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Abstract

Consider a random field, with values in some finite set ¥ C IR and index
set a cube A, C Z%. We show that in the vicinity (in the information-theoretic
sense) of strongly mixing Markov fields, considering sub-blocks of variables
indexed by A,, C A,, the distribution on this smaller cube can be described
precisely, even when the size of the cube grows with n. The general results
are then applied to mean field perturbations of Gibbs measures (in particular,
mean field perturbations of Ising models). The proofs use entropy arguments as
well as (known) result on complete analyticity and mixing for the Ising model.
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Introduction

Information - or relative entropy - indicates how far apart are two probability mea-
sures. Though it is not a distance it shares some important properties with Euclidean
and Hilbertian norm [3]. Involving a logarithmic density it has a simple expression for
Gibbs distributions, and it has natural applications in this context. Given a bound
on the information between two random fields on some volume, a natural question is
to derive quantitative estimates on the distance between their restrictions to smaller
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2 Information in Markov fields

volumes. This question was addressed in [4], in the context of extending the validity
of Gibbs equivalence of ensembles, for the case of a product reference measure, and
in [1] for the study of mean-field perturbations of such a measure. Information with
respect to a product measure has a nice subadditivity property due to the decompo-
sition formula, but it remains well-behaved in the Markovian case, see for instance
[11] where this decomposition is thoroughly exploited and [13] for its counterparts to
specific entropy and to the Gibbs variational principle. We also note that [17] discuss
a general framework for proving the equivalence of ensembles, based on entropy-like
functionals. Finally, in the one dimensional Markov case, [26] and [6] provide con-
ditional limit theorems in the context of the Gibbs conditioning principle and its
extensions.

In this paper we study information with respect to a Markov field v on (large)
cubes A, = [-n,n]% Our basic result is an explicit upper estimate of the variational
norm ||z — v||iza,, on translates of smaller cubes A,, in terms of the information of
p on A,, under the assumption that v is weak-mixing (Definition 1 below). Intro-
duced by Dobrushin and Shlosman [9], [10], the weak-mixing property as well as the
companion properties of strong-mixing and complete analyticity (Definition 2 below),
turned out to be connected with the strong uniqueness of Gibbs fields and their static
features ([10]), as well as with spectral properties of their dynamics, i.e. existence of
spectral gap and logarithmic Sobolev inequalities (see [20] for a review). In particular
these mixing conditions are much less stringent than the Dobrushin condition [14] for
uniqueness. For our purpose complete analyticity will be most useful to estimate the
information.

A large part of the paper is devoted to applications to mean-field perturbations
of Gibbs fields. A typical example is the probability measure on A, (see Example 1

below),
Al (Die, i)

where v, is the binary nearest neighbor Ising model with periodic boundary conditions
at inverse temperature § without external field, and where Z, is the normalizing
constant. Note that this model is analogous to the Curie-Weiss model, and is a finite
volume version of the Kac’s asymptotics justifying Van der Waals theory ([16],[2],
with 7 = y(n)). In dimension d = 2 we obtain the following:

1. for 8 < f3, the critical value, to? < 1 with o2 the variance under v = lim, v,
and m = m(n) = o(n),

nll)nolo ”/‘n - Vn”Am =0,
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2. for B < B.,to?> =1 and m = o(n'/?), the same conclusion holds,

3. for B < B.,to? > 1 or B> S, and m = o(n),

. 1 .
Jimn [l = S (v + 0"l =0

with "~ the periodic boundary condition Ising measure with some appropriate
external field h,,.

The following Section 1 is devoted to the general estimate relating information
and variational norm. Then, in Section 2, analyticity aspects of Gibbs fields are
developed to control entropies. The last section studies the example described above,
and concludes with a discussion of some other recent alternative approaches.

1 Main Estimate

Notations: the state space is, for simplicity, a finite set ¥ C IR. The results in
Section 1 are valid on an abstract polish space ¥, but we will need this restriction on
>} for our examples in the other sections. V' CC W stands for “V is a finite subset of
w”.

For a random field  and A,V C Z® we denote by p* a regular version of 4 given
(x5, € A), py the restriction p to V, and ufy = (u*)y. Throughout, we use the
same symbol ® to denote the usual tensor product, and the skew product between a
measure py and a conditional measure vy, that is the surgery

(v @ vl) (@o(V), de(V") = ol (da(V)[o(V)) py (@a(V) . (L1)

Let p, v be two probability measures on £, A respectively, for some A, A’ C Z°.
The relative entropy (or information gain) of 4 with respect to v on a subset V' C ANA’
is defined as

dpy. i
Hy(ulv) = /zV log di dpy , i py << vy (1.2)
400, otherwise .

