A Metric Entropy Bound is Not Sufficient for Learnability
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Abstract

We prove by means of a counterexample that it is not sufficient, for PAC learning under a
class of distributions, to have a uniform bound on the metric entropy of the class of concepts

to be learned. This settles a conjecture of Benedek and Itai.
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1 Introduction

Let (X, B) be a measurable space. Let P be a class of probability measures on (X, B). Let C
(the “concept class” in the language of learning theory, as introduced in [6]) be a subset of B.
Suppose one is given a sequence of i.i.d., X valued random variables X, ..., X,, distributed
according to P"™, where P € P. In addition, for some unknown ¢ € C, one is given data
(X1,I.(X1)),...,(Xn, I.(Xy)) which we henceforth denote by Dy (c). The problem of learning
consists roughly of the question “given C,P, how large should n be for approximating ¢ with

high accuracy and low probability of error based on the data Dy (c)?” In mathematical terms,
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assume that (X, B) is a Borel space, and define on B the pseudo metric dp(cy,ca) = P(c1Aey).
Let T be the algebra of all four subsets of {0,1}. A learning ruleis a map 7" : (X x{0,1})"* — C

such that, for any ¢ € C, any P € P, and any € > 0,
{(X1,-y Xnyi1yeenyin) = dp(e, T"((X1,%1),---,(Xn,in))) > €} € B" T". (1)
It follows that for any ¢,d € C,
(X1, Xn) : dp(d,T"(Dy(c))) > €} € B (2)

We say that the concept class C is PAC learnable under the class of probability measures P
(in short: C is PAC learnable under P) if, for every € > 0, § > 0, there exist an integer

n =n(P,C,¢,d) and a learning rule 7™ such that, for any P € P and ¢ € C,

PM({(X1,...,Xp) : dp(c,T"(Dn(c))) > €}) <. (3)

The notion of learnability in the form (3) has recently received much attention (e.g., see
[1, 4, 6]), and in the learning literature is referred to as Probably Approximately Correct (PAC)
learning, for reasons obvious from its definition. Intuitively, in PAC learning one attempts
to achieve a good prediction on future samples, after seeing some finite number of samples,

uniformly in P € P and c € C.

Sufficient and necessary conditions for PAC learnability are by now well known for some
cases. Let B(c,e) = {¢€ € B : dp(c,¢) < €}, and define the e-covering number of C with respect
to P by

N(e,C,P) =inf{N : Jecy,...,cn € B such that C C UN ,B(c;,€)}.

The balls B(c;, €) above are said to form an e-cover of C, and log N (¢,C, P) is often referred
to as the metric entropy of C with respect to P. A necessary and sufficient condition for
PAC learnability of C in the special case where P is a singleton, namely P = {P}, is that

N(e,C,P) < oo for all € > 0 (see [2] and, in greater generality, [7], pp. 149-151). Moreover, if



P = M;(X), the space of Borel probability measures on X, then (under suitable measurability
conditions) a well known necessary and sufficient condition for PAC learnability of C under P is
that the VC dimension of C be finite, which turns out to be equivalent to the condition that, for
all € > 0, suppepy, () N(€,C, P) < 0o (see[1, 3,4, 7,8, 9] for proofs and additional background
on the VC dimension and metric entropy). The similarity between these two extreme cases led

Benedek and Itai to conjecture in [2] that the condition

Ve > 0, sup N(¢,C, P) < o (4)
PcP

is necessary and sufficient for the PAC learnability of C under P. While necessity is fairly
obvious, the sufficiency part is less so because of the difficulty in simultaneously approximately
determining ¢ € C and P € P. (We mention that if (4) is replaced by the stronger condition
that there exists a fixed finite e-cover of C under all P € P, then the sufficiency is just a
standard extension of the single measure case. Some cases where (4) is sufficient are described
in [5].) It is the purpose of this note to show, by a counterexample, that (4) is not sufficient in
general for learnability. The question of finding a necessary and sufficient condition for PAC

learnability of C under P remains open.
2 A Counterexample

Let @ = X = {0,1}, let X! denote the coordinate map of X € X, and let B be the Borel
o-field over X. Let (p1,p2,...) € [0,1]* be defined by p; = 1/logy(i + 1) < 1, and note that
for every finite n, 332, pf' = co. Identifying p; = P(X* = 1), the vector p1,ps,... induces
a product measure P; on the product space X. For any measure P on X, P" denotes the

product measure on X" obtained from P.

Let o denote a permutation (possibly infinite) of the integers, i.e. o : N — N is one to one
and onto, and define P, as the measure on X' induced by (py-1(1),Ps-1(2),---)- The ensemble

of all permutations is denoted X. Thus, P, (X o(i) = 1) = p; and, if o is the identity map, then



P, equals the P; defined above.

Nowlet P={P,,0 € T}, letc;={X € X : X* =1}, and let C = {¢;, i € N}. It is easy to
check that for any P € P, N(¢,C, P) < co. Since any ¢; with p,-1(;) < € satisfies dp, (ci,0) < e,
we have that for any P € P,

N(e,C, P) < 2.

It follows that suppep N(€,C, P) < co. We now claim
Theorem 1 C is not PAC learnable under P.

