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ABSTRACT Precise analytical asymptotic exponential rates of error, and bounds on those
rates, for differential multiple-phase-shift keying (DMPSK) systems that include post-detection
integration are provided. Easily computed bounds on these rates are provided, both in the case
of floor bit error probability (i.e., with no additive noise) and in the case of weak additive noise.
The derivation uses the theory of large deviations and illustrates its applicability to the analysis of

communications systems.

1 Introduction

An important part of the design of communication systems involves the evaluation of their per-
formance, both for a given design and on a comparative basis. Analytic expressions for the per-
formance, when measured in terms of error probabilities, are often unavailable, and one resorts to
numerical computations and, frequently, to simulations. While these methods are sometimes sharp
and powerful, a comparative study of different designs and a study of the importance of various

parameters in the system becomes impossible.

One of the possibilities for overcoming this difficulty is the use of asymptotics. Besides being
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interesting on their own merit, the asymptotics of the performance of a system when some parameter
approaches zero (e.g., the noise-to-signal ratio) may serve as the basis for a comparative study and
may help in gaining an understanding of the various parameters that influence the behavior of the

system.

An often used method for obtaining asymptotics of the performance of communication systems
is the Chebyshev bound. This time-honored technique yields upper bounds on probabilities of
errors, but one is left to guess about their tightness. Thus, a comparative study of performance
based on the Chebyshev bound may not lead to definitive conclusions nor to a reliable comparison

between different designs.

In recent years, a mathematical method, called the large deviations principle (LDP) was de-
veloped in order to complement the available upper bounds obtained from Chebyshev’s inequality.
This method has found many applications in various aspects of mathematics, statistics and engi-
neering (for representative examples and a gentle introduction to the theory, see [2].) We shall use
[4] as our standard reference, for both notation and terminology. The bibliography of [4] should be
consulted for references to this vast field. It is our goal in this paper to provide an example where
this method can be successfully applied in communication theory, yielding analytic results that
are otherwise not available. This example also illustrates the type of analytical machinery that is

required in order to carry out a complete analysis of large deviations for a given system.

The vehicle that we have chosen for our presentation is the analysis of bit error probabilities
in differential multiple phase-shift-keying (DMPSK) over an optical channel. DMPSK is an often
used modulation technique for communication systems operating over a coherent optical channel.
For background and a description of typical applications, see [8],[11],[12]. This paper deals with
the asymptotic performance of DMPSK receivers that incorporate post-detection integration in the
presence of both phase noise and additive noise. The evaluation of this performance is not a new
question. For previous work, see [1],[6],[7],[9],[10]. We return below, in the concluding section, to a

comparison of our results with theirs.

We model the optical communication channel as follows. Let {7} denote the sequence of
modulating phases, with ~y taking one of the values 27l/M, for [ = 0,..., M — 1. During the k-th

keying interval (time slot of length T"), the information is contained in the difference {7y — Yg—1}-



During the k-th time slot the transmitted signal is
s(t) = cos [wct + 0+ + \/Ew(t)] for ¢ € [(k — 1)T,kT). (1.1)

Here 6 is a fixed random phase, distributed uniformly over [0,27), and w. denotes the carrier
frequency. The phase-noise process, which arises from the spectral noise of the laser generating the
signal in the optical channel, is modeled by a standard Brownian motion w(t) (measured in units
of radians). € is a dimensionless small parameter related to “signal-to-noise ratio”. (There is no
commonly accepted definition of signal-to-noise ratio for this model; however as € becomes smaller,

the change in the phase noise during a keying interval becomes smaller compared with the signal).

The signal is observed in the presence of additive Gaussian narrow-band noise; i.e. the received
signal (in units of volts) is

r(t) = s(t) + v eNon(t) (1.2)

where n(t) is a narrow-band Gaussian noise of bandwidth 27W centered at w,, normalized to have
total power of one square volt, and Ny is a dimensionless parameter relating the strength of the
phase noise to that of the additive noise. This additive noise models additional distortion at the
input of the channel and in the electronic components of the front end of the receiver, and its

influence on performance is typically weak when compared with that of the phase noise w(t).