Then Hy (ulv) € [0, —logmin{vy(z);z € V}] C [0,+00], and the larger its value
the more pu,v differ on V. Though H does not define a distance it has some nice
elementary properties, which we group in the lemma below. We refer in the statement

d
of each property to a proof in the literature. Recall that for any A C X , the total
variation norm on A of any signed measure 7 is defined as

Inlla = supf [ fd; f : T* - R measurable, |l = 1} (1.3)

and note that ||u — v||x < 2 if u,v are probability measures.
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Lemma 1 1. For A=V UV VNV' =0 we have (see [5, Theorem D.13] or [11,
Theorem C.3.1])

Hi(plv) = Hy (plv) + E*Hy: (1" [v") = Hy (ulv) + Ha(ulpy @ vy) . (1.4)

In particular,
Hy(plv) > Hy (plv). (1.5)

2. For any disjoint V;, and any probability measures v* on Vi, i = 1,2, ..., k, with
V= U?:l‘/;: (866 [3])

k k
Hy (| ®y vy) = Hy (ul ®y pv,) + > Hy,(ulv') > 3 Hy,(ulv')  (1.6)
=1

=1

3. Entropy dominates the variation norm (Pinsker inequality, see e.g. [5, Fzercise
6.2.17] or [11, Theorem C.5.1])

lpe = v} < 2H,(plv) (1.7)
Let |.| denote the /;-norm on Z%, and fix some r € RY. Let V = {i € Z%3j € V :

li —j| <r} and OV = V\V. For n > 0 denote by A, the cube [—n,n]? € Z-.

d
In what follows v denotes an r-Markov random field on »Z , i.e., there exists a
family 7 of transition kernels - called specification - 1y from ¥2V to &V, V cc Z°,
such that

wo=my , V-—a.s. (1.8)

Chop Z¢ into translates Ar; = j + A of Ay separated by corridors of width 7.
Denote by T, ; the set of indices j such that A—k] C A, and C,,; the complement of
Ujer, » Ak,j in An. Then (Crki Mkj, j € Thy) is a partition of A,,. Moreover from the
Markov property (1.8) it follows that

Van = (®jETn,k7TAk,j) Q Ve, (1.9)
Combining this with (1.4 and 1.6) we obtain

Hy, (ulv) = EFOrHy (¢, (MC"’k| QjeT, 7rAk,j) + Hg, , (ulv)
2 Z EHCn,k HAk,j (/JC"’k|7TAk,j) -+ ch,k(,u|v)

jETn,k

Using again (1.4) we have:
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Proposition 1 For v an r-Markov field,
Ha,(plv) > ). Hy <M|MA§C,j®7TAk,j) + He, . (plv)

jETn,k

> Y Ha,, (sl ®7a,,) + He, , (1) (1.10)
JE€Tn k

These two summands in the right hand side of (1.10) are quite different in nature.
The first one contains volume information, and is of order n? if 4 has conditional
distribution different from 7. On the other hand if the family of specification 7
exhibits multiplicity of phases, then this term is equal to zero for some Gibbsian pu # v
; hence the second term contains all the discrepancy between the two measures, and
is typically of surface order n?!. In what follows we concentrate on taking advantage

of the first term alone. For this purpose a strong uniqueness condition is required for
the Markov field [9], [19].

Definition 1 The Markov specification 7 is weak-mizing if there exist constants v >
0, C < oo such that for all finite cubes V C A C Z°,

sup{[|7a(Jz) = ma(|2)lvs 2,0’ € B} <O 30 exp(—vli — )
i€V, jea
Theorem 1 Assume that v is an r-Markov random field for a weak-mizxing specifi-
cation w. For1 < m <mn/2 denote by A(m,n) ={j:j+Amn C Ay} and by |A(m,n)|
its cardinality.
Then there ezist e1(m) = O(1/m), e2(n) = O(logn/n), and a(m,n) with a(m,n) ~
2(m/n)?% as m,n — oo, such that
[A(m,n)[~ ) e = vll7sa,, < a(m,n)Hy, (plv) +e1(m)  (1.11)
jeA(m+([(2d/v) log m];n)
and
[A(m,n)[ >0l = vilfia, < a(mn)Hy, (plv) +e1(m) +e2(n)  (1.12)

jEA(m,n)
for all probability measure p on XM

Proof: Let k = k(m) = m + [(2d/v) logm]. Using the notations of Proposition 1,
we will consider smaller cubes A,, ; = j + A, included in Ay ;. We have from (1.5,
1.7, 1.10) that

