Assume s > 2. Then E(1;) < oo and E(12) < oco.

Proof of Lemma 5: Let Ny denote the number of excursions of the RWRE to the left of 0 before
71, and let, for 4 = 1,2,..., Ny, 7, '(4) denote the length of the i-th excursion from —1 to 0. Note

that given the environment, the random variables 7, 1(4) are i.i.d., and that their law depends on
{wj 3 j=—oo Only while, because the RWRE is transient to +o0, the law of Ny depends on wy only and
is geometric with parameter wg, more precisely, we have P, (Ny = k) = wo(1 —wo)¥, £ =0,1,2,....
In particular, under the measure P, 7, ' (1), 7, 1(2),... are independent and independent of Nj.

Using now the hitting time decomposition
71_1+Z + 75 (3) (36)
taking first expectations with P,, and then integrating over w, one concludes that, whenever E(1) <

o0,

E(r1) = 1+ E(No)(1 +E(r5 ' (1)) = 1+ {p)(1 + E(m1))
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establishing that E(r,) = (1+(p))/(1—(p)). One concludes that a necessary condition for E(7;) <
oo is s > 1, while the sufficiency is established by a truncation argument: clearly, for any 1 < M <
m’

No
TAM<1+Y (1+751 () AM),

i=1

and hence

E(nn AM) <1+ E(Ny)(1+E(r A M)),

implying that E(m1 A M) < (14 (p))(1 — (p)). Monotone convergence then yields that E(71) < co.

To see the second moment bound, let 71, 7] denote two independent (given the environment) copies

of 7. Using the decomposition (36) and

No

=1+ (1+75'(0)),

=1
one sees that if E(117]) < oo then
E(ri7]) = 14 2E(No)(1 + E(11)) + E(NoN§) (1 + 2E(71) + E(1177)) -

Since E(NoN}) = (p?), this establishes the necessity of s > 2, and, truncating and using monotone
convergence, it also establishes that E(717{) < oo as soon as s > 2. Using now (36) once more, one

checks that whenever E(72) < oo then
E(17) = 1+ E(No)(3 + 4E(r1) + E(77)) + E(N§ — No)(E(m171) 4+ 2E(11) + 1),

and again, one concludes that for s > 2, E(7?) < oo with a truncation argument, using the fact

that E(Np) < 1 and E(7y7{) < oo in this case. O

It is easy to check that one may generalize Lemma 5 by induction to other integer moments ¢ < s.
A somewhat more elegant argument, which also handles non integer moments of 71, can be found

in [9, Lemma 2.4].

We conclude this section with comments on the proof of Theorem 6. As mentioned above, the
proof of the lower bound follows the same track as in Theorem 5, this time with the contribution
to large R, coming essentially from blocks of “fair coins” of length n!/3. The argument in [9] for
the upper bound is a rather crude bootstrapping argument based on the upper bound in Theorem
5, and misses the correct constant in the exponent. The proof given in [35] which captures the
correct constant in the upper bound is too technical to present it here. Very roughly, it involves a

coarse graining of the environment into blocks of size n'/3t9 some small §, and classifying them

21



as “biased” blocks (if the empirical measure of w;-s in the block has a significant proportion of
w; > 1/2) and “fair” blocks (if not). The biased blocks serve as effective barriers, in the sense
that the random walk only rarely crosses such a block from right to left. Handling stretches of fair
blocks is done by Chebycheff’s inequality, and most of the effort is invested in proving that long
stretches of fair blocks which are shorter than the maximal stretch do not contribute much to the

tail asymptotics.

4 Quenched LDP’s - subexponential speed

In this section we turn our attention to the quenched sub-exponential regime. Maybe surprisingly,
it turns out that the annealed estimates are key to understanding the quenched asymptotics. The
next theorems are the main results known. They quantify the fact that the annealed probabilities
of large deviations are of bigger order than their quenched counterparts, due to the possibility of

rare fluctuations in the environment which may slow down the RWRE.