We comment here on the choice of the same asymptotic parameter € in both equations (1.1)
and (1.2). The reason is that, in situations where the additive noise is much weaker in the limit
than the phase noise difference during one keying interval, one can show that its effect on the
exponential decay of the probability of error is negligible, corresponding to the case Ny = 0. On
the other extreme, if the phase noise difference during one keying interval is weaker in the limit
than the additive noise, the channel behaves like a channel with additive Gaussian noise alone, and
the asymptotics of the bit error probability in such channels are well known. Thus, the interesting

case of the optical channel is that in which the two noises are comparable.

Implicit in our model is the existence of an IF bandpass filter, which has the effect of both
filtering the additive noise and of distorting the signal s(¢). Throughout the analysis here, we take
the common road of neglecting this distortion, which is justified by the relatively large bandwidth

of the IF filter. The techniques presented can also deal with the inclusion of the IF filter, albeit at



the cost of a more involved analysis. For an explicit study of the influence of IF filtering on the

floor bit error probability (i.e., the case with no additive noise, Ny = 0), see [10].

The receiver, at the IF level, is depicted in Figure 1. It forms the quadrature signals I, Q) and

Figure 1.1: Receiver structure

the phase-difference estimate y; — yz_1 = angle[Iy —iQy]. Let n(t) = ny(t) cos wet + na(t) sinwet,
where ny,ny are the baseband noises of bandwidth 7#W, unit power, and covariances Ry, (1) =

Ry, (7). Then

ol = [T [eos(8 + i + vew(t)) + VeNons ()][cos(8 + ye—1 + vew(t — T)) + v/eNona (t — T)] dt
+ ST [sin(8 + i + Vew(t)) + veNona(t))[sin(8 + yx—1 + vew(t — T)) + VeNgna(t — T)) dt
(1.3)
and
2Qr = JET [cos(8 + 5 + vew(t)) + veNgny (£)][sin(0 + vh—1 + vew(t — T)) + veNona(t — T)] dt
- ’““ [sin(8 + 7 + vew(t)) + veNona(t)][cos(8 + i1 + vew(t — T)) + VeNons (t — T)] dt
(1.4)

where, as is usual, we have filtered out the double frequency terms.

To compute the error probabilities, we shall assume that v, = 7,1 = 0. When Ny = 0, this
loses no generality. In general, the assumption v = ;1 = 0 does not influence the analysis much.

Note that one may always assume that ;1 = 0.

The error event is the event

E= {Iksm——chos—<O}U{Iksm +QkC°SM<O}



Note, by symmetry and the existence of densities, that

P(IkSin%—QkCOS% <0) =P(Iksin%—l—chos% <0)

Hence,

. ™ ™ . ™ 7T
P(Iksmﬁ —chosM <0)<P(E) < 2P(Iks1nM —chosﬁ <0),

and, since we are interested in the asymptotics of the probability of error P(E) (specifically, the
limit of elog P(E) as € — 0, which turns out to be finite and positive, see Theorems 3.1, 4.4, 4.17),

it is enough to neglect the factor 2 and compute the asymptotics of

1>

 2P(I, sin% — Qy cos % <0), (1.5)

i.e. the limit

ll_l’)l’(l) elog P, = lgr(l) elog P(E).

The organization of the paper is as follows. In section 2 we recall some preliminaries from the
theory of large deviations. The reader is referred to [2],[4],[5] for a fuller account. In section 3, we
derive the so-called floor limiting bit error probability. In section 4, we derive bounds on the bit
error probability in the case of large signal-to-noise ratio in the presence of weak additive noise, and
we illustrate their evaluation and tightness by means of a numerical example. Section 5 is devoted
to a discussion and conclusions. Some of the proofs of the mathematical relations used are deferred

to the appendix.

Acknowledgment We thank an anonymous referee for his comments concerning the presentation

of the results.

