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Abstract

We derive a large deviation principle for the empirical measure of zeros of
the random polynomial Pn(z) =

∑n
j=0 ξjz

j , where the coefficients {ξj}j≥0 form
an i.i.d. sequence of exponential random variables.

1 Introduction

The study of the zero set {z1, . . . , zn} of random polynomials

Pn(z) =
n∑
j=0

ξjz
j (1)

with i.i.d. coefficients {ξj}j≥0 has a long and rich history, which we will not review
here; see [BRS86] for a classical account and [TV13] for the most recent results. Under
mild conditions, the convergence of the empirical measure Ln = 1

n

∑n
i=1 δzi of zeros of

Pn. to the uniform measure on the unit circle goes back at least to [SS62] and [ET50];
scaled version of this convergence can be found in [SV95] (for the Gaussian case) and
[IZ95] (for more general i.i.d. coefficients in the domain of attraction of stable laws).

We are interested in the large deviations for the empirical measure Ln. In the case
of Gaussian coefficients, this has been studied before [ZZ10], [Be08], [Bl11], exploiting
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methods related to those used in the study of random matrices from the classical
β-ensembles [BAG97, BAZ98, SS12]. Like in the case of random matrices, when one
ventures away from the Gaussian setup (with i.i.d. coefficients), not much is known
concerning large deviations.

Our goal in this paper is to exhibit a new class of coefficients, for which a large
deviation principle for the empirical measure can be proved, namely the class of i.i.d.
exponential coefficients, which for concreteness we normalize to have parameter 1. To
our knowledge, the first to consider explicitly asymptotics for this class was Wenbo
Li [Li11], who used general formulae of Zaporozhets [Za04] in order to compute the
probability that all roots in such a polynomial are real. We relate our result to Li’s
computation in Theorem 1.2 below.

In order to state our results, we introduce some notation. In the rest of the paper,
Pn denotes a random polynomial as in (1), with i.i.d. exponential (of parameter 1)
coefficients {ξi} and associated empirical measure of zeros Ln. For any Polish space
X, let M1(X) denote the space of probability measures on X, equipped with the
topology of weak convergence. Let pol+ denote the collection of polynomials (over
C) with coefficients that are real positive. For p ∈ pol+, let µp ∈ M1(C) denote
the empirical measure of zeros of p. Note that µp depends on the set of zeros and
not on a particular labeling of the zeros, that µp is symmetric with respect to the
transformation z 7→ z∗, and that µp(R+) = 0. (Here and in the sequel, we use R+ to
denote the interval (0,∞).)

We introduce the closure of the collection of empirical measures of polynomials with
positive coefficients

P = {µp : p ∈ pol+} ⊂ M1(C) . (2)

Obviously, Ln ∈ P .

Definition 1. For any measure µ ∈M1(C), define the logarithmic potential function
to be

Lµ(z) =

∫
log |z − w|dµ(w)

and the logarithmic energy to be

Σ(µ) =

∫∫
log |z − w|µ(z)µ(w).

Definition 2. Define the function I :M1(C)→ R+ by

I(µ) =

{ ∫
log |1− z|dµ(z)− 1

2

∫∫
log |z − w|dµ(z)dµ(w), if µ ∈ P ,

∞, if µ /∈ P

We will see in Section 3.1 that I is well defined (for µ ∈ P , as the integral with
respect to µ× µ of the function f(z, w) = log |1− z| + log |1− w| − log |z − w|) and
non-negative (the latter fact is immediate from the lower bound in Lemma 3.7)1.

1A. Eremenko showed us a direct proof of the non-negativity of I, that bypasses the use of the
lower bound from Lemma 3.7. Since we need the latter lemma for other reasons, we do not reproduce
his proof here.
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Our main result concerning large deviations of Ln is the following.

Theorem 1.1. The random measures Ln satisfy a large deviation principle in the
space M1(C) with speed n2 and good rate function I. Explicitly, we have:

(i) The function I : M1(C) → [0,∞] has compact level sets, i.e. the sets {µ :
I(µ) ≤M} are compact subsets of M1(C) for each M ∈ R.

(ii) For each open set O ⊂M1(C), we have

lim inf
n→∞

1

n2
logPn(Ln ∈ O) ≥ − inf

µ∈O
I(µ).

(iii) For each closed set F ⊂M1(C), we have

lim sup
n→∞

1

n2
logPn(Ln ∈ F ) ≤ − inf

µ∈F
I(µ).

Comparing the statement of Theorem 1.1 with the main results in [BAZ98] and
[ZZ10], one sees that in spite of the fact that we are dealing with zeros of random
polynomials, the rate function is closer to a random matrix theory rate function than
to the one appearing in the Gaussian case. This is due to the expression for the
joint distribution of zeros, see Section 2.1 below. We also note that because I is a
good rate function, any minimizer µ of I(·) in M1(C) must satisfy that I(µ) = 0; in
particular, the uniform measure on the unit circle is a minimizer, as one expects from
the limit results in [ET50], [SS62]. The strict convexity of I (which follows from the
same argument as in [BAG97]) shows that it is the unique minimizer.

As mentioned above, we tie our results to Li’s computation in [Li11]. Toward this
end, let R− = R \ R+ and define µR ∈ M1(R−) ⊂ M1(C) to be such that I(µR) =
infµ∈M1(R−) I(µ) =: IR. (Such a minimizer exists due to the lower semicontinuity of
I.)

Theorem 1.2. Conditioned on Ln ∈ M1(R−), the sequence of random empirical
measures Ln satisfy the large deviation principle in M1(R−) with speed n2 and rate
function IR(µ) = I(µ)− IR. In particular, conditioned on Ln ∈ M1(R), the sequence
Ln converges weakly to µR ∈M1(R−).

A characterization of µR is given in the next theorem, due to J. Baik.

Theorem 1.3. The minimizer µR has density with respect of Lebesgue measure on
R− equal to

φ(x) =
1

π(|x|+ 1)
√
|x|

1{x<0} . (3)
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An interesting feature of the minimizer µR is that it is not compactly supported. We
discuss Theorems 1.2 and 1.3 in Section 6.

History and Acknowledgements: Our interest in this problem started when one
of us (O.Z.) attended a talk by Wenbo Li on [Li11]; that talk suggested that an
underlying large deviation principle should exist in the real case, and J. Baik computed
its equilibrium measure, repeated here as Theorem 1.3. Wenbo Li’s untimely death
prompted S. G. and O. Z. to revisit the problem, and the important role of the class P
in the complex case emerged. We posted the question concerning the characterization
of P on MathOverflow [MO13], and the question was answered in [BES13].

We are indebted to J. Baik for allowing us to use his proof of Theorem 1.3, and
to A. Eremenko for making [BES13] available to us as a preprint, for his patience in
answering our questions, and for his comments on a preliminary draft of this paper.

2 Preliminaries

We discuss in this section several preliminaries. We first introduce the joint distribu-
tion of zeros and then we describe properties of P .

2.1 The joint distribution of zeros

Let p ∈ pol+ be of degree n with n−2k real zeros, k = 0, 1, . . . , bn/2c. We consider the
zeros of p as a vector (z1, · · · , zn) with the convention that z1, · · · , zk are the non-real
zeros with positive imaginary part, zk+1 = z1, · · · , z2k = zk and z2k+1, · · · , zn denote
the n−2k real zeros. In this notation, for k fixed, a set of zeros is generically mapped
to k!(n − 2k)! distinct points in A+

n,k = Ck
+ × Ck

− × Rn−2k, and A+
n,k is parametrized

by Ck
+ × Rn−2k.

Performing the change of variables from (ξ0, . . . , ξn) to (z1, . . . , zk, zn−2k+1, . . . , zn, ξn),
counting multiplicities, using the form of the exponential density and integrating over
the density of ξn (see [Za04] for a similar computation), one has that the random
polynomial Pn induces the following measure on Cn:

dPn(z1, · · · , zn) = (4)
bn/2c∑
k=0

2k

k!(n− 2k)!

∏
1≤i<j≤n |zi − zj|∏n
j=1 |1− zj|n+1

1Bn,k(z1, · · · , zn)dL(z1) · · · dL(zk)d`(z2k+1) · · · d`(zn).