Hy(ulv) > Y Ha,, (ulusg, ® )

jeTn,k

> Y =g, @7l /2

jeTn,k

x (= v, = 4lly = pag, ® 7a, lIne,) /2
J n,k

v
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where the last term can be estimated using the identity VEe; = Vor,; Ay, following
from the r-Markov assumption, together with the Weak—mlxmg property,

v —n@ma;llam; < ClAm||0AL] exp(—y(k —m))
< 2Cdr(2m +1)%(2k(m) + 1) exp(—7[(2d/7v) logm))
=: &£1(m)/2

hence £1(m) = O(m™1). Shifting the origin we clearly get similar estimates. Adding
them up we find

Rk +r)+ D) Hy, @) > Y (le-vii,,/2-(m) (1.13)

JEA(k+rn)

N

and then adding the terms with A, ; close to the boundary JA, we finally obtain

2d -l
(2(k+r)+1)%Hy (/L|y)+2x2d(2n+1)d’1(7 logm+r) > Y (% —el(m)> :
)

jeA(m,n

The two estimates above imply the theorem with e5(n) = O(logn/n), since m < n/2
and |A(m,n)| > n. O

We have the straightforward

Corollary 1 Let v, be a sequence of r-Markov random fields, all with the same weak-
mizing specification 7 in A,. Let i, be a sequence of probability measures on ¥ such
that Hy,, (pin|vn) = O(1). Then for any sequence m = m(n) = o(n), ||pn—"vnl|a,; — 0
as n — oo in density, i.e.,

(A, )|~ 14 € A(m,n) : lim — villan, > 6H =0
for all positive §.

We focus now on translation invariance. For simplicity we assume below that
the specification is given by a translation invariant Gibbs potential of finite range r
(see definition (2.2) below). Then the finite volume Gibbs measure v, on A, with
periodic boundary conditions [14] is invariant under the translations of the discrete
torus (Z/(2n +1)Z)?. We consider also translation invariance on Z? in the following

Corollary 2 Assume that m is a Gibbsian specification with translation invariant,
finite range potential, and that 7 is weak-mizing. Denote by v, the periodic boundary
conditions Gibbs measure on A,, and by v the unique infinite-volume Gibbs measure.

Let p, be another probability measure on Y [respectively, Ezd | invariant under
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the translations on the discrete torus [respectively, on Z°]. If Ha, (unlvy) = O(1)
[respectively, Hy, (pun|v) = O(1)] then

lin=ralla, =0 (()2)+0 () and  Jm—vlla, =0 ((5)2)+0 ()

n m
[respectively, ||, — v||a,, = O ((%)dﬂ) +0 (%)] for all sequence m = m(n) = o(n).

Proof: Due to translation invariance the summands in the left hand side of (1.11)
are equal, and the first statements in the two cases is immediate. To derive the second
statement in the torus case it suffices to note that ||y, — v||a,, tends to zero from the
weak-mixing assumption. []

2 Gibbs fields and their analytic properties

A finite range, translation invariant potential is a family U = {Ug; A CC %} of
d
(bounded) functions from SZ" to R such that

Uy =0if diamA >r , Uy, is B4 — measurable

Us=Ug a0 i€Z'ACCZ" (2.1)

with 6; the shift of vector 7 on the configuration space. The set of such potentials is a
finite dimensional space with the norm [|U|| = sup, , [Ua(x)| . We assume from now
on that the specification 7 is Gibbsian with potential U, i.e.

v (dz(V)|z(V°)) = Zv(Ulz(V<)) ™" exp{ % Ua(2)} o®¥(dz(V)),
A:A(YV£D

Zy (U)z(Ve)) = /E Cexp{ Y Ua@)} o®(dx(V)) (2.2)
AANV#D

for some probability measure o on ¥ which is not a point mass. We have denoted by
x the configuration which coincides with z(V') [respectively z(V¢)] on V' [respectively
V¢]. Note that conversely the kernels 7 given by (2.2) define a Markov specification,
and a solution v to (1.8) is called infinite-volume Gibbs measure. Finally, we denote
by U" the potential U + hX, h € R, where X;(z) = z; (recall that ¥ C R), X4, =0
if |A| # 1.