2 Large Deviations — Preliminaries

We follow here the notations of [4]. We do not attempt to present here a full account of the theory

but, rather, to present those elements that we shall use in the sequel.

We say that a functional F' on the space of continuous functions on [0, 2T is continuous if

max |¢n(t) — ¢(t)] —> O implies F(¢n) —> F(¢). (2.1)

te[0,27) n—00 n—00



For every continuous functional F' (we have in mind the particular functional F' in Lemma 2.6),

define the function Ip(z) as

1 2T
I = - inf / 2(t)dt, 2.2
F@ =5 e sy Jo & (22)

where ¢(t) = dé(t)/dt and we have implicitly assumed that ¢(¢) is square integrable on [0, 27.
That is, Ir(z) is T times the greatest lower bound on the mean square value of the derivative of ¢,
over all ¢ such that ¢(0) = 0 and F(¢) = z. The following theorem combines Schilder’s theorem

and the contraction principle of large deviations. For a proof, see Theorems 4.2.1 and 5.2.3 in [4]

or Theorem 1.3.27 and Lemma 2.1.4 in [5].

Theorem 2.3 Let F be a continuous functional. Then, for any constant a,

—égf(; Ip(z) < llgi)lélf elog P(F(vew) < a)
< limsup elog P(F(vew) < a)
e—0

— inf Ip(x), (2.4)

z<a

IN

where w denotes, as before, a Brownian motion. In particular, if igf Ip(x) = 1161<1£ Ip(x), then
z<a

li_I)I(l] elog P(F(vew) < a) = — inf Ip(z). (2.5)

z<a

The following information concerning the use of Theorem 2.3 will be particularly useful to us.

2T
Lemma 2.6 Let F(¢) = / sin[¢(t) —¢p(t —T) + n/M] dt. Then F, being the integral of a
T

continuous function, is continuous and, moreover, for a € (—T,T),

inf Ip(z) = é1<1£ Ip(z). (2.7)

z<a

Note that (2.7) holds since F(¢) = a implies that dF(¢+ 6v)/db|,_, < 0 for o(t) = —(t —
T)cos [¢(t) — ¢p(t —T) + n/M] for t € [T,2T] and ¢(t) = 0 for all other values of ¢.

3 DMPSK Performance — floor bit error probability

In this section, we analyze P, in the case Ny = 0. Our main result is



Theorem 3.1 For Ny =0,

= D 1 2T |
—Iy= 1iII(1) elogP, = —= inf d>2(t) . 52)
—)
6 {¢=f;T Sin[¢(t)—¢(t—T)+ﬁ dt<0,4(0)=0} *°

Moreover,

(3.3)

Proof: Recall that we are interested in the case v, = vx—1 = 0. To avoid repetition in the next
section, we do not yet assume that Ny = 0. By simple algebraic manipulations, one can separate

the contributions of the phase and additive noises to the total error in the following way:

IksmM _QkCOSM =Ay+By+N
where
(k+1)T
Ay = /kT sin (\/E(w(t) —w(t—-T))+ %) dt
kT
B = Vo [nl(t) sin (% + 0+ vew((k - 1)T)) _ na(t) cos (% 40+ vew((k - 1)T)>] dt

v Ve, /k :HI)T [nl(t) sin (% — 9 — ew((k — 1)T)> + na(#) cos (% — 09— ew((k — 1)T))] dt

and
N = \/E/IC:H)T [sm(% 6 — Vew(t—T ) sm(% 0 — Vew((k )]
+ \/M/(kH)T [Sln( + 6 + Vew(t ) sm(%+9+\/_w )]
+ \/m-/k+1 na(t) [cos(%—ﬁ Vew(t —T ) s(% 0 — Vew((k T))]
_ \/E/k;-i_l [cos( + 6 + Vew(t) ) (17\;+9+\/_w )]
(k-+1) .
+ €N /k ) [nl(t)nl(t—T)+n2(t)n2(t—T)] sin (M) dt
N, /k (Tk“)T [nl(t)nz(t—T)—nz(t)nl(t—T)] cos ( M) dt (3.4)

We return now to the assumption that Ny = 0, which makes By, = N = 0. Then (3.2) is a direct

consequence of Theorem 2.3 and Lemma, 2.6. Unfortunately, it does not seem that the constrained



optimization problem in (3.2) can be solved analytically, and thus bounds on it are of importance.
The bound (3.3) is a consequence of the following slightly more general lemma, which will serve us

also in the case of additive noise, and whose proof is presented in the appendix.