Here L is the Lebesgue measure on C, ` is the Lebesgue measure on R, and Bn,k

consists of the n-tuples (z1, . . . , zn) ⊂ An,k that can be obtained as the zero set (with
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n− 2k real zeros) of a polynomial of degree n with positive coefficients. In particular,
letting An,k = (C\R)2k×Rn−2k ⊂ Cn, we see that the density of Pn on any fixed An,k
is

1

Zn,k
1Bn,k(z1, · · · , zn) exp

( ∑
1≤i<j≤n

log|zi − zj| − (n+ 1)
n∑
j=1

log|1− zj|

)
. (5)

where the constants Zn,k satisfy that

lim
n→∞

1

n2
log

bn/2c
max
k=1
Zn,k = lim

n→∞

1

n2
log min

bn/2c
k=1 Zn,k = 0 . (6)

The representation (5) with (6) is particularly suited for LDP analysis.

2.2 Properties of the class P of measures

Obviously, for any p ∈ pol+ with µp its empirical measure of zeros, we have that
µp(R+) = 0. However, that property is not preserved by weak convergence, and hence
a-priori it is not clear that all measures in P satisfy it (although we will see, as a
consequence of Obrechkoff’s theorem below, that in fact they do). In this subsection,
we discuss this and other properties of the class P .

2.2.1 Obrechkoff’s Theorem

A starting point for the description of P is the following classical theorem.

Theorem 2.1 (Obrechkoff). Let p ∈ pol+ and let

Cα = {z ∈ C : | arg z| ≤ α}

denote the symmetric (around the positive real line) cone in C with apex at the origin
and angle 2α. Then, µp(Cα) ≤ 2α/π.

The proof, given in [Ob23], uses the argument principle. For our needs, note that
Obrechkoff’s Theorem implies that µ(Cα) ≤ 2α/π for any µ ∈ P . In particular,
µ(R+) = 0 for such µ.

Obrechkoff’s Theorem leads to the following lemma on the integrability of the log-
arithm near 1 for µ ∈ P .

Lemma 2.2. Let M > 0 and set AM = {z : log |1 − z| ≤ −M}. Then there is a
positive quantity C(M) satisfying limM→∞C(M) = 0 such that for any µ ∈ P,

max{µ(AM),

∫
AM

|log |1− z|| dµ(z)} ≤ C(M). (7)
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Proof. We first consider p ∈ pol+ of degree N . For M > 0, let ZM consists of
all zeros zi of p such that log |1 − zi| < −M . Let N(p,M) be the cardinality of
ZM and S(p,M) =

∑
i:zi∈ZM log |1 − zi|. By Lemma 2.1, there exists a constant

M0 independent of p or N such that for M > M0, |ZM | < 2e−MN . Thus, with
Bj := {z : −(j + 1) < log |1− z| ≤ −j : j ≥M}, we get

1

N
|S(p,M)| ≤ 1

N

∞∑
j=M

∑
i:zi∈Bj

| log |1− zi|| ≤
∞∑
j=M

j · 4e−j =: c(M) ,

with c(M) →M→∞ 0. Since |S(p,M)| ≥ N(p,M) if M0 is chosen large enough, we
obtain the same inequality for N(p,M)/N . Thus, (7) holds for µp, uniformly in p,N .

To obtain the same inequality for µ ∈ P , take an approximating sequence µpn → µ,
and use that µ(AM) ≤ lim supn→∞ µpn(AM−1) together with∫
AM

| log |1− z| ∨ −K|dµ(z) ≤ lim sup
n→∞

∫
AM−1

| log |1− z| ∨ −K|dµpn(z) ≤ c(M − 1) ,

and then apply monotone convergence over K. One concludes that (7) holds with
C(M) = c(M − 1). �

2.2.2 The Bergweiler-Eremenko-Sokal Theorem

For µ ∈M1(C), let

L̂µ(z) =

∫
|w|≤1

log(|z − w|)dµ(w) +

∫
|w|>1

log(|1− z

w
|)dµ(w) .

Whenever Cµ :=
∫

log+ |w|µ(dw) <∞, it holds that

L̂µ(z) = Lµ(z)− Cµ .

In a recent work [BES13], Bergweiler, Eremenko and Sokal proved the following.

Theorem 2.3 (Bergweiler-Eremenko-Sokal). µ ∈ P if and only if it is invariant with

respect to conjugation and satisfies L̂µ(z) ≤ L̂µ(|z|) for all z ∈ C.

In the proof of Theorem 1.1, we will exploit this result, and in addition, its proof.

3 Proof of Theorem 1.1

We prove in this section Theorem 1.1. The proof is divided into sections. We first
study, in section 3.1, properties of I and establish that it is well defined and lower-
semicontinuous. In Section 3.2, we prove the exponential tightness of {Pn}. Section
3.3 is devoted to the proof of the upper bound. Finally, Section 3.4 states and proves
Lemma 3.7, which is the lower bound; the proof of Lemma 3.7 uses some some tech-
nical approximation lemmas whose proofs are postponed to Sections 4 and 5.
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3.1 I is well defined and has compact level sets.

We prove the following.

Lemma 3.1. The function I is well defined on M1(C) and it possesses compact level
sets.

Lemma 3.1 almost shows that I is a good rate function; what is missing is a proof
that I(µ) ≥ 0 for µ ∈M1(C). This fact is a consequence of Lemma 3.7 below.

Proof. Define f(z, w) = log |1− z|+ log |1− w| − log |z − w|. We first show that one
can choose a function K(L) →L→∞ ∞ so that the following inclusion holds for all L
large:

{(z, w) : |z| > L, |w| > L} ⊂ {f(z, w) ≥ K(L)}. (8)

Indeed, setting z′ = 1− z and w′ = 1− w, we get

f(z, w) = log |z′|+ log |w′| − log |z′ − w′|.

But
|z′w′|
|z′ − w′|

≥ 1
1
|z′| + 1

|w′|
≥ 1

2
min{|z′|, |w′|}.

Clearly, this implies (8). Further, the last inequality also implies that, with A =
{(z, w) ∈ C2 : |1− z| > 1/4, |1− w| > 1/4}{,

inf
A{
f(z, w) ≥ 1

8
. (9)

We next show that I(µ) is well defined. For that it is enough to consider µ ∈ P .
Since f(z, w) ≥ c + log min(|z − 1|, |w − 1|) for some constant C, an application of
Lemma 2.2 implies that the integral of f is well defined (and bounded below).

We next show that the level sets of I are precompact. Choose L large enough so
that K(L) > 1. Then,

µ(|z| > L)2 = µ⊗ µ(|z| > L, |w| > L) (10)

≤ µ ({f(z, w) ≥ K(L)} ∩ {|1− z| > 1/4, |1− w| > 1/4})

≤ 1

K(L)− 1/8

∫∫
A{

(f(z, w)− 1/8)dµ(z)dµ(w)

≤ 1

K(L)− 1/8

(∫∫
f(z, w)dµ(z)dµ(w)−

∫∫
A

f(z, w)dµ(z)dµ(w)

)
,

where we used (9) in the second inequality.
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Our next task is to show that

−
∫∫

A

f(z, w)dµ(z)dµ(w) ≤ c , (11)

for some constant c independent of µ ∈ P . To this end, we write A = A1∪A2∪A3∪A4

with

A1 := {|1− z| ≤ 1/2, |1− w| ≤ 1/4}, A2 := {|1− z| > 1/2, |1− w| ≤ 1/4},
A3 := {|1− w| ∈ [1/4, 1/2], |1− z| ≤ 1/4}, A4 := {|1− w| > 1/2, |1− z| ≤ 1/4}.

Since |z − w| ≤ 3/4 for (z, w) ∈ A1, we have

−
∫∫

A1

f(z, w)dµ(z)dµ(w) ≤
∫∫

A1

log |z − w|dµ(z)dµ(w)− 2

∫
{z:|1−z|≤1/2}

log |1− z|dµ(z)

≤ −2

∫
{z:|1−z|≤1/2}

log |1− z|dµ(z) ≤ C(log 2) , (12)

where C(log 2) is given by Lemma 2.2. With the same argument, we also have

−
∫∫

A3

f(z, w)dµ(z)dµ(w) ≤ C(log 2). (13)

For the integral over the set A2, we note that |1− (1− w)/(1− z)| ∈ (1/2, 3/2) for
(z, w) ∈ A2, and therefore

−
∫∫

A2

f(z, w)dµ(z)dµ(w) = −
∫∫

A2

log
|1− w|
|1− 1−w

1−z |
dµ(z)dµ(w) (14)

≤ log(3/2)−
∫
{w:|1−w|≤1/4}

log |1− w|dµ(w) ≤ log(3/2) + C(log 4) ,

where C(log 4) is again given by Lemma 2.2.