Definition 2 1. For a potential U we consider the following property: Je > 0,
C < oo such that .
| log Zv (U + Ulz(V))| < C|V, (2.3)
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for all complex valued potential U with range r and ||U|| < ¢, all (finite) cube V
in Z¢ and all boundary conditions x on VC. Define the main component as the
largest open set in the space of potentials which contains the origin and where
the property (2.3) holds. A potential U (or the specification 7) is completely
analytic ¢f U belongs to the main component.

2. The G1ibbs specification defined by the potential U is completely analytic for the
mean if (2.3) holds merely for the potential zX, for all z complex such that
|z| <€, that is

|log Zy (U + 2X |z(V®))| < C|V], (2.4)

for all (finite) cube V in Z* and all boundary conditions x(V°).

Property (2.3), sometimes called “restricted complete analyticity” for it is re-
stricted to cubes V/, implies uniqueness of the solution v of (1.8) [9]. Note that U is
not assumed translation invariant (recall (2.1)). In view of the shift invariance of the
potential U, this unique solution v is translation invariant. Moreover this complete
analyticity property implies the weak mixing property of Definition 1 in the case of
a finite state space ¥, see [10]. Note also that (2.4) corresponds to the complete
analyticity property for complex perturbations in the magnetic field only.

The example we develop below is a mean-field perturbation of a Markov random
field, see (3.1). For the sake of simplicity we have considered Gibbs fields with finitely
many real values, and the simplest non-trivial perturbation, a quadratic function of

the mean
Ty = ‘An‘_l Z Z;
i€hn
It is well known that the law of the empirical mean z,, v(Z, € -), satisfies a large
deviation principle with (good) rate function I(y) = sup, g {ty — I'(t)} where
I'(t) = lim [p(t) , In(t) = |An|tlog E” exp{t|Anlzn} ., t€R (2.5)

see e.g. the Notes about Chapter IV in [7]. In fact I,I" depend on 7 but not on the
particular Gibbs measure v compatible with 7. In order to compute informations we
need the technical estimates in the next two Propositions.

Proposition 2 Assume that the Gibbs specification defined by U is completely ana-
lytic for the mean. Then,

1. T is analytic on (—¢,¢), I is analytic in a neighborhood of I71(0).
2. Let 0 =T"(0). For all real t, to® < 1 there exists § > 0 such that, as n — oo,

tIA,
E” (exp{ | 5 | (@, — Eux")2}1|jn—E”zn<5) — (1-0%)"Y2,
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and

t|An|

EV <|An‘(in B EUi‘n)Q eXp{T(jn N Eujn)2}1$n—EU$n|<6> — (1_U2t)_3/202 .

(2.6)

3. Let 0> = I'"(0) and fix t = 1/0*. With o2 = I'?(0), and t, = 1/02, it holds
that t,, — t. Assume further that U is completely analytic for the mean, that
r®(0) = 0,1 (0) < 0, and that I7*(0) is the unique minimizer of the function

1) = 1) — 2y~ ()

Then there ezist constants Cy,Cy,Cy € (0,00) such that

tn|Ap

i < B (o]

(%, — E”:En)2}> < Gyl A,V (2.7)

and

tn|As|

E” <|An|($n — E"Z,)* exp{ (@, — E”xn)2}> < CslA, 1. (2.8)

4. In dimension d = 2, the estimates (2.7, 2.8) hold with t replacing t, provided
that U is completely analytic, that T™(0) < 0, and that I-'(0) is the unique
manimaizer of Iy.

Remark 1 In the case 0%t = 1, the assumptions on the derivatives of I' guarantee
that I(0) continues -like in the case o*t < 1 - to be a local minimizer of the function
Ii(y), with a quartic expansion. Computing precise equivalents in (2.7) and (2.8)
would require much extra work. Since the constants C' are irrelevant for our purpose
we give a rough but short proof of (2.8) below.

In the case o*t > 1, I71(0) is not any more a minimizer of I,(-), and E"z,, is not
any more the proper centering. To handle this situation, see Proposition 3.