Theorem 7 (Positive and negative drifts) (/14, Thm. 1])
Suppose that (p) < 1, pmax > 1, and let v € (0,v,). Then, for n-a.a. w, the following statements
hold:

1. For any 6 > 0,

li71Ln_>S£p pyEy P log P, (X, < mv) = —00. (37)
2. For any 6 > 0,
1
liminf ———— log P, (X, <nv) =0. (38)

n—o00 n1—1/3—|—(5

Furthermore,

1
limsup —— log P, (X, <nv) =0. (39)

n—00 nlfl/s

One should compare the rate of decay obtained in Theorem 7 with the annealed polynomial rate

of decay (see Theorem 5) P(X, < nv) ~ n'~5.

As in Theorem 6, tail estimates are different when the drift cannot be negative:
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Theorem 8 (Positive and zero drifts) ([14, Thm. 2], [34, Thm. 1]) Suppose that (p) < 1,
Pmax = 1, and a({1/2}) > 0. Then, for n-a.a. w, and for v € (0,v,),

v

li 1087)° log P, (X,, < nw) = —|wloga({1/2})[2/8(1 — o) (40)

n—o0 n

Again, the rate in Theorem 8 should be compared with the annealed rate (c.f. Theorem 6) P(X,, <
nv) ~ exp(—Cn'/3). Theorem 7 is contained in [14], as well as the order of decay in Theorem
8 without the sharp value of the r.h.s. The exact value of the r.h.s. in (40) (and, thereby, the
existence of the limit in (40)!) are due to [34], where the authors sharpen the coarse graining
approach described in the last section for the annealed case. We concentrate in the rest of this
section on Theorem 7, and try to give a rough sketch of its proof as well as some intriguing questions

and challenges that it poses.

We begin by noting that the lower bound in (38) follows the same outline as in the annealed case,
and was actually predicted in [9]: The maximal value of all possible kRy’s (with different initial
and final points) in the block [0,nv] is kR = logn/s + Z,, where Z, is a random variable whose
length is of order 1 (but on appropriate subsequences may be arbitrarily large or small). Taking a

(random) subsequence with Z,, large yields the improved lower bound (39).

The proof of the upper bound is based on dividing the interval [0, nv] into blocks of size nl/sto A
typical such block is transient to the right, and the RWRE only rarely crosses such a block from
right to left. The annealed estimates, together with the Borel-Cantelli lemma, can be used to give
uniform estimates for the time needed to cross a block from left to right. They also allow one to
estimate how rarely a “backtrack”, i.e. a crossing from the right to the left, occurs. Then, each
such “backtrack” can be treated as increasing by one the number of blocks that the RWRE has to

cross. Taking that into account yields the quenched estimates.

Intuitively, since the random variables Z, can be made arbitrarily small on appropriate subse-

quences, one expects the following conjecture to hold true:
Conjecture 1. In the setting of Theorem 7, we have for n-a.a. w

o 1
llnIgloIéf ey log P, (X, < nw) = —00.

Together with (39), this conjecture says that there does not exist a refined LDP in the subex-

ponential regime: the random variables a, := logP, (X, < nv) oscillate according to random

subsequences given by the random environment.
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The difficulty in verifying Conjecture 1 is that, unlike in the lower bound, it is not enough to
establish that all “fair stretches” are shorter than usual: one has to show that even when all
“fair stretches” are short, a combination of several such stretches does not contribute to the tail
asymptotics. A case which we can analyze explicitly is the “two-coins case” where a; := (1) > 0
and a(p) = 1 — oy for some p < 1/2. The RWRE in this environment is a simple random walk
with drift to the left with randomly placed nodes, i.e. locations where the random walk is forced
to go right. In this case, s = —log(1 — a1)/log p, where p:= (1 —p)/p > 1. Here, (p) = (1 — a1)p
and we will assume that (1 — a1)p < 1, implying that the RWRE has the positive speed v, =
(1—{(p))/(1+(p)). While the measure o does not satisfy our standard assumption that its support
is included in the open interval (0,1), subexponential asymptotics still occur in this case. Since

Theorem 9 below has not appeared elsewhere, we present its proof with all details.