Since
∫∫

A4
f(z, w)dµ(z)dµ(w) =

∫∫
A2
f(z, w)dµ(z)dµ(w), we obtain by combining

(12), (13) and (14) that (11) holds.

From (11) we obtain that for any M > 0,

sup
{µ:I(µ)≤M}

µ(|z| > L)→L→∞ 0 ,

which yields the pre-compactness of the level sets of I by an application of Prohorov’s
criterion.

It remains to show that I is lower semicontinuous. Since P is closed inM1(C), it is
enough to check the lower semicontinuity in P . Toward this end, for ε,M > 0 define

f ε,M(z, w) =

[(
log |1− z| ∨ (−1

ε
)

)
+

(
log |1− w| ∨ (−1

ε
)

)
− (log |z − w| ∨ (−M))

]
∧M
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and

f ε(z, w) = log |1− z| ∨ (−1

ε
) + log |1− w| ∨ (−1

ε
)− log |z − w|.

Set

Iε,M :=
1

2

∫∫
f ε,M(z, w)dµ(z)dµ(w)

and

Iε :=
1

2

∫∫
f ε(z, w)dµ(z)dµ(w).

Note that by monotone convergence, Iε = supM>0 I
ε,M , and since Iε,M :M1(C)→ R

is continuous, we have that Iε is lower semicontinuous on M1(C), and therefore on
P . On the other hand, Iε converges uniformly to I on P by Lemma 2.2. It follows
that I is also lower semicontinuous on P , completing the proof of the lemma. �

3.2 Exponential Tightness of {Pn}.

We prove in this subsection the exponential tightness of the family {Pn}.

Lemma 3.2. The family {Pn} is exponentially tight. That is, with T > 0 there exist
compact sets KT ⊂ P so that

lim sup
n→∞

1

n2
logP (Ln ∈ K{T ) ≤ −T.

Proof. Introduce the function g(z, w) = log |1− z| + log |1− w| − log+(|z − w|), and
define the function J on P by

J(µ) =

∫∫
g(z, w)dµ(z)dµ(w) .

Using Lemma 2.2 and arguing as in subsection 3.1, one sees that the sets

KB := {µ ∈ P : J(µ) ≤ 5B}

are compact in M1(C) for B large.

We need thus to estimate P (Ln ∈ K{B). Introduce the random variables

Xn =
1

n2

n∑
i=1

log |1− zi| =
1

n2
log

Pn(1)

ξn
=

1

n2
log

ξ0 + · · ·+ ξn
ξn

and

Yn =
1

n

∑
{i:|1−zi|<1}

| log |1− zi|| .

We need the following estimate, whose proof is postponed to the end of the subsection.
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Lemma 3.3. There exists a constant c > 0 such that for all n large,

Pn(|Xn| > B) ≤ 20ne−Bn
2

(15)

and
Pn(Yn > c) = 0 . (16)

Continuing with the proof of Lemma 3.2, we have

Pn(Ln ∈ K{B) ≤ Pn
(
{Ln ∈ K{B} ∩ {|Xn| ≤ B}

)
+ Pn ({|Xn| > B})

≤
bn/2c∑
k=0

Pn
(
{Ln ∈ K{B} ∩ {|Xn| ≤ B} ∩ An,k

)
+ 20ne−Bn

2

, (17)

see (5) for the definition of An,k.

We next consider the density of Pn on An,k, see (5), which we write as

fk,n(z1, · · · , zN) =

1

Zn,k
exp

(
n2

2
(

1

n2

∑
i 6=j

log |zi − zj| −
2

n

∑
i

log |1− zi|+
4

n2

∑
i

log |1− zi|)

)

× exp

(
−3
∑
i

log |1− zi|

)
1Bn,k(z1, . . . , zn).

Note that

1

n2

∑
i 6=j

log |zi − zj| ≤
1

n2

∑
i 6=j

(log+ |zi − zj|) =

∫∫
log+ |z − w|dLn(z)dLn(w).

Thus, on the event {Ln ∈ K{B} ∩ {|Xn| ≤ B} ∩ An,k, we have that

1

n2

∑
i 6=j

log |zi − zj| −
2

n

∑
i

log |1− zi|+
4

n2

∑
i

log |1− zi| ≤ −5B + 4B = −B

and therefore on this event,

fk,n(z1, · · · , zN) ≤ 1

Zn,k
e−n

2B/2 exp

(
−3
∑
i

log |1− zi|

)
1Bn,k(z1, . . . , zn).

Thus, using (16) and the constant c in the statement of the lemma,

Pn
(
{Ln ∈ K{B} ∩ {|Xn| ≤ B} ∩ An,k

)
≤ 1

Zn,k
e−n

2B/2

∫
· · ·
∫ ([ n∏

i=0

1

|1− zi|3

]
∧ e3cn

)
dL(z1) · · · dL(zk)d`(z2k+1) · · · d`(zn).

Lemma 3.2 follows from substituting the last display in (17) and performing the
integration. �
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Proof of Lemma 3.3. By the argument in the proof of Lemma 2.2, we have that for
any j non-negative integer,

1

n

∑
zi:|1−zi|∈[2−j+1,2−j ]

| log |1− zi|| ≤ j · 2−j .

Thus,

Yn =
1

n

∑
zi:|1−zi|≤1

| log |1− zi|| ≤
∞∑
j=0

j2−j . (18)

In particular, for all n large,
Pn(Xn ≤ −1) = 0 . (19)

Next, we control the upper tail of Xn. We have

P (Xn > B) = P (
n−1∑
i=0

ξi > (eBn
2 − 1)ξn) ≤ P (

n−1∑
i=1

ξi >
1

2
eBn

2

ξn)

=

∫ ∞
0

e−xP (
n−1∑
i=1

ξi >
1

2
eBn

2

x)dx . (20)

Using Chebycheff’s inequality, we have

P (
n−1∑
i=1

ξi >
1

2
eBn

2

x) ≤ e−λe
Bn2x/2E(eλξ1)n ≤ e−λe

Bn2x/2

(1− λ)n
.

Chooising λ = 1/n and substituting in (20) gives

P (Xn > B) ≤ e ·
∫ ∞

0

e−x(1+eBn
2
/2n)dx ≤ 4e · ne−Bn2

.

Combining the last display with (19) completes the proof. �

3.3 The Upper Bound

Recall the notation f(z, w) = log |1− z|+ log |1− w| − log |z − w|. We prove in this
subsection the following.

Lemma 3.4. For any µ ∈ P,

lim
ε→0

lim
n→∞

1

n2
log Pn (d(Ln, µ) ≤ ε) ≤ −1

2

∫∫
f(z, w)dµ(z)dµ(w) . (21)

Here, d(·, ·) is an arbitrary metric on M1(C) which is compatible with the weak
topology, e.g. the Lévy metric.
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Proof. Define the set of measures

En := {ν ∈ P :
1

n

∫
log |1− z|dν(z) ≥ 1

2

∫∫
f(z, w)dν(z)dν(w)}.

The set En corresponds to a subset of ∪bn/2ck=0 An,k which gives rise to empirical measures
ν as described in Section 1. By abuse of notation, we denote this set by En as well.

An application of (15) of Lemma 3.3 gives the following.

Proposition 3.5. With notation as above, Pn(En) ≤ 20n exp
(
−1

2
n2
∫ ∫

f(z, w)dµ(z)dµ(w)
)
.

Now,

Pn (d(Ln, µ) ≤ ε) ≤ Pn
(
E{n ∩ {d(Ln, µ) ≤ ε}

)
+ Pn(En).

Therefore,

lim
n→∞

1

n2
Pn (d(Ln, µ) ≤ ε) = Max{ lim

n→∞

1

n2
Pn(En), lim

n→∞

1

n2
Pn
(
E{n ∩ {d(Ln, µ) ≤ ε}

)
}.

Since limn→∞
1
n2 logPn(En) is bounded above by the desired upper bound, it remains

to deal with limn→∞
1
n2Pn

(
E{n ∩ {d(Ln, µ) ≤ ε}

)
.