Proof: 1. A standard estimate of the boundary terms yields

Zn, (U + 2X|z(V°))

I'(z) = lim |A,]7 1o
(=) = Jimm, [Aal™ log | = e tv)

uniformly in z(V¢). The family of holomorphic functions z + |A,|"*log[Za, (U +
2X|z(V*)) is uniformly bounded on the complex disk |z| < ¢ from (2.4). From
Montel’s theorem this family is normal: the functions in (2.5) can be defined on this
disk, the limit I" is holomorphic, the convergence is uniform on compact subsets of
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the complex disk |z| < €, and we can interchange limit and derivatives (see [24],
Theorems 14.6 and 10.27). Hence

I(0) = ign %, (0) = T [B™ (20 (a(V°))
and it follows that all solutions v of (1.8) have the same asymptotic mean value
lim,, E”Z, =I"(0). Moreover
o?=T"(0) = limI7;(0)
= lim [B7 (33) = (B3] (V)
> 0
since « is not a Dirac mass [8]. Being the Legendre transform of the smooth, strictly

convex on (—e¢,¢) function I, I is itself analytic in a neighborhood of I7*(0).

2. We set 7° = 7, — E'Z, to simplify notations. Fix next a > 0, (02 + a)t < 1.
It follows from the uniform convergence of I')) to I'” on compact subsets of the disk
|z| < e that we can find b > 0 and N > 1 such that sup{|I'l(s) — I'"(s)|;|s| < b,n >
N} < a. By Taylor’s formula, for arbitrary ¢ > 0, reducing b if necessary it holds that
IT,.(s) — s (0)| < s%(02 +a+6)/2 for |s| < b, and the classical Chebycheff bound
implies, for n > N,

v(|zg] >u) < 2exp (—|A”| sup{su—s°(c*+a)/2;s € (—b, b)})

= 2exp (—[An[u?/[2(0” + a + 9)]) (2.9)
for u < § = b(0? + a). Using again Taylor’s formula,
E”(exp{t|Aa]'"?(73)}) = exp|An[{Tn(t|An|7'?) — t|An[/?E T, }
= el [ A r(s)ds

which converges to exp 0%t?/2 as n — oc. Hence |A,,|'/?(Z°) converges in distribution
(under the law v) to a centered Gaussian variable n with variance o2, and

tIA,]
expf 2L 0)2}1 2y s exptn/2

under v. The estimate (2.9) shows that the left hand side is uniformly integrable
when o2t < 1, therefore the v-expectations converge too and the second statement in
Proposition 2 is proved. Note also that, again from (2.9),

2|Anl y R(2)||An],_,
|2 ‘(xn)2}1w%|<5] < E [exp{%(wn)z}lumq

< [1—= (6% +a+0)|R(2)|]7?

‘E” o
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provided that (02 + a + §)|R(z)| < 1 and n is large enough. Hence the sequence of
holomorphic function E” [exp{@(jgf}l‘ zo|<s) remains bounded on compact subsets

of the above complex domain: by convergence of the derivatives we obtain (2.6).
3. Regardless of the value of ¢, we saw in the proof of the first part that o, — o.

Turning to the case o2t = 1, it is easily checked that for I7(0) to be a local minimum
of I, it is necessary that I'®(0) = 0. Next we use the identity

ta? 1A\ Anly?
{55} = /Rey(l) exp{- 22 yay

2mt
to write (with a = |A,|Z2)

tn|Anl

2, = B (on =iy )

/2 2
VAN / [Anly _
— o B A |7
(oml) " ety xptinnlazah)

1/2
N @i:l) /RGXP{|An|(Fn(y)—yF;(0)—y2/2tn)}dy, (2.10)

by the definition of I',,. The last integral will be analyzed by means of the Laplace
method. Note that since I'y(y) increases at most linearly at infinity, it is enough to
consider a large enough compact neighborhood of 0 when evaluating the last integral,
and on this neighborhood convergence of ', and further of [',(y) — yI',(0) — y?/2t,,
is uniform due to convexity of I',. Since the function I(y) — £(y — I~'(0))* possesses
a unique minimizer at 7~'(0), it follows by convex duality that I'(y) — yI"(0) — y?/2t
has 0 as its unique maximum. Therefore, for all 6 > 0 one has

1/2
Zn = @i;l) /_55 exp{[An|(Tn(y) — yT7(0) — 4?/2t,)}dy + O(e @) (2.11)

On the other hand, by uniform convergence of I'”) in a neighborhood of the origin,
and the fact that I (0) < 0, one has that for § small enough, there exists a constant
k > 0 such that, for all |y| <4,

—ky* < Tyu(y) = T5(0)y — [n(0)y?/2 — TP (0)y3/6 < —xy*.