Theorem 9. Assume we are in the two-coins case, i.e. wy,w1,... are i.i.d. , wy has value 1, with

probability oy or value p, with probability 1 — 1. Assume (1 — a1)p < 1. Let u > 1/vy. Then, for

n-a.a. w,
- 1
lhni)g.}fm log P, (T, > nu) = —o0, (41)
. 1
limsup ———log P, (T, > nu) =0. (42)
n—00 nl-1/s

As a consequence, for v < vy, we have for n-a.a. w

1
liminf ———log P, (X,, < nv) = —o0, (43)

n—o00 nl—l/S

1
limsup —— log P, (X, < nv) =0. (44)

n—00 nl-1/s

(In fact, statements slightly stronger than (41), (42) hold, see (53), (79)).

Proof
1. Proof of (42) (see also [14])

Since £p(w) = inf{i > 0: w; = 1} < oo a.s., we may and will assume w.Lo.g. that wy = 1, i.e. that

we have a node at 0. Let /1 (w),#2(w), ... be the lengths of the successive intervals without nodes,
ie.

f(w) :==inf{i > 1:w; =1} (45)

U(w):=inf{i >1:wp4. 4o ,+i=1}, E>1. (46)

Let Ny(n) :=max{j: {1 +...+¢; <n} and

br() = |_max £5(w). (47)
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We will now give an estimate for the exit time of an interval without node. Let P, be the distribution
of the random walk (X)), started at z € {0,1,...,¢+ 1}, withwy =1, w1 =wy = ... =wp = p, let
Toi1:=inf{j : X; = £+ 1} and T := inf{j : X; = 0}. Then

= _m p
Pl(T0<TZ—|—1):ﬁe+1_1Z ﬁe

and

_ __ _ n 1\"
P (T >n) > Py (To < T1£+1) > (1 - ?) .

Using this estimate, we give a lower bound for P, (7}, > nu) by simply picking the largest intervals

without nodes: for each w,

. 1 [nu|+1
Py(Tn 2 nu) > Po(Ty(n)+1 = nu) > (1 — m) (48)
Theorem 2 in [8] implies that, with logy n = loglogn and logs n = log log logn,
logn logs o )
P lnax(n) > fi finitel =1 4
(ﬂ ax(n) > "ozl —ar) T ZTog(l —an) or infinitely many n (49)
and
logn logs n P )
< — =1.
P (Emax(n) S Thog(l—o)  “Tog(l —a) for infinitely many n 1 (50)
We now choose a (random) subsequence (n) such that
log ny logy 1y logng = logy ng
L max > = - — 1
ax(nk) 2 —log(l —a;) —log(l—a1) slogp slogp (51)
for all k. Then, due to (48), for each € > 0
1 x4
log Py, (T, > ngu) > log (1 — m)
_ L Stman(m) !
- nkuﬁemax(nk) P log 1- ﬁémax(nk)
1 1
> nguexp (— 8Tk _ 2 log, nk> (—1—¢) (52)
s s

for k large enough. Hence, for n-a.a. w,

1
lim ———logP,(T,, > ngu) =0

1-1
k—00 ny, /s
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and (42) follows.

Remark

More precisely, (52) implies that, for n-a.a. w, on the random subsequence nj, — oo introduced in
(51),

(log ma)"/*

lim sup =1/5
iz

k—00

og Py, (Ty, > ngu) > —u. (53)

2. Proof of (41)
We again may and will assume that wg = 1. Let N(n) := min{j : £; +... + £; > n}. Denote

Oax(n) = 1<Eg%c(n) li(w). (54)

and note that (49) and (50) still hold true if we replace £iax(n) with fyax(n). We first prove the

following formula for the exit time of a random walk with reflection at 0.

Lemma 6. Let wg = 1, w1 = wp = ... = wy_q = p < 5, Ty := inf{j : X; = £} and g(¢) =

Eo(exp(ATy)). Let g :=1—p. For A < —3log(4pq), define

1

mi= ) = 5o (e —apg) (55)
1 = —2X

Y2 := y2(A) = % e " —1/e —4pq ) . (56)

Fiz
Ae :i= Ac(€) =sup{\A>0: e > dpg, yé(e)‘yl —-1)> yf(e’\yg -1)}.