We begin with

Pn(E{n ∩ {d(Ln, µ) < ε}) =

bn/2c∑
k=0

1

Zn,k
Iεk,n,

where

Iεk,n =

∫
{E{

n∩An,k∩Bn,k∩{d(Wn,µ)≤ε}}
exp

( ∑
1≤i<j≤n

log|zi − zj| − (n+ 1)
n∑
j=1

log|1− zj|

)

dL(z1) · · · dL(zk)d`(z2k+1) · · · d`(zn)

where Wn(z1, · · · , zn) is the empirical measure 1
n

∑n
i=1 δzi .

We will upper bound limn→∞
1
n2 log Iεk,n for each 0 ≤ k ≤ bn/2c, uniformly in k; by

summing over k, this (together with (6)) will be sufficient for the overall upper bound
on Pn

(
E{n ∩ {d(Ln, µ) ≤ ε}

)
.

For reasons similar to those encountered in the proof of exponential tightness, we
write the integrand in Iεk,N as

exp

( ∑
1≤i<j≤n

log|zi − zj| − (n− 1)
n∑
j=1

log|1− zj|+ ε

n∑
j=1

log|1− zj|

)
n∏
j=0

1

|1− zj|2+ε
.

(22)
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Note that to upper bound the exponent in (22), it suffices to truncate log |zi − zj|
from below and log |1− zi| from above. To this end, we fix a big positive number M
and define the truncated function

fM(z, w) = f(z, w) ∧M.

The exponent in (22) is

En(z1, · · · , zN) ≤ n2

2

(
−
∫∫

z 6=w
fM(z, w)dLn(z)dLn(w)− 2ε

n

∫
log |1− z|dLn(z)

)
(23)

and exp (En(z1, · · · , zn)) is integrated, for each fixed k, with respect to the measure

n∏
j=0

1

|1− zj|2+ε
1Bn,k(z1, . . . , zn)dL(z1) · · · dL(zk)d`(z2k+1) · · · d`(zn). (24)

But ∫∫
z 6=w

fM(z, w)dLn(z)dLn(w) =

∫∫
fM(z, w)dLn(z)dLn(w)−M/n

In the above equality, the M/n term comes from the diagonal terms in the discrete
sum

∫∫
fM(z, w)dLn(z)dLn(w).

We handle (23) with the following proposition, whose proof is defered to the end of
this section.

Proposition 3.6. There exist δM(ε) > 0 and c(M) > 0 such that for all ν ∈ P such
that d(ν, µ) < ε we have∣∣∣∣∫∫ fM(z, w)dν(z)dν(w)−

∫∫
fM(z, w)dµ(z)dµ(w)

∣∣∣∣ < δM(ε) + c(M).

where δM(ε) → 0 as ε → 0 for each fixed M (bigger than some universal constant)
and c(M)→ 0 uniformly in ν ∈ P and ε.

Continuing with the proof of the upper bound, we use Proposition 3.6 in (23)
together with (16) to write

Iεk,n ≤ Cn exp
{

4n2(δM(ε) + c(M) + n−1M)
}

× exp

{
−n

2

2

(∫∫
f(z, w)dµ(z)dµ(w)− ε

∫∫
f(z, w)dµ(z)dµ(w)

)}
∫
· · ·
∫ ( n∏

i=0

1

|1− zi|2+ε
∧ c(2+ε)n

)
dL(z1) · · · dL(zk)d`(z2k+1) · · · d`(zn).

The last integral is dominated by eC(ε)n for appropriate C(ε). Taking logarithm,
dividing by n2 and letting n → ∞, ε → 0 and M → ∞ (in that order) we get the
desired upper bound (21). �
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Proof of Proposition 3.6. The statement would follow immediately from the defini-
tions if fM was a bounded continuous functions. Although fM is not a bounded
continuous function, fM is clearly bounded above. We introduce gM = fM ∨ (−M).
Note that switching with z′ = 1 − z, w′ = 1 − w, we have gM(1 − z′, 1 − w′) =
(−M) ∨M ∧ (− log | 1

z′
− 1

w′
|).

Let AM be the set
AM := {(z, w) : fM(z, w) < −M}.

Clearly,∫∫
fM(z, w)dν(z)dν(w) =

∫∫
gM(z, w)dν(z)dν(w)+

∫∫
AM

(fM(z, w)+M)dν(z)dν(w).

We consider integration over the domain |w′| ≤ |z′|; by symmetry, the complemen-
tary domain can be handled similarly. Then on the set AM , we have fM(z, w) =
− log |1 − w′

z′
| + log |w′|. But since |w′| ≤ |z′|, we have − log |1 − w′

z′
| ≥ − log 2 and

therefore on the set AM we have

log |w′| ≤ −M + log 2

and
− log 2 + log |w′| ≤ fM(z, w) ≤ −M. (25)

LetBM,ν be the event that for two i.i.d. variables (X, Y ) sampled from ν, the minimum
satisfies

log (min(|1−X|, |1− Y |)) ≤ −M + 2.

Clearly, AM ⊂ BM,ν . From Lemma 2.2, we deduce that

ν(BM,ν) < c1(M) (26)

where c1(M)→ 0 as M →∞ uniformly in ν. Furthermore, the same lemma implies
that ∣∣∣∣∣

∫
BM,ν

log (min(|1− z|, |1− w|)) dν(z)dν(w)

∣∣∣∣∣ < c2(M) (27)

where c2(M)→ 0 as M →∞ uniformly in ν.

Combining (25), (26) and (27) we get∫∫
AM

(fM(z, w) +M)dν(z)dν(w) = c3(M, ν)

where c3(M, ν)→ 0 as M →∞ uniformly in ν ∈ P . In other words, we have∣∣∣∣∫∫ fM(z, w)dν(z)dν(w)−
∫∫

gM(z, w)dν(z)dν(w)

∣∣∣∣→ 0

as M →∞, uniformly in ν ∈ P .

It remains to show that
∫∫

gMdν ⊗ dν →
∫∫

gMdµ ⊗ dµ as ν → µ for a fixed M .
But this is true by definition since gM is a bounded continuous function. �
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3.4 The Lower Bound

Our goal in this subsection is to prove the following.

Lemma 3.7. For any µ ∈ P with I(µ) <∞,

lim
ε→0

lim
n→∞

1

n2
logPn (d(Ln, µ) ≤ ε) ≥ −I(µ) = −1

2

∫∫
f(z, w)dµ(z)dµ(w). (28)

(Recall that f(z, w) = log |1− z|+ log |1− w| − log |z − w|.)

The proof of Lemma 3.7 proceeds by several approximation steps. Those are detailed
in the rest of the subsection, with several technical propositions deferred to Sections
4 and 5.

3.4.1 A dense subclass D ⊂ P

We introduce a dense (in the metric of M1(C)) subset D ⊂ P such that for any
measure µ ∈ P there is a sequence {µm}∞m=1 from D such that

(i) µm → µ as m→∞ (convergence in the weak topology of M1(C)),

(ii) I(µm)→ I(µ) as m→∞,

(iii) For any ν ∈ D, the estimate (28) holds.

Once such a subset D is constructed, Lemma 3.7 follows at once.

Such a desirable dense subset D ⊂ P will be obtained from the proof of the char-
acterization Theorem 2.3 for P . In [BES13, Proof of Theorem 2], the authors begin
with any fixed measure µ ∈ P , and perform a sequence of approximation steps (steps
1-5 in their paper) to obtain a measure µε ∈ P , which has (roughly) the following
support properties:

(a) supp(µε) is contained in a compact annulus centred at the origin.

(b) supp(µε) is disjoint from a cone with apex at the origin and axis the positive
ray R+.

(c) L̂µε(z) < L̂µε(|z|) for each z ∈ C \ R̄+, while L̂µε(z) = L̂µε(0) + a<z+O(|z|2) as

|z| → 0 and L̂µε(z) = log |z|+ b/<(z) +O(1/|z|2) as |z| → ∞, with both a and
b being positive.
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In addition, µε →ε→0 µ (again, in the weak topology of M1(C).

We define D to be the subset of M1(C) consisting of probability measures µε sat-
isfying (a)–(c). We will use the [BES13] construction (with a slight modification of
their step 5), in order to construct, for any µ ∈ P with I(µ) <∞, a sequence µε ∈ D
with µε → µ and in addition I(µε)→ε→0 I(µ). For the sake of completeness, we give a
complete account of the construction, its modifications and approximation properties
in Section 5. That is, we prove in Section 5 the following proposition.

