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ABSTRACT
The exact lower tail of Gaussian seminorms are evaluated, using a refinement of the tech-

niques presented in [5].
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I. Introduction Let {z;}{°; be a sequence of independent, standard Gaussian random
variables. Consider the random variable z = >°, 22 /a2, where {a;}$°; is a sequence of
given (deterministic) finite numbers satisfying > 7% ;17 < 0o. We are interested in comput-
ing the asymptotics P(z < €) as € — 0. This problém was considered in the 70’s by the
Soviet school [6, 7, 3]. Their approach was analytical in flavor and based on the saddle point
method. Independently, unaware of this, a probabilistic study of P(z < €) was initiated
by [2] and improved upon in [5], the latter using large deviations techniques. This study
provides explicit and easy bounds on P(z < €) which, however, are not asymptotically tight.
The purpose of this note is to push this analysis to yield a tight asymptotic evaluation of
the above probability. We thus retrieve, by probabilistic methods, the analytic results of
[6, 7, 3], in a shorter, more transparent way, which seems amenable to extensions in different

directions.

To state precisely our goal, recall that the results in [5] imply that there exist functions
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g(-) and I(-) such that z/e satisfies the large deviations principle with rate g(e) and rate

function I(-). In particular, it is shown there that for some constant ¢ > 0, which depends

on the sequence {a;} and may be computed explicitly,

li_r%g(e) log P(z <€) = —c. (1)

We show below that one may find an explicit function f(e) such that
lim f()P( < ¢) = 1 2)
(see (10)). For related results and comparison theorems for small balls probabilities see [4].

Acknowledgment We thank Wenbo Li for bringing Sytaya’s work [6] to our attention.

II. Computation of Asymptotic Probabilities As in the Introduction, let {z;} be i.i.d.
standard Gaussian variables, defined on a suitable probability space (2, F, P). For § > 0

let A(6) 2 log E(e~e1) = —1log(1 + 26) and define
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Under our assumptions, there exists a unique 6, such that p(6) = €, 8 —¢o oo, and

P(0e) —e—o 00. In the sequel, we use 0, u, 1, I for b, u(6¢), v (6¢), I(6:). Define on (2, F) a

probability measure by

e 02dpP
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Then
Ple<=e [ Mg, dpy ")
Defining now
6 — 2)
Uy = ,
YTy

and denoting by 7y the law of Uy under P, one obtains

16/ 0
eIP(z <€) = /Qeﬂw’ﬁ 1{0<U¢§9“/¢}dPg :/0 eﬂﬁvdm/,(v) :/0 eﬂﬁvdm/,(v) (8)



where we used the fact that 7, is supported on (—oo,fu/v)]. Integrating by parts, one
obtains

elP(z <9 = [ e ny((0,0/w])do. (9)
It is straightforward to check that E; (Uy) = 0 and E, ¢(U3,) = 1. Thus, if we knew that
for € — 0, 7y converges locally (in the scale 1/1) to the standard Gaussian law, one would

conclude from (9) the following

Theorem:

li_I)I(l) elpP(z <€) =1/V2r. (10)

Remark: The behavior of I in € may be read off its definition, and in many cases can be
made explicit (see, e.g., displays (16) and (17) in [5]). A similar computation yields also
the behavior of 9 in e.

Proof: Define the (infinite) triangular array
o
Uy = Z brér, (11)
k=1
where under 7y, {¢x}32; is a (1 — N(0,1)?) i.i.d. sequence and

0

b = P(a2 +20)

(12)

We now claim that the laws 7, converge to the standard Gaussian distribution as ¥ — oo.
Indeed, since in (11) By, =0 Vk € IN and 3752, biwaz = 1, one only needs to prove

that, for some suitable N(e),

N(e) 00 3
li_)m Z biEW|§k\3 + B, Z biékl | =0, (13)
Voo | ko k=N(e)+1

in order to apply classical CLT results for finite triangular arrays such as for example [1,
Theorem 7.1.2] . (The condition (13) follows from expressing (11) as a finite sum). Note
(it follows directly from (12)) that

1
Zbﬁ:i, b < —. (14)



Therefore, denoting m; = E |& |,

N(e)
b3 < mamaxby S b2 < T2V
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whereas
3 4\ 4/3 8/3
o o o0
Ey, Z biée| < | En, Z br&r < ( 3my Z bi)
k=N(e)+1 k=N(e)+1 k=N(e)+1

By taking any N(€) —¢_0 00, (13) follows.

It is actually possible to obtain a stronger (uniformly local) convergence. Let Uy’s

characteristic function be denoted by ¢y (t) = Ep, "V .