Then, for A < A;, we have

_ 6’\(3/1 — o)
9tt) = yi(eryr — 1) —yb(erya — 1) 57)

Proof Let g,(f) := E (exp(A\T)), 0 < z < £. We have g(£) = go(£) = e*g1(£), g¢(¢¥) = 1 and
9z(£) = e*pgri1(£) + €rqgp 1(£), 1 <z <£—1. For 0 < z < ¥4, g.(¢) has the form
92(¢) = Ayi + By (58)

where y; and y; satisfy, for 1 <z < £ -1, yfy, = e’\pyﬂ'1 + e)‘qyigl, and are, therefore, given
by (55) and (56). Substituting in (58) the boundary condition g,(£) = 1 yields B = (1 — Ay}) /45,

hence

L
0ul0) = Ayt + 95— (L) (59)
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Now, using the second boundary condition go(£) = e*g;(£), we compute

e)‘yQ —1
v —yf — yiyh +ryfys

A=
Finally, setting z = 0 in (59) gives

Y U1 ¢
go(0) = A+ ;' — A (—)
Y2

and a little arithmetic yields (57), as long as A < A.

(

As usual, we start the proof of the upper bound (41) with Chebyshev’s inequality. Fix C' > 0 and

let A\, = Cn~'/5. Define the (random) subsequence (1;) such that

logny,  logs nig
~ slogp slogp’

Oaiax (fg)

which is possible due to (50). We claim that

N(fig)
P (Ts, > i) < Bu(e™ T )eMumie < J[ g(6(w))e s
=1

To verify (61), we have to show that, for all k£ large enough, Az, < X:(¢;) is satisfied for i = 1,.

Because (e)‘yl —1) >y — 1> 0, it suffices to show that

vax(fig)
(21 As _
() (@) 0

Note that, since y2(0) = 1,

A
e'nyy —1 f iy 1

Since 91 is decreasing and ¥ is increasing, we have

) _ 3(0) _

q
y2(An) ~ 92(0)  p

<

=p
Using (60) and (64), we have for some C independent of &,

bavax(fig) eMryo — 1 .
(y_1> (e)‘ﬁky2 _ 1) < 'ﬁ,lc/s)\ﬁkLe_cl log 7ig =2 0,
Y2 A,
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proving (62). Taking logarithms in (61) yields
N(fi

)
log Py, (Thi, > fpu) < Y logg(£i(w)) — Aay figu (66)
j=1

Next we analyze the first term on the r.h.s. of (66). Note that, on the sequence {7}, i.e. for
A= A7), y1 = y1(A(Tik)), y2 = y1(A(7ik)),

logg(f) = —log <y2(e y1—1) B yi(etyo 1))

erMyr—y2) My — o)

IAP9N YAPON
ys(etyr — 1) yi(etys — 1)
= _log 2T T jge (1 - AT 2T 67

& erMy1 — y2) g( yb(eryr — 1) (67)

We consider, for n on the sequence {7},

1 N(n)
ni=1/s Z log g(¢;(w))
Jj=1

N(n) ooy N(n) 4 (e
1 Yy (eMy1 — 1)) 1 < Y (e y2 — 1)>
_ log — E log|1—-~——""—= 68
nl—1/s ]2_:1 ( e (y1 — y2) nl=1/s j=1 yﬁ”(e)‘":lﬂ - 1) )

The first term in (68) can be splitted again:

N(n) 4 A N(n) A
1 Yo' (e™y1 — 1) 1 N(n) . ety —1)
Tl 1/s > log< : T\l 2:1 tilogys | — | =575 log ) (69)
]:

j=1 e (y1 — y2) er (y1 — y2

Note that, for n-a.a. w,

— O] (70)

N(n) N(n)
1 _ N(n) 1 '
E ];1 e](w) T N(n) = e](w) n:o)o 1. (71)

logy2(An) = A

Since y2(0) = 1 and %5(0) = (¢ — p) !, we see that

1/s _ 1/ yé(fn): y5(6n) L
n T ogr2(n) =1 A Y T O alen) % g p
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which shows, together with (71), that the first term on the r.h.s. of (69) converges, for 7-a.a. w, to

%. For the second term on the r.h.s. of (69), we proceed similarly: Let

e)‘yl —1

p(A) = YR

There is &, € (0, A,) such that

_ (&) _ ¢ (6n)
log p(An) = log p(0) + An oEn) An o)

We have

R TR G Tt (A1 — 1) + Al — 14)
YT Ay —w2) e (y1 — yo)?