Substituting in (2.11) and evaluating the integral, recalling that T'(®(0) = 0, we
observe that

Cl|An|1/4 S Zn S 02|An|1/4a



12 Information in Markov fields

proving (2.7). In order to prove (2.8) we start with a remark. Making explicit the
dependence on t, of the quantity Z,, = Z,(t,) defined in (2.10), we have for all fixed

s§>0
Wt + 8/1/|AL]) = O(AY*) (2.12)

Indeed, the same estimates as before lead to bound (2.11) from above by

6
ClAal" [ exp{=r" [Auly* + C|Aa[ 25}y = O(Aa]**)

Here and below C denotes a positive constant, depending on s but not on n, which
may change from line to line. Now, from the obvious inequality u? < C(1 + exp su?),
one gets with u = |A,|'/4(z2)

WQMW@%W{””(>Q<QAW% At + Al 725) + Z0(0)
which, in view of (2.12), shows (2.8).

4. The proof is very similar. Note that, with 0 = I'"(0) and o2 := T'”(0), we have
by translation invariance of v that

o’ —or= > cov,(zg,z;) — var, (|A, |71/ Som) =M D covy(zi, )
e’ i€An i€An, AR

Because U is completely analytic, covariances decay exponentially (see [10], condition
II-c), that is cov,(z;,z;) = O(exp—Cli — j|), and thus |A,| [0® — 02| < C|0A,| =
C|A,|*? in two dimensions. A similar computation, using again [10], condition II-c,
shows also that |A,||T{®)(0) — T®)(0)| < C|A,|'/2. This time the substitution in the
integral term of (2.11) leads to upper and lower bounds

AN o
@%).meﬁﬂwwummwﬁf+mm@:0mw%
proving (2.7) when t replaces t, in dimension d = 2. Combined with (2.12) the same
arguments clearly conclude to the analoguous version of (2.8) in this case. L

Remark 2 We consider briefly here the case where the infinite volume measure v
s replaced in the previous Proposition with a sequence of finite volume v, satisfying
the specification m (with appropriate boundary conditions). An inspection of the proof
reveals that all statements remain valid with v, instead of v. We emphasize that in
this case the centering in (2.6, 2.7, 2.8) becomes E""Z,, and that in point 3, Ty is
defined by (2.5) with vy, instead of v, so that t, = (vary, (|An| ™2 Sica, i)}
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We next turn our attention to the case where the perturbation shifts the mean
field. In anticipation of the applications to (finite volume) Gibbs fields, we let v,
denote a sequence of measures on YA corresponding to a translation invariant po-
tential U, and we denote by v its infinite volume limit. We will assume below that
E""Z, = 0 for all n. Obviously, in this case, I~(0) = 0.

A crucial role will be played in our investigation by the set of minimizers

M, ={vy:L(y) =min I;} (2.13)

of the functions I,(y) : y — —%(y — I 1(0))*> + I(y) = —ty*/2 + I(y). We let
I := inf, Ii(y) = Li(y*) for all y* € M,;. We say that y* € M, is nondegenerate
if I; is twice continuously differentiable at y* and I](y*) = —t + I"(y*) > 0. Note
that in the context of Proposition 2, when U is completely analytic for the mean, the
condition ot > 1 corresponds to 0 being a local maximizer (and not minimizer) of
the function I(-).

We need to introduce the analogue of I; and of M; in the case v, replaces v. That
is, define

— vV, T n n t n
La(t) = [Auf " og Bt 17y) = supty ~ L9}, 7(6) =~ 50"+ 1"()
te

and let M7 denote the set of minimizers of I}'(-), with I?* := inf, I7(y).
We denote by v" the measure on X" corresponding to the potential U", i.e

dvh exp{|A,|hZ,}

. = 7 , ZM = E" exp{|A,|hZ,} = exp |A,|T,(h). (2.14)

Let h,(y) be defined such that g (ZTn) = y.

It is convenient to make use of the following assumption, which could be called “com-
plete analyticity for the mean”. See Remark 4 following Proposition 5 for comments
on this assumption.

Assumption (CAM): U and {v, } are symmetric with respect to the transformation
z — —z in M. M, consists of two elements +y. Let h be the unique point where
the subdifferential of the convex function I' contains y, and assume that U" = U +hX
is completely analytic for the mean.