Proposition 3.8. For any µ ∈ P with I(µ) < ∞, there exists a sequence µε ∈ D so
that µε →ε→0 µ and I(µε)→ε→0 I(µ).

Equipped with Proposition 3.8 and in view of properties (i)–(iii) above, Lemma 3.7
is an immediate consequence of the following proposition and the local nature of the
large deviations lower bound.

Proposition 3.9. The lower bound (28) holds for any µ ∈ D.

The rest of this section is devoted to the proof of Proposition 3.9.

3.4.2 Proof of Proposition 3.9.

The proof proceeds in several approximation steps. We fix throughout a µ ∈ D. We
first construct in Proposition 3.10 a sequence of polynomials with positive coefficients
whose empirical measure of zeros approximates µ and so that their (discrete) logarith-
mic energies approximate the logarithmic energy of µ. We then show in Proposition
3.11 that it is enough to prove the lower bound for balls centered at the empirical
measure µk of zeros of these approximating polynomials. The proof of the later lower
bound is then obtained by first constructing appropriate neighborhoods of µk, and
then lower bounding the probability by lower bounding the density of Pn on these
neighborhoods.

Stage I: Reduction to atomic measures
We introduce the discrete version of logarithmic energy for atomic measures with
distinct atoms, as follows.

Definition 3. For an atomic measure µ with equal mass 1
k

at the k distinct atoms
{zi}ki=1, let

Σa(µ) =
1

k2

∑
i 6=j

log |zi − zj|

denote the modified logarithmic energy.

By an abuse of notation, we will also use the same notation Σa(P ) where P is a
polynomial (with distinct zeros); in that case, the atomic measure being considered
is the empirical measure of the zeros of P . We begin with the following proposition.
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Proposition 3.10. For each µ ∈ D one may find a sequence of monic polynomials
{Pk}, with empirical measure of zeros {µk}, satisfying the following properties.

(i) Pk has positive coefficients.

(ii) µk ∈ P, µk → µ in M1(C) and Σa(µk)→ Σ(µ) as k →∞.

(iii) µk has a(k) distinct atoms, none of which is real, and µk puts equal mass of
1/a(k) on each atom, with a(k)→∞ as k →∞. In particular, a(k) is even.

(iv) Pk is of degree d(k) = a(k)n(k) for some positive integer n(k).

The proof of Proposition 3.10 is given in Section 4.

The importance of the polynomials in Proposition 3.10 lies in the following propo-
sition.

Proposition 3.11. To obtain (28) for some µ ∈ D, it suffices to prove that for all
large enough k, and with µk as in Proposition 3.10, we have

lim
n→∞

1

n2
logPn (d(Ln, µk) ≤ ε) ≥ −1

2

(∫
log |1− z|dµk(z) +

∫
log |1− z|dµk(w)− Σa(µk)

)
.

(29)

Proof of Proposition 3.11. Given ε > 0, we have for all k large enough the inclusion
of sets

{ν : d(ν, µk) < ε/2} ⊂ {ν : d(ν, µ) < ε}.
This implies that given ε > 0, we have for all large enough k

lim
n→∞

1

n2
logPn (d(Ln, µ) ≤ ε) ≥ lim

n→∞

1

n2
logPn (d(Ln, µk) ≤ ε/2)

≥ −1

2

(∫
log |1− z|dµk(z) +

∫
log |1− z|dµk(w)− Σa(µk)

)
. (30)

Now, the support of each µk is contained in the 1/a(k) thickening of the support of
µ which is a compact set bounded away from 1. Hence the function log |1 − z| is
continuous on a closed neighborhood of the support of µ, and therefore µk → µ in
M1(C) implies that

∫
log |1 − z|dµk(z) →

∫
log |1 − z|dµ(z). Moreover, by property

(ii) of µk we have that Σa(µk)→ Σ(µ) as k →∞. Letting now k →∞ first and then
ε→ 0 in (30) yields (28). �

Stage II: The Neighbourhoods Nn(ε, δ) of µk

In this stage we will fix k and consider a positive number 0 < δ < 1 (we will
eventually let δ → 0). We will define suitable n-dependent neighbourhoods Nn(ε, δ)
of µk in M1(C) (depending on N), which are contained in the set {ν : d(ν, µk) < ε}.

17



We begin with several definitions. If {wi}pi=1 is a collection of complex numbers
(multiplicities allowed), we say that the collection of complex numbers {w̃i}pi=1 is
ρ-compatible with {wi}pi=1 if |wi − w̃i| < ρ for all i and w̃i is real whenever wi is real.

Definition 4. Let P be a polynomial of degree p with positive coefficients and zero set
{wi}pi=1 (multiplicities allowed). Then ρP is defined as the largest ρ > 0 satisfying that
for any i 6= j, either wi = wj or B(wi, ρ)∩B(wj, ρ) = ∅, and in addition any collection
{w̃i}pi=1 which is symmetric under conjugation and ρ-compatible with {wi}pi=1 is the
zero set of a polynomial with positive coefficients.

For any ρ < ρP , we denote by S(P, ρ) the set of all empirical measures corresponding
to such collections {w̃i}.

Let Pk be as in Proposition 3.10, with corresponding empirical measure µk and set
of atoms {zi}a(k)

i=1 . Recall that none of the zeros of Pk is real. We will consider the set of
atomic measures S(Pk, ρ(δ)) (where δ is a small parameter to be sent to 0 eventually)
and choose ρ(δ)→ 0 as δ → 0 depending on Pk so that:

• d(µk, ν) < ε/2 for any ν ∈ S(Pk, ρ(δ)).

•
∣∣∫ log |1− z|dµk −

∫
log |1− z|dν(z)

∣∣ < δ for each ν ∈ S(Pk, ρ(δ)).

• ρ(δ) < δ ·mini 6=j|zi − zj|.

Given a positive integer n, set m = bn/d(k)c (where we recall that d(k) = a(k)n(k)
is the degree of Pk). Define the set of atomic measures

S(m)(Pk, ρ(δ)) := {ν :
1

m

m∑
i=1

νi; νi ∈ S(Pk, ρ(δ)) and ν has md(k) distinct atoms}.

Each ν ∈ S(m)(Pk, ρ(δ)) has the following structure: it has md(k) distinct atoms with
equal mass at each atom, and the atoms can be grouped into a(k) sets according to
their nearest zi; by the definition of S(Pk, ρ(δ)), each atom is at distance at most ρ(δ)
from the corresponding zi. In particular, none of the atoms is real.

Fix a bounded interval I of length < 1 on the negative real line such that I is also
bounded away from the support of µk by a distance ≥ 2. Define the set of measures

Υ(m) :=

 1

n−md(k)

n−md(k)∑
i=1

δθi : θi are distinct numbers ∈ I

 .

Finally, define Nn(ε, δ) to be the set of measures

Nn(ε, δ) :=

{
md(k)

n
ν1 +

(
1− md(k)

n

)
ν2 : ν1 ∈ S(m)(Pk, ρ(δ)), ν2 ∈ Υ(m)

}
.
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Note that all measures in Nn(ε, δ) possess precisely (n − md(k)) real zeros. Since
0 ≤ n−md(k) ≤ d(k) (which is fixed since we are considering k to be fixed), for large
enough n we have d(µk, ν) < ε for all measures ν ∈ Nn(ε, δ). Therefore,

lim
n→∞

1

n2
logPn (d(Ln, µk) ≤ ε) ≥ lim

n→∞

1

n2
logPn (Nn(ε, δ)) . (31)

Remark 3.1. Each ν ∈ Nn(ε, δ) has the following structure:

• ν has n distinct atoms, each having equal mass 1/n.

• The atoms of ν are the disjoint union of (a(k) + 1) subsets as follows:

– Λi(ν) := {w : w an atom of ν, |zi−w| ≤ ρ(δ)}, 1 ≤ i ≤ a(k), with |Λi(ν)| =
d(k)m/a(k) for each i ∈ {1, · · · , a(k)}.

– Λ0(ν) := {w : w an atom of ν, w ∈ I} with |Λ0(ν)| = n− d(k)m.