Lemma 3.5 Let a € [-T'sinw/M, Tsinw/M]. Define

1.2

1 . 2T ‘5
5 inf /0 #(t) dt (3.6)

(015" sin[o(0)-9(t-T)+ f; | di<ap(0)=0}
and a =T siny. Then \ )

o (2-4) <Tasz(£-v) (3.7)
(3.3) is just Lemma 3.5 in the case a = ¢ = 0. L

Remark It can be shown (for details, see [4], Section 5.4) that limp_,oo TM?Ty = 37%. Moreover,
a numerical evaluation of the solution to the optimization problem (3.2) reveals that, actually,

Ty ~ 372 /AM>T as M — oo.

4 DMPSK Performance in the presence of weak additive noise

We return now to the case Ny # 0. An inspection of the expression (1.5) for P, reveals that, if
one could get rid of the cross term N (see (3.4)), one would have only to deal with the sum of two
independent random variables, and the evaluation of the exponential rate of decay would be much
simplified. That is, if it holds that, for some ¢ > 0,

limiglf elog P(Ay + By, < —d) > limsup elog P(|N| > 9), (4.1)
€e—

e—0

then it follows that

limiglf elog P(Ag + B, < —0) < limiglf elog P, < limsup elog P, < limsup elog P(Ay + By, < 4).
€ €e—

e—0 e—0
(4.2)

While any ¢ will do, one would like to have § as small as possible in order to get tight bounds
n (4.2). We show below (see Theorem 4.17 and (4.22)) that, for weak additive noise (i.e., Ny small

enough), condition (4.1) is satisfied, and that the smaller Ny is, the smaller § can be chosen, and



tighter bounds can be obtained. Before presenting the analysis, we summarize the steps one has
to take in order to choose an appropriate § and compute the analytic bounds of this section. A

numerical example is provided at the end of this section.

1) Given T, M, Ny and the covariance of the narrow-band noise ni(t), check that Ny is small
enough for (4.23) to be satisfied. This is the regime where the cross term N appearing in

(3.4) is not dominant on an exponential scale.

2) Evaluate A¢;(IVg) by using (4.24). This measures the size (on an exponential scale) of the

cross term N.

3) Compute dmin/T, the solution to (4.21). This parameter will influence the tightness of the
bounds obtained, by giving an absolute exponential bound on the contribution of the cross

term N.

4) Evaluate Q(_é ) and s ., the solutions of (4.8) and (4.9), and use these and (4.10) to

derive an upper bound on J_s, . ) and a lower bound on J;

min

5) The asymptotic bounds on P, are given by (4.19) in terms of the quantities computed in

step 4.

For small Ny (such that Ny << M?T?sin(r/M)/1607>)2 , where A, is defined below (4.22)), we

have dmin < T, and then steps 4 and 5 above simply yield the bounds

1 /m Omin 2 . ~ 1 ™ Omin 2
—— =+ < <—— = - . .
1 (M 1 ) ll—%el()gpe 21 (M 1 ) (4.3)

We turn now to the analysis. We have for the RHS and LHS of (4.2) (the proof is deferred to

the appendix):

Theorem 4.4 For any n with |n| < T sin(r/M),

elogP(Ay + By, <n) — —Jyp, (4.5)
e—0
where
A ) (a+n)? -
JIp= f —+T1_ 4.6
K aG(—Tlinln ra] < 2Nyo? ti-a (4.6)



(see (3.6)), and

T T om\ [0 T
02:2/ / Ru (s — t)dsdt — 2 cos (—)/ / Ry (s —t)ds dt. (4.7)
o Jo M) J-TJo

