Superexponential decay for the GEM process

O. Zeitouni *
Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 32000, Israel

November 18, 1996

AMS Subject classification: Primary 60F10. Secondary 60G09, 60K35.
Keywords: Large deviations. GEM process.

Abstract We show that the GEM process has strong ordering properties: the probability that the k-th
largest element in the GEM sequence is beyond the first ck elements (¢ > 1) decays super-exponentially in
k.

Let {U;}2, denote a sequence of [0,1] valued i.i.d. random variables, with common law g possessing a
density pg(x) = 02! . Here, § > 0 is a fixed known parameter, and throughout we use U; = 1 — U.

Define the random sequence (GEM process) A; = Uy and

i—1
AiZUiHUj,'iZQ.
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For references and background on the GEM process and its properties, see [2]. Note that stochastically, A;
dominates A;y1, but of course it is still possible that A; < A;41. Our goal here is to estimate how unlikely
is really this reverse inequality. More precisely, let {X;} denote the reordered sequence of {4;}. That is, for
each i there is a j = j(i) such that X; = A; and X;y; < X;. For ¢ > 1, define the event

Qe = {X} is not among A; ,i < ck},

and let Py ¢ = Prob(,). Our goal is to prove the

Theorem 1.
log Py .k

dm gk~ el

Proof: We begin by quickly demonstrating a lower bound (which, incidentally, captures the correct order
of magnitude but does not exhibit necessarily the most likely event).
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Fix a > 0 independent of k, and denote by €}, . the event

a
Ue U ——,J=kk+1,...,ck—1}.
={Uek > 5 <( % + c }

Because, in the event (),

(e—1)k k—1 k—1
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Agp>=(1- || —e 2@ || ;
ok =3 (1 (c— 1)k> Uiz 3¢ 11 Ui,

while

it holds that for all k large enough, A, > A;, j =k,...,ck—1. Hence, for such k, Q;c’c C Q.- Thus, since
for some constant c, . independent of k¥ which may change from line to line,

PI’Ob(Ul < ) > Ca,ck_aa

a
(c—1)k
it holds that 1

Py >PUy > §)c§,ck79(c71)k7

which is more than enough to imply the required lower bound.

We next turn to establish the (harder) complementary upper bound. Note first that

Po,c,k = PI‘Ob(H] Z Ck, AJ’ Z Xk)
< Z Prob (4; > Xj)
j=ck
< Z Prob (for somel € T;, A; > A; Vie I), (1)
j=ck

where in the last inequality,

T;r = {all subsets of length j — k of {1,...,j —1}}.

Note that the cardinality of Z; , is ( J

A ), while, from the definition of A; and the i.i.d. assumption,

max Prob(A4; > A; Vie I) <Prob(A4; > A;,i=k,...,j—1).
€Ljk

It thus follows from (1) that
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Since for j > ck there exists a ¢, independent of j, k such that ( ) < eta.ck108(i/k) the proof is completed

J
k
by the following lemma:

Lemma 1. There exists a constant cy ., independent of k,j, such that for j > ck,

Pj i < cpe”?limRlogk 3)

Proof of Lemma 1: Throughout this proof, we use ¢, to denote constants, whose values may change from
line to line, which are independent of k, 7 but may depend on 6,c. Let n = j — k. Then

-1
Py <Prob(V2<(<n, > logU; >logV;)
j=1
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where V; = U, /U,.

For simplicity in notations, we assume below that both logn and n/logn are integers, the general case
posing no new difficulties. Define

1)1 2 T
L TSt
i —

logn

, Z;i=log V(z'+1) logn—1>
and let x € R™'°8™ have components z;. Further, let
={xe€ R™Y87 . 0 > z; > —n(logn + 1), z; = —jn~2, some integer Jjt-

Note that the cardinality of A,, is bounded by (n?(n + 1)logn)™/ 8™ < e¢=™, Then,

J
P, < Prob(ZAi > Z;j/logn,j=1,...,n/logn)
i=1
< 10ZnProb (Z, < —nlog®n/2)

Z;
+XEZA Prob (4; € [zi,z; +n 2 Za:g+m 2_@ i=1,...,n/logn).