Proposition 3 Assume (CAM).

1. T is analytic on a complex disc of radius € around h. I; is analytic on an €
netghborhood of Mj.
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2. Assume that T"(h)t < 1, i.e. that ty is a nondegenerate minimum of I;(-).
Then for n large enough there exist exactly two minimizers ty, of I7'(-). Fur-
ther, there exists a constant 6 independent of n such that, as n — oo,

lim exp{|A,|I"YE"" exp t‘A"‘a‘:z =2(1 — I (h)t)~Y/? 2.15
n t 2 n

and

. An | TP wn _ t|An|£—C% F”(h/)

h%ne‘ ‘It E <|An‘($n—yn)2 e 2 ]-En—yn<6> = (1 — F”(h)t)3/2 . (216)
Finally,

: 1 T % t|An‘ =2

hinﬁsogp ™ log | exp{|A,|L}' }E™ exp{Txn}ljng(Mt)a <0. (2.17)

Proof: 1. The proof of part 1 is a rerun of the argument used in Proposition 2, part
1. Note in addition that 6, — y implies that h,(6,) — h, since I', (h,(8,)) = 0, and
I — I" uniformly in a neighborhood of h with I''(h) = y.

2. Recall that I', — ' on the whole real line, so I™ — I by convex duality. The
nondegeneracy condition implies that the second derivative of I; is strictly positive
in a neighborhood of +y. Due to Montel’s theorem, c.f. the proof of Theorem 1, this
property is inherited by I}*(-). Therefore, the latter function possesses also only two
minima, which due to symmetry are +y,. The corresponding h, := h,(y,) satisfy
hn — h and h,(—yn) = —hn(Yn)-

Recall next that our perturbation ¢(-)2/2 is a bounded and continuous function.
By Varadhan’s lemma (see, e.g., for this application [5, Exercise 4.3.11]) and the
existence of large deviations for Z,, under v, irrespective of the boundary conditions,
it holds that
t|A

log E™ (exp{ 2n|:ri}1xnez(/\/lt)6> < _yeg\l/ft)é Ii(y) <0,

lims
el A

where the last inequality is due to the lower semicontinuity of I;(-). This proves

(2.17).
Note next that by definition,

(In),(yn) =1y, = h’na Fn(hn) = hnyn - I"(yn) . (2.18)
Hence,

v tIA,|
e (oot i, )
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— exp(~ 1Al 2y ( xp{HAnl |(xnﬁl/n)2+t|/\n\ynfn}1myn|<6>

n yhn tAn _
- exp{—%yz Il VB (exp 5 (00mHe,)

t|Ay

= exp A )V (e 2 219)
by (2.18). Repeating now the argument in the proof of part 2 of Proposition 2,
using this time the potential U”* and the fact that 7, is the unique minimum and
is nondegenerate, one concludes that (Z, — y,) \/m, localized to {|Z, — ya| < ¢},
converges under v to the Gaussian distribution N '(0,T”(h)). Uniform integrability
of exp{%(a‘:n—yn)Q} on {|Z, —y,| < 6} for small ¢ follows from uniform convergence
of I™ to I in a neighborhood of y and nondegeneracy. Hence the last expectation in
(2.19) tends to (1 — I'(h)t)~*/2. In addition to (2.17) and symmetry, this implies
(2.15). The proof of (2.16) is analogous.

]

3 Mean-field perturbations of Gibbs random fields

Let 7 denote a specification, and let v, denote a sequence of measures on A,, satisfying
the specification = (with appropriate boundary conditions). When all measures v,

d
are restrictions to A,, of the same Gibbs measure v on W/ , we use v to denote also

d
vy, . For simplicity we assume uniqueness of the solution v on L of (1.8), which is
the case when 7 is weak-mixing, and we also assume that Ezq = 0. For ¢ > 0, and
for a sequence of measures v, consider the sequence of probability measures i, = fir, ;

%d

n X%
dpn, = Z; ' exp{|An|tz2 )2} dv, (3.1)
Z, = E" exp{|A,|t72/2} . (3.2)

In this section we deduce fine asymptotics for u, from our previous estimates. We
deal first with the case v, = vy, and M; = {0} (recall (2.13)).