Conversely, every collection of n points satisfying the above structure has the property
that the corresponding empirical measure is in Nn(ε, δ).

For each ν ∈ Nn(ε, δ), we define the atomic measure

ν(i) :=
1

|Λi(ν)|
∑

w∈Λi(ν)

δw

for 0 ≤ i ≤ a(k).

Stage III: A good subset Ñn(ε, δ) ⊂ Nn(ε, δ) and completion of the proof of
Proposition 3.9.

We introduce a subset Ñn(ε, δ) ⊂ Nn(ε, δ), and estimate its volume in Proposition
3.12. We then use the estimate to complete the proof of Proposition 3.9.

Throughout, we fix q = q(n) = md(k)/2, recalling that m = bn/d(k)c and that by
construction, d(k) is even.

Definition 5. For 1 ≤ i ≤ a(k), define Ui to be the ball of radius ρ(δ) centered at zi.
Define U0 to be the interval I.

Define the set of atomic measures Ñn(ε, δ) ⊂ Nn(ε, δ) as follows:

Ñn(ε, δ) := {ν ∈ Nn(ε, δ) : Σa(ν(i)) > 2Σ(Ui) for each 0 ≤ i ≤ a(k)}.

By an abuse of notation, we also denote by Ñn(ε, δ) the subset of Cq ×Rn−2q induced

by the atoms of measures ν ∈ Ñn(ε, δ) in the manner described in Section 1.
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Note that by the choice of ρ(δ), Ui ∩ R = ∅ for i = 1, . . . , a(k).

With this definition, we have the following proposition, whose proof is given at the
end of this subsection.

Proposition 3.12. With notation as above, we have

(i) Volume(Ñn(ε, δ))≥ 1
2a(k)

ρ(δ)d(k)m|I|d(k).

(ii) For each ν ∈ Ñn(ε, δ), we have

Σa(ν) ≥ Σa(µk) + log |1− 2δ|+ 2

a(k)
A(δ) +

C(k)

n2

where A(δ) and C(k) are positive quantities such that A(δ) → 0 as δ → 0 with
k fixed.

(iii)
∣∣∫ log |1− z|dµk −

∫
log |1− z|dν(z)

∣∣ < δ for each ν ∈ Ñn(ε, δ).

In the proposition, by Volume we mean the Euclidean volume.

We can now complete the following proof.

Proof of Proposition 3.9. In what follows, we will use the notation Ñn to denote
Ñn(ε, δ), unless explicitly mentioned otherwise. We have

Pn

(
Ñn
)
≥ 1

Zn,q
×∫

Ñn
exp

{
n2

2

(
Σa(W)− 2

n+ 1

n2

n∑
i=1

log |1− wi|

)}
q∏
i=1

dL(wi)

n−2q−1∏
j=0

d`(wN−j),

where we recall that each measure in ÑN has n−2q real atoms, andW is the empirical
measure corresponding to the set of atoms {wi}ni=1.

By Proposition 3.12, the exponent in the last integral is lower bounded (uniformly

over all measures in Ñn) by

En =
n2

2

(
Σa(µk) + log |1− 2δ|+ 2

a(k)
A(δ) +

C(k)

n2
− (1 +

1

n
) · 2

∫
log |1− z|dµk(z)− 2(1 +

1

n
)δ

)
.

Hence, using also (6),

Pn(Ñn) ≥ exp
(
o(n2) + En

)
Volume(Ñn).

From Proposition 3.12 it follows that 1
n2 log Volume(Ñn)→ 0 as n→∞.
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Therefore,

lim
n→∞

1

n2
Pn(Ñn(ε, δ)) ≥ 1

2

(
Σa(µk) + log |1− 2δ|+ 2

a(k)
A(δ)− 2

∫
log |1− z|dµk(z)− 2δ

)
.

Letting δ → 0, holding k fixed, we obtain (29). Proposition 3.11 now implies that the
proof of (28) is complete. �

Proof of Proposition 3.12. We begin with part (i). Note that for i = 1, . . . , a(k), Ui
does not intersect the real axis. Recall also that |Λi(ν)| = d(k)m/a(k) =: p.

Let a p-tuple γ = (γ1, · · · , γp) be sampled with each co-ordinate drawn indepen-
dently from the uniform distribution on Ui; by abuse of notation, we still use γ to
denote the atomic measure 1

p

∑
j δγj . Then, E(Σa(γ)) = (1 − 1

p
)Σ(Ui). Notice here

that since the radius of Ui is less than 1, Σa(γ) and Σ(Ui) both have negative signs.
Therefore, by a first moment bound,

Volume{γ ∈ Up
i : |Σa(γ)| = −Σa(γ) ≥ 2|Σ(Ui)| = −2Σ(Ui)} ≤

1

2
Volume(Up

i ).

This implies that

Volume{γ ∈ Up
i : Σa(γ) > 2Σ(Ui)} >

1

2
Volume(Up

i ).

Note that the quantity Σ(µ) is invariant under translations of the measure µ, hence
any Σ(Ui) with i ≥ 1 is equal to Σ(U), where U is the disk of radius ρ(δ) centered at
the origin. Note that Σ(U)→ 0 as δ → 0.

A similar argument with the atoms in Λ0(ν) for ν ∈ Nn implies that

Volume{γ ∈ In−d(k)m : Σa(γ) > 2Σ(I)} > 1

2
Volume(|I|n−d(k)m).

Definition 5 and Remark 3.1 now imply part (i) of Proposition 3.12.

We next turn to the proof of part (ii). For ν ∈ Nn(ε, δ) we have

Σa(ν) =

a(k)∑
i=1

d(k)2m2

a(k)2n2
Σa(ν(i))+

(n− d(k)m)2

n2
Σa(ν(0))+

1

n2

∑
wi,wj not in same Λl

log |wi−wj|.

(32)
Recall that ρ(δ) < δ ·mini 6=j|zi − zj|. This implies that for wi, wj from Λα,Λβ respec-
tively with α 6= β 6= 0, we have

(1− 2δ)|zα − zβ| ≤ |wi − wj| ≤ (1 + 2δ)|zα − zβ|.

On the other hand, if wi ∈ Λ0 and wj /∈ Λ0, then

0 ≤ log |wi − wj| ≤ log |1 + |I|+D + ρ(δ)|,
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where D is the diameter of the support of µk. Hence∣∣∣∣∣∣ 1

n2

∑
Exactly one of wi,wj∈Λ0

log |wi − wj|

∣∣∣∣∣∣ ≤ d(k)(n− d(k)m)

n2
log |1+|I|+D+ρ(δ)| ≤ C(k)/n2

for some function C(k). Hence we have

log |1−2δ|−C(k)

n2
≤

∣∣∣∣∣∣ 1

n2

∑
wi,wj not in same Λl

log |wi − wj| − Σa(µk)

∣∣∣∣∣∣ ≤ log |1+2δ|+C(k)

n2
.

(33)

This is true for every ν ∈ Nn(ε, δ), and therefore for every ν ∈ Ñn(ε, δ). By definiton

of Ñn, we have Σa(ν(i)) ≥ 2Σ(Ui) ≥ 2B(δ) for each ν ∈ Ñn and each 0 ≤ i ≤ a(k),
where the function B(δ) = max(Σ(U),Σ(I)). Since m = bn/d(k)c, we have

a(k)∑
i=1

d(k)2m2

a(k)2n2
Σa(ν(i)) +

(n− d(k)m)2

n2
Σa(ν(0)) ≥ A(δ)

a(k)

for some A(δ)→ 0 as δ → 0. This completes the proof of part (ii) of the proposition.

Part (iii) of the proposition is immediate as the statement holds for all measures

ν ∈ Nn(ε, δ) and Ñn(ε, δ) ⊂ Nn(ε, δ). �

4 Proof of Proposition 3.10

We begin with a general approximation result.

Lemma 4.1. Let µ ∈ M1(C) be of compact support and such that µ is symmetric
under conjugation, Σ(µ) < ∞, and µ does not possess atoms. Then there exists a
sequence of point configurations with distinct points and empirical measures νk such
that

(1) νk is symmetric under conjugation, the support of νk is contained inside the 1/k
thickening of the support of µ, and νk does not charge the real line.

(2) νk → µ as k →∞.

(3) Σa(νk)→ Σ(µ) as k →∞.