Explicit bounds on J, can be obtained by replacing I_, by the bounds from (3.7) and then mini-

mizing over a. Indeed, let (¥ solve the transcendental equations
g Y n? In

T?sin_cos 1 1T cos ¢ 9
Nyo N00'2 T\M - - M M
T2 sin%7 cos@77 nT COSE77 1/ - — T
ot = 2 (3= B)s for By -] (4.9)

N()O'2
(Take 1 small enough to allow a solution, and note that for = 0 a solution exists since the LHS

increases with ¢_(v,)), while the RHS decreases with the same). Then
L0
1 ~\? (p-Tsin%,)? 1 2 (n—Tsing, )
_(1_¢>+ugjn§_(l_¢>+——", (4.10)
2T \ M K 2Nyo? T\M - 2Nyo?
The last ingredient required for the evaluation of the DMPSK performance in the presence

of additive noise is the derivation of explicit conditions for (4.1) to hold true. Note that, by the

independence of A; and By,
P(Ai+ By < ~0) > P(By < 0)P(Ax < —3) = | P(Ay < ~0) (4.11)
Hence,
lileli}élf elog P(Ag + By < —6) > —1_5. (4.12)
On the other hand, for all & > 0, considering k£ = 1 without loss of generality, we have
(4.13)

N 2T 2 2T 2T
[ / WO 4+ (o + 1)No / na (8)2dt + (a + 1)Ng / na(t)2dt
0 0 0

€
Since all three terms in (4.13) are quadratic forms in Gaussian processes independent of €, and

since w, ny,ns are independent, it follows that, for some A (Ny) > 0,
(4.14)

supFE (ei)‘“(NO)N/E) < o0,
e>0

10



where E denotes the expectation over the distribution of N. Therefore, by Chebyshev’s inequality,

P(IN|>4d) = P(N >68)+P(N < -9)
< E (eAcr(Ng)(N—J)/e) +E (e—)\cr(No)(N+6)/e)
< E (ew> cemNalNo)/e L | (e_}‘“(NO)¥) e~ (No)/e (4.15)
Therefore,
limsup elog P(|N| > §) < —dAer(No) - (4.16)
e—0

For explicit bounds on A, see the remark following Theorem 4.17. Note that one can choose A;

so that A (Ng) — oo. In particular, for every positive ¢ one can find an Ny small enough such
No—0

that dAer(Ng) > I_5. We can now combine the results of this section to obtain

Theorem 4.17 Let T'sin(n/M) > § > 0 and Ny be small enough that

I
Aer(No) >~ (4.18)
where Aer(No) is defined in (4.14). Then
—J(—s) < liminf elog P, < limsup elogP, < —J;. (4.19)
=0 e—0
In particular, if
Aer(No) > o’ (4.20)
0 M2 sin(r /M) '
then § = Omin suffices, where dmin 98 the unique solution of the equation
TAer(No)Omin = [7/M + sin™ (6min /T)]?. (4.21)

Explicit bounds on J; and J(_g) are provided in (4.10).

Remark: An inspection of (4.13) reveals that a sufficient condition for (4.14) is that

BN No) (@) fozTnf(t)dt) <o and E(ea—l,\cr(zvo) f02Tw§dt) < oo

Recall that (see [3], Chapter 6), for any Gaussian process z(t),

2T o0
for all B < (2A3)7 4 E(eﬂfo ngs) — H(l _ 25’\%)71/2 ’
=1

11



where A} are the eigenvalues of the Karhunen-Loéve expansion of z(t), and A} denotes the largest

eigenvalue of this expansion. It follows that

1 o

CES I STREICRA

Acr(No) > min( (4.22)

where A2 is the maximal eigenvalue of the Karhunen-Logve expansion of ni(t) on [0,27], and
Aw = 2V/2T'/7 is the square-root of maximal eigenvalue of the Karhunen-Loéve expansion of the

Brownian motion on [0,2T]. Thus, to satisfy (4.20) (and hence (4.18)) it is enough to take a > 16.