Lemma: For each a > 0,

/2

p(t)] < == A1 Vi > al/?, vt € R. (15)

|t|

Proof of the Lemma: Using the representation (11), a direct calculation yields ¢y(t) =
-0
ekt [T, (1+ 2ibkt)_% so that

o 1 o
b @®)* =[] ——75:5 =exp— {Z log(1 + 4b§t2)} : (16)
Pt} 1+ 4bt p]
We now use the inequality

log(1 +~t?) > ylog(1 + %) Vv € (0,1), Vt € R, (17)

n (16). Given a > 0, and if ) > «'/2, then by (14) 4 = 4ab? < 1 for all k € IN and

lpy(t)|* < exp— {i 4abi log(1 + t2/a)} = exp —{2alog(1 + t*/a)}

k=1
t2 —20
- (1 + —)
a
so that indeed |¢y ()] < a®/2|t|= for all ¢ > o!/2 and all t € R. O
It then follows that

t2
2|, 1

Jim | ‘dhp 7| dt =0 (18)




Indeed, the pointwise convergence of the integrand in (18) to 0 is guaranteed by the CLT
for ny, and the L' limit results by dominated convergence which is made possible by the

Lemma (applied with any o > 1).

Denote next by I' the standard Gaussian measure and by g(x) its density. From (9)

1 * v 1
Ye! P(z <€) — or < ‘1/)/0 e “I'([0, E])dv T
4 [ eI =) (10, SDldo £ 7 +

P—ro0

Now, for some 0 < @y < v/¥, J1 = |[5°(9(vy) — 9(0))ve ?dv| — 0 by dominated con-
vergence, while, denoting by fy, the density of the law 7, whose existence follows from
(15),
© v/Y ©
By [Tt ([ 0@ ~ fu@ldn ) dv < lg = folloo | vetaw

which by (18) coupled with the inverse Fourier transform, converges to zero as ¥ — oco. [J

Remarks:
1) We mention the particular case a; = ##/2 3> 1. A computation similar to the one in
[6](displays (19), (20)) reveals that
B

(8-1)v"

I=——"—(1+0(1), ¢*=-"=—(1+0(1)),
2eB-1 2¢B-1

where vg = [°dy/(1 +yP) = sin%%) and kg = [ dy/(1+ yP)? = %

2) Our interest in the lower tails of the random variable z is because it represents, by the
Karhunen-Loéve expansion, the L? norm of Gaussian processes. This is the reason for our
considering x; which are Gaussian random variables. The method, and perhaps the result
as well, seem to depend quite heavily on the Gaussian assumption. For example, taking

2 _

2 = 2% and z; Bernoulli random variables, z turns out to be uniform on [0,1], and the

a
functions u, v and I may be computed explicitly; it turns out that ¢ —._¢ 1 and the limit

in (10) is e~ and not (27)~'/2, suggesting that the central limit theorem fails in this case.

Nevertheless, under the following conditions on A(#) and on the sequence {a2}, the
derivation may still be carried out, defining p(8), ¥(0) and I(f) as in the first equality in
each of (3)—(5):



(A1) limg_,eo A'(8) = 0
(A2) limg_)oo ¢(9) =0

(A3) (a) A"(y) <c/y*Vy>0.
(b) [A®(y)| < cA"(y)? Vy > 0.

(A4) for m large enough, and analytically extending A to Ref > 0,
A(z) — ReA(z + it%) > (%)2A”(x)G(t) Vz>0teRR, (19)

where G(t) satisfies [*°_e F*)dt < 00 .

o0

Note that (A1), (A3) and (A4) only involve x1’s law while (A2) depends also on the
sequence {a}}. A sufficient condition for (A2) to hold for any nondegenerate z; is that
a? grows subexponentially in the sense that for some 0 < a < b < oo the cardinality of
{i : af < a? < b6} diverges with 6, since

2
20) > — A"
v = {i=;4ge[zl/:b,1/a]} "
t 0
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a;

H=m|{i: a9§a? < b8},

ISHE

where m denotes the positive minimum of the function 22A”(x) on the interval [1/b,1/a).

The conditions are satisfied, for example, when x; has a density of the form C, \x|ae_””2/ 2
for some a > —1, since the corresponding A, (6) satisfy Ay = (1+a)Ag. On the other hand,
if 2 is a lattice random variable, the left hand side of (19) is periodic in ¢ and thus (A4)

cannot possibly hold. This is the situation, in particular, in the uniform example discussed

above.

To see that these assumptions enable the above proof to be emulated, first note that
(A1) implies, by the monotonicity of A’(-), that u(8) —¢_, 0 and hence the existence of 6,
is ensured. Next, Uy, is represented as Uy = 224 £, with E,,¢Zk =0and Y 32y waz =1,
the third moment condition in (13) is replaced by Holder’s inequality to a fourth moment
condition, which in turn is handled using (A2) and (A3). Finally, the uniform integrability
follows from the Lemma as before, with (A4) replacing (17) and providing the required
handle on |¢y(t)|.
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