Proof. For an discrete measure ν having n distinct atoms and equal mass 1/n on each
atom, and a function f , define Σf

a(ν) = 1
n2

∑
i 6=j f(xi, xj) where {xi}ni=1 are the atoms

of ν. Thus, for f(z, w) = log |z − w|, we have Σf
a(ν) = Σa(ν) as defined earlier.
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Recall that the measure µ is compactly supported and symmetric under conjugation.
Let µR be µ restricted to R and let µu be µ restricted to the upper half plane. Define
the measures µ1 = 1

2
µR + µu and µ2 = 1

2
µR + µu where µu is the measure supported

on the lower half plane and defined by µu(A) = µu(A). Obviously, µ = µ1 + µ2.

For each n, we will obtain conjugation symmetric point sets of size 2n whose em-
pirical measures will approximate µ in the following way. First, consider n i.i.d.
random samples {x1, · · · , xn} from µ1 (to obtain random samples we consider the
probability measure obtained by appropriately normalizing µ1). Consider the point
set Y := {y1, · · · , yn} where yj = xj + i

n
and i is the imaginary unit. Consider the

point set Z := Y ∪ Y , and let Ln = 1
2n

∑
z∈Z δz denote the (random) empirical mea-

sure associated with Z; one has that Ln → µ in distribution (for example, by an
application of Sanov’s theorem).

Fix a positive number M (to be thought of as large). Let K > 1 be a bound on
the diameter of the support of M . Set f(z, w) = log |z − w|. Define fM(z, w) =
f(z, w) ∧M ∨ (−M) and gM = f − fM . Because Σ(µ) <∞ we have that

α(M) =

∫∫
|gM(z, w)|dµ(z)dµ(w)→ 0

as M →∞.

We have that 1
n
≤ |Yi − Y i| ≤ K. Therefore, for n > n0(K),

1

n2

∣∣∣∣∣
n∑
i=1

log |Yi − Y i|

∣∣∣∣∣ ≤ log n/n.

On the other hand, for i 6= j we have E[|gM(Yi, Yj)|] =
∫∫
|gM(z, w)|dµ1(z)dµ1(w) and

E[|gM(Y i, Y j)|] =
∫∫
|gM(z, w)|dµ2(z)dµ2(w).

We next claim that, forM > logK, we have E[|gM(Yi, Y j)|] ≤
∫∫
|gM(z, w)|dµ1(z)dµ2(w).

To see this, note that

gM(z, w) =


0, if −M ≤ log |z − w| ≤M,

log |z − w| −M, if log |z − w| ≥M,
log |z − w|+M if log |z − w| ≤ −M.

The case log |z − w| ≥ M does not arise when we consider gM(Yj, Y j) because M >
logK. On the other hand,

|Yk − Y j| = |Xk −Xj +
2i

n
| ≥ |Xk −Xj|

because the Xj-s belong to the upper half plane. Thus, log |Yk − Y j| ≤ −M implies
log |Xk−Xj| ≤ −M and on this event we have log |Xk−Xj|+M ≤ log |Yk−Y j|+M .
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Since these quantities are negative, this is equivalent to | log |Yk−Y j|+M | ≤ | log |Xk−
Xj|+M |. This implies that

E[|gM(Yi, Y j)|] ≤ E[|gM(Xi, Xj)|] =

∫∫
|gM(z, w)|dµ1(z)dµ2(w),

as claimed.

We now have that

E[|ΣgM
a (Ln)|] ≤ 1

4n2

∑
i 6=j

E[|gM(Zi, Zj)|]

=
1

4n2

∑
i 6=j

E[|gM(Yi, Yj)|] +
1

4n2

∑
i 6=j

E[|gM(Yi, Y j)|]

+
1

4n2

∑
i 6=j

E[|gM(Y i, Y j)|] +
1

4n2

n∑
i=1

E[|gM(Yi, Y i)|].

Thus, from the previous computations, we can choose n1 = n1(M) so that for all
n > n1(M),

E[|ΣgM
a (Ln)|] ≤ 2α(M) .

In particular, for fixed δ > 0 there exists n2(M) = n2(M, δ) so that for n > n2(M),
there exists a realization νn of Ln such that d(νn, µ) ≤ δ and |ΣgM

a (νn)| ≤ 2α(M).
Applying a diagonalization argument (with δ → 0 while M is kept fixed), we find a
sequence (with some abuse of notation, denoted νk), so that such that d(νk, µ) ≤ 1/k
and |ΣgM

a (νk)| ≤ 2α(M).

Now, Σa(νk) = ΣfM
a (νk) + ΣgM

a (νk). Since fM is bounded and continuous, we have
ΣfM

a (νk)→
∫∫

fM(z, w)dµ(z)dµ(w) as k →∞. This implies that

lim
k→∞
|Σf

a(νk)−
∫∫

f(z, w)dµ(z)dµ(w)| ≤ 3α(M).

Applying again a diagonalization argument (this time overM), one obtains the lemma.
�

Proof of Proposition 3.10. Let νk be the sequence of atomic measures constructed in
Lemma 4.1. Note that each on the νks has a(k) distinct (non real) atoms, is supported
within the 1/a(k) thickening of the support of µ, and satisfies Σa(νk)→ Σ(νk). Each
νk gives rise to a monic polynomial Qk with distinct zeros (so that the zeros of Qk

are precisely the atoms of νk). Since µ ∈ P , Step 6 in [BES13, Proof of Theorem 2]

shows that for some n(k) large enough, the polynomial Pk = Q
n(k)
k has all coefficients

real and positive. Note that the empirical measure of zeros of Pk coincides with the
empirical measure of zeros of Qk. This completes the proof. �
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5 The Bergweiler-Eremenko-Sokal approximation

and proof of Proposition 3.8.

We begin with a fixed measure µ ∈ P satisfying I(µ) <∞. Let

L̂µ(z) =

∫
|w|≤1

log(|z − w|)dµ(w) +

∫
|w|>1

log(|1− z

w
|)dµ(w) ,

and denote by u(z) = Lµ(z) =
∫

log |z − w|dµ(w) its logarithmic potential. Because
I(µ) < ∞, the Bergweiler-Eremenko-Sokal condition can be written as u(z) ≤ u(|z|)
for all z ∈ C \ R+.

The Bergweiler-Eremenko-Sokal approximation proceeds in five steps to construct
a sequence of approximations µi = µεi , i = 1, . . . , 5, with µ5 ∈ D. In the i-th step,
one starts with a measure µi−1 (with µ0 = µ and u0 = u) and constructs measures
µi ∈ P (depending on a small parameter ε > 0) such that µi → µi−1 weakly as ε→ 0.
The measures µi are defined via subharmonic functions ui, such that µi = (2π)−1∆ui
in the sense of distributions. One shows, see Section 4 of [BES13]) that in each of
the 5 steps, one has Lµi(z) = ui(z) + kεi where kεi is a constant (as a function of z)
depending on ε, and that ui(z)→ ui−1(z) for each z ∈ R+, while in some of the steps
the above convergence will occur pointwise in C. It is a consequence of Proposition
5.1 below that in each of the Steps 1-5, kεi → 0 as ε→ 0.

5.1 Preliminaries

We begin with several preliminary proerties concerning the convergence of subhar-
monic functions.

Proposition 5.1. Let uε be a sequence of subharmonic functions converging in the
sense of distributions to a subharmonic function u0 as ε→ 0. Assume further that uε
converges pointwise to u0 on R+. Let µε, ε ≥ 0 denote the Riesz measure of uε and
assume that uε(z) = Lµε(z) + kε where kε is independent of z. Then µε → µ0 weakly
and kε → k0.

Proof. By standard results, see [BES13, Appendix A], one gets the weak convergence
µε → µ0 and the a.e. (with respect to Lebesgue measure on R+) convergence of Lµε
to Lµ0 . In particular, the convergence Lµε(z) → Lµ0(z) occurs at a point z ∈ R+.
This yields the convergence kε → k0. �

We next show that pointwise monotone convergence of subharmonic functions im-
plies the convergence of the associated logarithmic energies. Results of this nature are
known in the literature; here we follow an approach based on the proof of a related
result in [D84].
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Proposition 5.2. Suppose {un} is a sequence of subharmonic functions decreasing
pointwise to a subharmonic function u0, as n → ∞. Let µn be the Riesz measure of
un, and assume un(z) = Lµn(z) + kn, with kn → k0 as n→∞. Then Σ(µn)→ Σ(µ0)
as n→∞.