It follows from the computations above that a sufficient condition for (4.18) is that

M?2T? sin(n /M)
1607222’

0= (4.23)

and then (4.22) is transformed to

w2 3272
Aeae(No) > —= (/1 4+ —— —1] . 4.24
(o) 2 5o T2NoA2, (4.24)

Finally, note that A,, ~ E(WT)T/WT, where k(-) depends on the precise shape of the covari-
ance R,, (7). In the case of ideal bandpass noise, k(-) is related to the prolate-spheroidal wave
functions described in [13] and tabulated in table I there, with k(1) = 0.57 and k(WT) = 1 for
WT > 8.

We conclude this section with a numerical example for the evaluation of the bounds. For
simplicity, we take M = 2. Since the bounds depend on the precise shape of R, (s —t), we assume
that 02 = c)\2 ,» Where o2 is defined in (4.7) and c is a numerical factor, for which we check the cases
of ¢ =1 and ¢ = 10 (the case ¢ = 1 corresponding roughly to ideal bandpass noise with WT = 1).
As we shall see, the value of the bound depends only weakly on the precise value of ¢, especially

for small Ny.
We now follow the steps described in the beginning of this section.

Steps 1, 2 and 3 The condition (4.23) implies the bound Ny < T2/ (4O7r2)\%1). We thus consider

three case:

a) NoA2, = T?/407?%, which implies Aey = 11/T? and dmin/T = 0.33.

b) NoAZ = T?/4007*, which implies Ay = 35/T2 and &pin /T = 0.075.

12



¢) NoA2 = T7?/400072, which implies A; = 110/7? and dmin/T = 0.02.

From here, the evaluation of the bounds differs for ¢ = 1 and ¢ = 10. Whereas for ¢ = 1

—6min

~ g, ~ Omin/T, for ¢ = 10 one actually needs to solve the transcendental equation (4.8)

and (4.9). The values of the bounds are shown in Tables 1 and 2.

N()/\,211 Upper bound | Lower bound | Upper-to-lower bound ratio
T2 /4072 0.77/T 3.61/T 4.69
T2 /40072 1.12/T 2.70/T 241
T2 /400072 1.2/T 2.53/T 2.10
0 1.23/T 2.46/T 2
Table 1: Bounds for o?/(A\2 ) =c=1
NoA2 L Upper bound | Lower bound | Upper-to-lower bound ratio
T2 /4072 0.73/T 3.3/T 4.5
T2 /40072 1.07/T 2.45/T 2.29
T2 /400072 1.14/T 2.29/T 2.01
0 1.23/T 2.46/T 2

Table 2: Bounds for o?/(A2 ) = ¢ =10

5 Discussion and Conclusions

We have presented an analysis, based on large deviations, of the performance of a DMPSK system
in the presence of both phase noise and weak additive noise. As with any asymptotic study,
the question of for which values of € the asymptotic analysis is close to reality is of interest.
Unfortunately this question cannot be answered analytically, and thus the method presented is no
substitute for a numerical evaluation of the performance for a specific value of the signal-to-noise

ratio. Its main purpose, as explained in the introduction, is to clarify the roles of various systems

parameters and to allow for a comparison of different designs and values of the system’s parameters.

13



In the particular case treated in this paper, some numerical results are available in the literature
for differential two-phase keying (i.e., DPSK, with M = 2). The analysis presented in this paper
leads to the computation of the limiting slope of log P(E), the logarithm of the bit error probability,
as a function of the phase noise and additive noise. An evaluation of P(E) is presented, e.g., in [9]
(where sampling, and not post-detection integration, is used) and in [6],[7],[10]. In all cases, one sees
that the system operates within the linear decay of log P(E) as predicted by this paper for values

of P(E) smaller than 1078 — 107%, depending on the precise values of the system’s parameters.