Since Prob (Z; < —nlog®n/2) < e~canlog®n the hound on the cardinality of A, and the independence of
the {A;} and {Z;} reveals that for some C,,, C}, with

log(C,)/nlogn — —oco,log(C})/nlogn — 0, (4)
n/logn n/logn 1
P, <Cn,+C], max l_ll Prob (z; + n™2 > A; > ;) 1_[1 Prob (Z; <lognzlx] n (5)
1= 1= J

Define next

Ao =tog ( [(1= 2P po(a)a ) |

and its Fenchel-Legendre transform

Aj(z) = sup(Ax — A(N)) .
A€R



Finally, let Aj(2) = minycp, 54,-2] Aj(y) . By Cramér’s theorem (see, e.g., [1, pg. 27]),

Prob (z; + n=2 > A; > z;) < 2e~lognAi(@i)
On the other hand,

i i
Prob (Z; < loganj +n7h) < caeGIOgnZ]‘:l 2
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Combining the above, and still using C,, C}, to denote (possibly different) constants still satisfying (4), one
obtains

n/logn n/logn {
P, < Cn+CL,{gg§exp —logn( ; Aj(z;)— 6 ; J_ZI.Z'J)
1
< ' _ A (h) — o—"
b Cn"'cngleai(exp n(/(]( 0(¢s) logn¢5)ds>
L logmj}
= Cn-i‘CnI;leaiCeXp n(/o( A - ) — 0¢s)ds
< O+ C' maxexp—n /I(A*(log"¢3)—o¢ )ds | £ C, + C! maxexp —nI,(¢) (6)

where
A = {¢ absolutely continuous, nonincreasing, ¢o = 0},

the second inequality is obtained by noting that polygonal decreasing functions (at steps of size logn/n)
form a subset of A, and the last one by the continuity of A} away from 0 and a change in the value of C},.

Let next 1 € (0,1) be arbitrary. Using the convexity of Aj, one notes that for ¢ € A,

_ 1
@) 2 uj(PL0E) 1 (1 (P OO g [ s,

nn (1-mn)

Fixing n and ¢y, recalling that A} > 0 and that ¢ is non-increasing,

1
min 1,(6) > min (143222 — 001~ )y )

In Lemma 2 below, we collect some properties of Aj(-). In particular, it holds that Aj(z) > —flog z(1+0(1))
for z small. A direct optimization over ¢, reveals then that there exit negative constants ci(7),c2(n)
independent of n such that

min (nA3(P20E) — 01— )oy ) = min (5P~ 601 = 1), ) > Snlogn(1 + o(1).

¢n<0 nn calogn<g,<ci nn
Taking now n — 1 yields

min ,(¢) > 8logn(1 +o(1) .

Substituting back in (6), this concludes the proof of the Lemma 1 and hence of Theorem 1. O

The following lemma was used in the course of the proof of Lemma 1.



Lemma 2. A} is strictly convez, Aj(x) = co for x > 0, lim,_, o Aj(z) = 00, and A}(y) = 0 if and only if
y = [log(1 — z)pg(z)dz. Finally, Aj(z) > —0log(z)(1 + o(1)) for z small.

Proof of Lemma 2: The first part of the lemma is a trivial consequence of the fact that Ag(A) < oo for
all X with |A| < Ao(f) (c.f. [1, pg. 28]). To see the second part, note first that for § = 1 and z < 0, Uy is
uniformly distributed and a straight forward computation reveals that Ag(\) = —log(A+1) for A > —1 and
Aj(z) = =1 —z —log(—x). We use below ¢y to denote various constants, whose value may change from line
to line but which are independent of A. To see the claim for 0 < § < 1, simply note that for A > 1,

1 1—-2"1 1
/ Y (1-y)fldy = / y M1 —y) My + / y M1 —y)dy
0 0 1—-2\—1

11—t
1+

IN

(1—X"hHANt-* (e + ,\1) < o7,

whereas for 6 > 1 and A > 0,

1 ) 1-kA~1
/ P (1—y)ldy < / (1 —y)*Ldy
0 k=0 Y 1= (k+1)A-1
oo
< Z/\_gkﬂ_le_kgca)\_a.
k=0

Hence, for any 6 > 0 and A > 1,
Ag(N) <cp—0log .

It follows that, with the choice A = —z 71,
Aj(z) > =1 — ¢y — Olog(—x),
as claimed. O

Remark: In fact, the exact form of py was never used. In order to get Theorem 1, all that is needed is that
the common law p of the (0,1) valued i.i.d. random variables U; possesses a density near 0,1 such that, for
some positive constants 6, ay,

1 —
lim - log Prob (log(U; /U;) < —z) = —ay, )

T—00

A*(x)
z—0- log(—x)

) (8)

Here, A*(z) is the Fenchel-Legendre transform of
1
A(0) =log (/ (1- x)Au(da:)) .
0
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