1

Using y1(0) = q/p = p, y2(0) = 1, y5(0) = (¢ — p) ', a little calculation yields

lim ' (\) = .
3@ () (g —p)?

Therefore, the second term on the r.h.s. of (69) equals

_N(n) 1/s
n " o) e T MY

!
2
# (En) — a0 n—a.a.w

Going back to (68), we have proved that

N(n) 170N
1 yy (eMyr — 1) C 2qp
_nl—l/s Z log ( n:go - q— - alc_ip»? , N—a.0w.

er (y1 — y2) —p (g

Jj=1
Considering the second term in (68), note that, for n on the sequence {7},
N(n) L5 (A N(n) €. x
yy' (eMys — 1 Yy, (e ya — 1)
- ) log <1 - %) <> }gj()\—w(’)’n)
i=1 yg (eryr — 1)

where we set

P (Uit (&)”AX‘") ryp — 1
' e T g ey — 1

(72)

(73)

(74)

Note that ¢(z) | 1 for z — 0, and 7, — 0 due to (65). Let 82 be the shift up to the next node,

n—1
ie. (#Pw)(i) = w(i + £1). Denote by RB(w) := 2 ¥ d(9m)iw the corresponding empirical field.
=0

J=

29



Note that due to our assumption wy = 1, % is an ergodic transformation. The r.h.s. of (73) is

dominated by

A 12
ey —1 Y1
eryr — lN(n)ERﬁ(m(“’) <(y2) ) Yim) (75)
Since ¢; possesses a geometric distribution,
— 1

(_el) Z 1—04191P]—041pm-

Therefore, due to (64) and the n-almost sure convergence of the empirical fields, we have for 7-a.a.

w,

limsupE 5 (2>€1 <E (ﬁel) = alﬁ; ) (76)
n—00 RN(n)( w) Y2 - 1-— (1 — al)ﬁ

Taking into account (70), (73), (63), (76), the definition of \,, the convergence of e*y; to p and

the convergence of (s, ) — 1, we see that for n-a.a. w,

N(f) A
kyy — 1
lim sup — ~1 =i/ Z log (1—%)
k—o00 Yy (e ey — 1)

N(fg) .15, mya—1 1 y1\“
< lim sup ( )nk/s)\nk - ERﬁ(ﬁk)(“’) (—> P (Vi)

k—oo Tk M My — 1 Y2

2pq _ 2¢%a2C
<aC E(p?) < — . 7
(¢—p)? () (¢=p)?(1—(1—a1)p) ()

Putting together (66), (68), (72) and (77), we have proved that, for n-a.a. w,
limsup ———— =175 log P, (T5, > fgu)
k—o0 n,
2qp 2 20 1

—— — o 0—— 4+ aiC —Cu 78
g—p  (g-p? (7%)

(g=pP1-(1-a)p

A straightforward calculation shows that the last term equals

14+ (1—ai1)g/p —u)=—C(u—1/v
T agp ~ %= CWva—w) = —Clu—1/va) .

(41) now follows since C > 0 was arbitrary. The proof of the statements involving X, /n is straight-

forward from (41) and (42), we refer to [14]. U
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Remark We have in fact shown that, for n-a.a. w, on the random subsequence 7i;, — oo introduced

in (60),

. 1 N

5 Concluding remarks

1. A setting which was not covered in the subexponential regime is that of pmax = 1 while
a({1/2}) = 0. It can be checked that in this case, the annealed large deviation probabilities can
decay like exp(—Cn®) for any 8 € (1/3,1), with the value of 8 determined by the behavior of
the measure «(-) in the neighborhood of 1/2. The same proof as in Theorem 8 then shows that

the upper quenched estimates in Theorem 8 become exp(—dn/(logn)?), withy=1/8 — 1.