Another analytic method available for the evaluation of P(E) is based on the evaluation of
moments of the input signal (see [1] and [9]). This method yields sharp results for small signal-to-
noise ratios but becomes numerically unstable for high signal-to-noise ratio, hence, is unsuitable for
computations in the region of practical interest. Moreover, because of the summation over a large

number of terms, the effect of the system’s parameters on the performance is hard to evaluate.

Some authors have analyzed the influence of the IF filter on the performance ([6],[7],[10]).
Although we have not attempted to do so here, such an analysis via large deviations is possible and
mainly involves considering the minimizing path in the constrained-optimization problem described

in Section 3.

We comment here on the effect of post-detection integration in the DMPSK model. Many of
the references dealing with the DMPSK compute the exponential rate of decay of the floor bit error
probability. In the notations used in most references, ¢ = 2wrAv, where Av denotes the spectral
impurity of the laser, and the computed probability-of-error exponent Iy ranges from 72/8T (when
there is neither IF filtering nor post-detection integration, see [6]) to m2/4T or n?/6T or 72/5.8T
(when IF filtering is present but not post-detection integration, see [7],[10]). The inclusion of
post-detection integration considerably complicates the standard analysis, and an attempt to use
a Chebyshev upper bound does not change the value of the computed Iy from the value for the
case of no post-detection integration. The analysis of this paper, on the other hand, predicts an
improvement in the floor bit-error probability of 1.7 dB (when one uses the remark below Lemma

3.5) over the case with no integration.

14



A Appendix

Proof of Lemma 3.5: Let ¢(t) = —t(w/M —1))/T. Note that /2T sin [(Z)(t) —¢(t—T) —I—7r/M] =a
T

_ 2T .2
and I, < % /0 ¢ dt = (% —4))?/T. To see the reverse inequality, note that, for any s € [T, 2T,

it follows from the Cauchy—Schwartz inequality that

1 2Td'>2dt>1/s H2dt > ! (/s d)dt)z— 1 |ps — b5 12 (A.1)
2 Jo T2 JsT - 2T s—T _2T ’ T ‘
Now define
T
=] > . - — >__ .
T=inf{s>T: |ps— s T|_M Y}

Then one can verify that, for o € [T sin(w/M), T sin(w/M)],

T T o
/T sin (qb(t) —o(t—T)+ M) dt < o implies 7 < 2T . (A.2)

Combining (A.1) and (A.2), we conclude that

2

Ta> —¢

1 |7
— | — A.
T\M (A3)

and the proof of Lemma 3.5 is complete. L]

Proof of Theorem 4.4 : Note that Ay and By, (defined above (3.4)) are independent, By (condi-
tioned on {w(s), 0 < s < (k — 1)T}) is a zero-mean normal random variable with variance eNyo?,

and |Ag| < T. Thus,

oo —z2/2eNyo?
P(Ap+Br,<n) = e 07" P(A <n—z)dz

1
v/ 27r6N00 /

_ / —(z+n)?/2eNgo? dr
v 27reN002
—(@+n)?/2eNoo® p( A, < ) d . A4
\/27T6N00'2 / (A < —2) (A4)
From Theorem 2.3 and Lemma 2.6, it follows that
elogP(Apy < —x) — —1_, (A.5)
e—0

where IT_, is as defined in Lemma 3.5. Thus, using the monotonicity of I_, in x, one obtains

(k) G TaD (A.6)

log P(A, + Br, <7n) — — mi
elog P(Ag + By <1n) . min ( 2Ngo? 7 acl-T1] | 2Ngo?
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Note that, by substituting ¢ = 0, it follows that I, = 0 for a > T'sin(w/M). This and the

monotonicity (in a) of I_, imply that

) (a+n)? -
log P(A B < —_— - f — +J]_ =—J,. A7
€log ( k+ D < 77) o aE(—Tlinln%,—n] < 2N00'2 + a n ( )

(
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FIGURE CAPTIONS

Fig. 1.1: Receiver structure
TABLES CAPTIONS

Table 1: Bounds for o?/(A2 ) =c=1

Table 2: Bounds for 02/(A\2 ) = ¢ =10
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