Proof. By subtracting off k0, we can assume u0 = Lµ0 and kε → 0. Introduce the
notation [µ, ν] :=

∫∫
log |z − w|dµ(z)dν(w).

The hypotheses imply in particular that µn → µ0 weakly. The lower semicontinuity
of −Σ(·) then implies that lim sup Σ(µn) ≤ Σ(µ0). To see the other direction, note
that if either n = 0 or n > m we have

Σ(µn) = [µn, µn] =

∫
(un(z)− kn) dµn(z) =

∫
un(z)dµn(z)− kn

≤
∫
um(z)dµn(z)− kn = [µm, µn] + km − kn ≤ [µm, µm] + 2(km − kn)

= Σ(µm) + 2(km − kn),

where the monotonicity of the sequence {un} was used in the inequalities. We conclude
that lim infm→∞Σ(µn) ≥ Σ(µ0), completing the proof. �

5.2 Approximation steps

We describe each of the approximation steps µεi → µi−1, i = 1, . . . , 5, and show that
for each, both

Lµεi (1)→ Lµi−1
(1) , Σ(µεi)→ Σ(µi−1). (34)

In the sequel, we omit the subscript ε when it is clear from the context.

5.2.1 Step 1:

Given ε > 0, define
u1(z) = max{u(zeiα) : |α| ≤ ε}.

Note that u1 ≥ u pointwise, and that u1 decreases in ε. It is proved in [BES13, Section
4] that u1 →ε→0 u weakly; however, due to upper semicontinuity of u, this implies
also the pointwise convergence u1 ↘ε→0 u. An application of Propositions 5.1 and 5.2
yields (34) for i = 1.
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5.2.2 Step 2:

For ε1 ∈ (0, ε) where ε is as chosen in Step 1, define Dε1 = {z : | arg(z)| ≤ ε1}. Let v
denote the solution to the Dirichlet problem in Dε1 with boundary conditions u1(z)
and v(z) = O(log |z|) as z → ∞. Define u2 = u2(ε1) to be the function obtained by
“balayage” (i.e., sweeping out of the Riesz measure) from the domain Dε1 . In other
words, u2(z) = v(z) if z ∈ Dε1 , and = u1(z) otherwise. In this step too, it follows from
[BES13, Section 4] and the upper semicontinuity of u1 that u2 ↘ε1→0 u1 pointwise.
An application of Propositions 5.1 and 5.2 yields (34) for i = 2.

5.3 Step 3:

For ε > 0, define u3(z) = u2(z + ε). We have dµ3(z) = dµ2(z + ε). We have that
u3 → u2 pointwise on R+ and hence Proposition 5.1 yields that Lµ3(1) → Lµ2(1).
Since Σ(µ3) = Σ(µ2), we conclude that (34) holds for i = 3.

5.4 Step 4:

For ε > 0, define v(z) = u3(1/z) + log |z| for z 6= 0, and extend v(·) to C by defining
v(0) = lim supz→0 v(z). This definition preserves the sub-harmoniticity of v, and in
fact

v(0) = lim
r↘0

v(r) (35)

because u3(z) ≤ u3(|z|), hence the limsup is attained as r ↘ 0, and the convexity
of v(r) in log r then yields the existence of the limit. We claim that in fact, v(0) >
−∞ (and therefore, by sub-harmoniticity, is finite). Indeed, Lµv(0) = −Lµ3(0); by
construction, u3 is harmonic in a neighborhood of 0, see [BES13]. Hence, Lµv(0) =
−Lµ3(0) is finite, as claimed. We note in passing that Lµv(1) = Lµ3(1).

Next, define w(z) = v(z + ε) and, finally, u4(z) = w(1/z) + log |z|. As in the
previous step, we have that Lµ4(1) = Lµw(1) →ε→0 Lµv(1). So it only remains to
check the convergence of the logarithmic energy. To that end, note that under the
transformation v(z) = u(1/z) + log |z|, one has

Σ(µv) =

∫∫
log |z − w|dµv(z)dµv(w) =

∫∫
log

∣∣∣∣1z − 1

w

∣∣∣∣ dµu(z)dµu(w)

=

∫∫
log |z − w|dµu(z)dµu(w)− 2

∫
log |z|dµu(z) = Σ(µu)− 2Lµu(0).

With this computation in hand, we trace the changes in the logarithmic energy Σ in
Step 4 as follows:

Σ(µv) = Σ(µu3)− 2Lµ3 ,Σ(µw) = Σ(µv),Lµw(0) = Lµv(ε)
Σ(µu4) = Σ(µw)− 2Lµw(0) = Σ(µv)− 2Lµv(ε) = Σ(µu3)− 2Lµu3 (0)− 2Lµv(ε)

= Σ(µu3) + 2Lµv(0)− 2Lµv(ε).
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But
Lµv(ε)− Lµv(0) = v(ε)− v(0)→ 0 ,

due to (35). This completes the proof of (34) for Step 4.

5.5 Step 5:

In this step, we slightly differ from the recipe of [BES13]. Let I denote an interval
of length θ (which is assumed to be small but fixed) centered at -1. Let α be the
normalized Lebesgue measure supported on the set I. For ε > 0, define the measure

µ5 := (1− ε)µ4 + εα.

Define u5 = Lµ5 . Via a series expansion of log |1 + z| for small and large z, one checks
that this has the intended effect of making the coefficients b and c in Step 5 of the
[BES13] argument positive, while preserving the inequality u5(z) < u5(|z|) for z 6∈ R̄+.
Thus, µ5 ∈ D.

To see (34) for µ5, note that Lµ5 = (1− ε)Lµ4 + εLα and

Σ(µ5) = (1− ε)2Σ(µ4) + ε2Σ(α) + 2ε(1− ε)
∫

Lα(z)dµ4(z).

Since I is a bounded interval, one has that Lα(z) is uniformly bounded in z on any
compact set, in particular, on the support of µ4. Letting ε→ 0, one gets (34) for µ5.

This completes the proof of Proposition 3.8. �

6 Conditioning on all zeros being real

One notes from the expression for the density (5) in case k = 0 that P (Ln ∈
M1(R−)) > 0. One also notes that {µ ∈ P : supp(µ) = R−} = M1(R−). Thus,
one can rerun the proof of the lower bound in Theorem 1.1 replacing throughout P
by M1(R−) as a particular case of the proof in [BAG97]. One obtains that

lim
n→∞

1

n2
logPn(Ln ∈M1(R−)) = −IR ,

and one immediately deduces Theorem 1.2 by noting that the minimizer µR is unique
due to the strict convexity of I (applied on M1(R−)).

To see Theorem 1.3, we can make the transformation x 7→ −x to see that we are
interested in solving the variational problem

inf
µ∈M1([1,∞))

{
∫ ∞

0

log(x+ 1)dµ(x)− γ
∫ ∞

0

∫ ∞
0

log |x− y|dµ(x)dµ(y) , (36)
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with γ = 1/2.

A standard application of calculus of variation methods (as e.g. in [AGZ10, Lemma
2.6.2]) shows that the minimizer µ̄ of (36) is characterized as the unique solution, for
some constant C, of

2γLµ̄(x)

{
= log(x+ 1) + C, µ̄− a.e.
> log |x+ 1|+ C, x ∈ R+ \ supp(µ̄).

(37)

One can proceed by first guessing the form of the minimizer and then verifying that
it satisfies indeed (37). For γ > 1/2, this is can be achieved solving, in a compact
interval, the associated Riemann-Hilbert problem, and then taking the limit γ → 1/2.
We do not detail these computations, instead presenting the ansatz that the minimizer
in (36) has density with respect to Lebesgue measure on [0,∞) of the form

ψ(x) =
1

π(x+ 1)
√
x
. (38)

We need to verify that ψ(x)dx satisfies (37). Making the change of variables w =
√
x,

we have

Lµ̄(x) =
2

π

∫ ∞
0

log |x− w2|
w2 + 1

dw .

Choosing the contour of integration C := {r}Rr=−R ∪{Reiθ}πθ=0 for R large, and noting
the pole at i, one obtains from a residue computation that Lµ̄(x) = log(x + 1) for
x ∈ R+, i.e. that (37) holds with density ψ. This completes the proof of Theorem
1.3.
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