2. The assumption that the closed support of « is contained in the open interval (0,1) can often
be dispensed if the support does not include both {0} and {1}. For example, in the context of
Theorems 5 and 7, it can be replaced by the weaker assumption of (p®) = 1 for some s > 1.
One place where this assumption seems essential is in the derivation of the annealed exponential
LDP’s.

3. In general, one does not know how to solve the variational problem in (11), and hence we do not
have explicit expressions for I¢ (except in certain special cases, cf. [7]) or a precise understanding
of the atypical environments leading to large deviations. Similarly, except when the results of
[35] and [34] apply, it has not been proved what is the local environment which causes large
fluctuations in the sub-exponential regime. The solution of this problem requires a more refined

understanding of the upper bound than is currently available.

4. Tt is speculated in [7], but not proved, that I7%(u) # I7%(u) for any u such that I7»9 is strictly

convex at u.

5. As in the i.i.d. environment case described in Sections 3 and 4, one may look, in the general
ergodic case, for refined asymptotics in the flat pieces of I;>? or I]l. When 7 is locally equivalent
to the product of its marginals, it is believed to exhibit the same qualitative behavior as in the
ii.d. case, that is polynomial decay in the case wmin < 1/2 < wmax and sub-exponential decay
when wpin = 1/2. Some explicit computations are possible in the Markov environment case, or

in the “two-coins” case described before Theorem 9, cf. [15].

6. The multi-dimensional case presents many challenges. Because a precise hitting time decom-

position is not available, explicit criteria for transience and recurrence, as well as formulae for
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the speed in the transient case, are not known in general. Notable exceptions are situations
where some symmetry is present, in which case one can prove CLT statements, cf. [26],[27], [3].
Under restrictions on the distribution of the environment, Kalikow [20] has proved transience
of the RWRE. Very recently, Sznitman and Zerner [40] showed that in fact, under Kalikow’s
assumption, the RWRE has a non-vanishing speed. Sznitman succeeded in [39] in obtaining
the CLT under the same assumption. The general case remains however open. As far as large
deviations are concerned, some recent results have been obtained by [47] and [38]. Indeed, when
the environment is i.i.d. and the convex hull of the support of « includes the origin, Zerner
[47] has used a subadditive hitting time decomposition to show that a quenched LDP (in the
exponential scale) holds true. Unfortunately, his results do not allow for the explicit evaluation
of the rate function, nor for the evaluation of its zero set. Many questions still remain open,
most notably what happens when 0 € convsupp g, what is the annealed rate function, and
what is the relation of the latter to the quenched rate function. In a different direction, Sznitman
[38], [39] has obtained, in the multidimensional case, some analogues of the results of Sections 3
and 4. Applications of RWRE models to model long range correlation in time series have been

suggested by Marinari et al. in [31] and further discussed by Durrett in [11].

. An analogous model for continuous time was described by Brox [5] and further developed by
Tanaka [44], and, in the multidimensional case, by Mathieu [32]. Some results concerning large

deviations for the continuous model were recently obtained by Taleb [43].

. The RWRE model we have discussed here is a nearest neighbor model. There exists some work
on non nearest neighbor models, which are much harder and exhibit some of the difficulties
present in the multi-dimensional case. Specifically, let L, R > 1 be integers, and assume that
P, (Xnt+1 =z +14| Xy = z) = py(3), with py(7) =0 for i € [-L, R], and p,(-) a sequence of i.i.d.
random vectors. Key [23] (c.f. also [28]) provided a transience or recurrence criterion based on
the evaluation of certain Lyapunov exponents. Other limit results are also available, see [29],
[30] and the references therein. It should be noted that if R = 1 and X,, — oo P-a.s., the rate
of growth of X, /n can be evaluated by mimicking the argument used in the proof of Lemma 5.

Indeed, with 7 = min{n : X, = 1}, the same recursion reveals that, whenever E(7}) < oo,

1+ B (Lol
E(Tl) — ( po(1) ) (80)

1_E (EZJPOPU) ’

po(1)

and further E(71) = oo as soon as the r.h.s. in (80) is not strictly positive. As in the nearest

neighbor case, one concludes that if X,, — oo, P-a.s., it holds that X,,/n — 1/E(n), P-a.s.
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