Proof: We use a random coding argument. Suppose that the theorem’s assertion is false.
Then, for each € > 0, > 0, it is possible to find an n = n(e, d) and a learning rule 7" which
satisfy (3) for all ¢ € C and P € P. In particular, for any finite k, it satisfies (3) for ¢ € C* and
P € P*, where C* = {¢c;, i = 1,...,k}, B* = {06 : o(i) =i Vi > k}, and P* = {P,, o € =},
i.e. PF are all possible permutations of the vector (pi,pa,...) which involve only the first &

coordinates. Let the error event be defined as
ers = {(X1,...,Xy) : dp, (¢, T"(Dp(c))) > €}.
(It follows from (2) that er is a measurable event.) Then, for each ¢ € C* and P, € P*,
Pl(erS) < 4.
In particular, if Q is any probability measure on the finite set {(o,¢c) : o € I*, ¢ € C*}, then
Eq(P7(er)) <6. (5)

Now choose @ such that Q|x is uniform over £* while ¢ = (1) (e, Q(o,c) =1/klif o € Tk
and ¢ = c4(1), and Q(o,c) = 0 otherwise). This Q forces the true concept to involve the

coordinate of maximal probability (where in fact the probability is 1) in P,. Note that by



our choice of @, if € < 1 — 1/logy(3) = min;s1dp,(ci1,¢j), then, when (o,c) are distributed
according to @,

dp,(c,¢) <e=>c=E=c,1) Q as. .
Thus, in this set-up, @ a.s.,
erf, = {(X17 s 7Xn) : C 7é Tn(Dn(C))} :

Using the notation 0 X to denote the element of X with coordinates (¢ X)! = X o7'(0) and 6D,

to denote the corresponding permutation on Dy(c) when ¢ = ¢,(1), i-e.,

oD,

((0 X7, Lo, (6X1)),..., (0 Xn, Ic‘,(l)(UXn)))

((0X17161(X1))7""(UXmICl(Xn)))v (6)

we have

Eq(Fs(erg)) = EqQ(Fs(c# T"(Dn(c))))

= Bo(PR(coy £ T(Daleany)))

= EppEQ(le, ) £Tn(oDn)) - (7)

For given vectors & = (z1,...,%,) € X" and X = (X1,...,X,) € X", denote by S(X,Z) the

set of permutations o € X* such that X = #. (Note that for many pairs (X, %), S(X, %) is

empty.) It follows from the definition that, for o € S(X, &),

oDy = ((mla Ic(l)(Xl)’ AR (IEn, Ic(l)(Xn)))

By the construction of Q, the distribution of o conditioned on S(X,#) is uniform there. Let
now

JX={i<k:X;=1Vj=1,...,n}



and

JE={i<k:ai=1Vj=1,...n}.
S(X,#) is non-empty only if [J%| = |JX|. When X has distribution PP, we have 1 € JX
almost surely, so |JX| > 1. Let 0, € I* be a fixed permutation such that o.(i) € JZ if i € Jx.
Decompose each permutation o € S(f,f) into 0 = o, 0 gp 0 04, With o, : JX 5 JX, and
0, equals the identity on {1,...,k}\ JX while oy : {1,...,k}\ JxX 5 {1,...,k}\ JX and o,
equals the identity on JX. This is always possible because all permutations in S ()2 , &) must

satisfy 0 X = Z. Note that whenever S(X, &) is non-empty then |o4| = \J)?|!, where
A = A =
oa={o,:0€8(X,%)}, op={op:0€S(X,7)}.
Using now (7),

Eq(Py(erg)) = Epp (Z EQ(17n(om,)e,uy)|0 € S(X,f))Q(S(X,f))>

(8)

= op€o o4€0 1 " (ocDn)#c
- (ZQ(S(X,E’))Z scop oo TP "‘”)) ,
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where in the last equality we have used the uniformity of the conditional distribution over
S(X,Z), and the sum over Z is taken over all different vectors in X™. By (6), oD, is constant
for o € S(X, &), so

T"(oDy,) = cr

for some cp = cp(X, %) € C not depending on o € S(X,Z). Here cp(-,-) is measurable by (2).
Thus, since the number of permutations o € o4 for which 7"(¢D,,) = cr is at most equal to
the number of permutations in o4 which have a prescribed index in J X unchanged,
Z 1T”(o’Dn)7éc(,(1) > (lJX| - 1)(|JX| - 1)'
[ LASI '

whereas

3 o1= 7).

[LASI Y



It follows that, for any n > 1,

JX| —1)(1I%| - 1) 1 1 ;
= — 0o my ) = 0= - P < ),

Eq(Pg(ery)) > Epy

It remains therefore only to show that \Ji | may, with high probability, be made arbitrarily
large by choosing a k large enough. But this is obvious because, by the Borel-Cantelli lemma,

using Xi2 (X%, ..., XL,
PMX'=(1,...,1) infinitely often) = 1

since Y2 PI”()Z:z = (1,...,1)) > > p = oo. Thus, for any 7, one may find a k large

enough such that PI"(|J)? | <mn) is arbitrarily small. 0

Remark: Note that we have actually shown that, for any fixed n and any e < 1 —1/log,y(3),
one may construct a P and a C such that the probability of error is arbitrarily close to 1. By

defining p;, @ > 2 to be smaller, we could also take any € < 1.
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