Proposition 4 Let 7 satisfy (2.4), assume the associated Gibbs measure v satisfies
M, = {0}, and let o> =T"(0) = I"(0)"2. Define p, = pins by (3.1) with v, = vy,

1. If wn addition
y = 0 is non-degenerate, i.e. t < o2, (3.3)
then
lim Hy, (1.|v) = (1/2){c%t/(1 — 0°t) + log(1 — 0*t)}

n—oo
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2. When o* = 1, let 02 = T"(0) and t, = 0,2. Assume further that I'®)(0) =
0,T™(0) < 0. Then

lim sup |An| ™72 Hy, (fin,e,|v) < 00

8. In dimension d = 2, if o°t = 1,T®(0) < 0 and U is completely analytic, we
have also
lim sup [A,|™/2 Hy, (s 1v) < o0

Proof: By definition we have

_ A

5 E“z> —log Z,, (3.4)

Hy, (pinv)

where we recall that Z, = E exp{|A,|tz2/2}.
1) Note that E’Z,, = E"zy = 0 follows from the uniqueness of v. We have from
Proposition 2 that

Zh = B (exp{|An[tz2/2}5,c5) ~ (1 — 0%t) 72,
though from large deviations

lim sup |A,| "' log(Z, — Z3) < —max{ty*/2 — I(y) ; |y| > 6} <0
n—,oo

since M, = {0}. Hence Z, ~ (1 — 0%t)"'/2. We decompose in a similar manner

Z B (|A)2) = Y + (Yo = Y7)

Vi =B (|Anl7, exp{[AaltZ) 2}, <s) o Yo=YV

Large deviations then imply that Y, — Y, is exponentially small, though Y,° ~ ¢%(1 —
02t)~%/2? from Proposition 2. Inserting the equivalents of Y;, Z, into (3.4) we obtain
the desired result.

2 and 3) The proof of the other statements uses the two last results of Proposition 2
in a similar manner, so details are left to the reader. See [1] for a similar argument.

O

We briefly consider the case when v is replaced in (3.1) with a finite volume Gibbs
measure v, on A,, with E”Z, = 0 to get the proper centering; we have in mind the
case of free or periodic boundary conditions. The estimates mentioned in Remark 2
lead in a similar fashion to:
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Remark 3 The limits in the previous Proposition still hold under the set of assump-
tions therein, when v is replaced in (3.1) with a sequence of measures v, on A\, satisfy-
ing the specification m (with appropriate boundary conditions), provided that E"Z,, =
0 for all n and that all informations (Hy, (in|Vn),..) are computed with respect to v,.
We emphasize that in point 2, t,, takes on the value t, = (var,, (|An| ™% Sic, i) L.

As in [1], one may encounter mixtures when the perturbation is not small anymore,
leading to multiple minima.

Proposition 5 Fizt > 0 and assume CAM. With the notations of Proposition 3,
in particular hy, = hy(yn), let

Vgn + V;hn
vy =
Then,
lim sup Hy, (pn|7)) < 00. (3.5)

n—oQ

Further (c.f. the notations of Theorem 1), with m/n — 0, m — co,n — o0,

[A(m,n)[71 X0l = 77 ll4n,, —nose 0. (3.6)

JjE€A(m,n)

provided that the specification associated with the potential U + h'X is weak-mizing
in a neighborhood of h with constants 7y, C independent of h'.

Remark 4 Assuming CAM is not enough to get (3.6), so we assume the above
locally uniform weak-mizing property around h. When U" = U + hX is completely
analytic or when strong mizing (condition III-c in [10]) holds for U locally uniformly
around h, this property is satisfied.

Proof: Recall the definition (2.14) and note that Z"» = Z 5 by symmetry. By
definition we have

tA d hn d —hn
Hy, (1a|7}) = |2 B*a? — log Z, - B/ (log( (V + 2 )))

dl/n an
_ t|A‘ v [ = Al Zn
1 A
g (exp{“ 52 ogeosh (Al o)
Zn 2
¢ An|

v [ - tIA|, Z,
= R (xiexp{ |2| $Z}1|jn_yn|<5> log (Zn >+10g2

2 ¢ An| _ .
——FE" (eXp{ ‘2 ‘xi}|An|hn$n1|5n—yn|<5> + O(exp _C|An|))’

Zn
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where the last equality is due to symmetry and the exponential bound (2.17). By
definition of v and h,, = ty,, c.f. (2.14) and (2.18), we get

z EY (exp{|Anlt22 /2})
log (Z#n) = 1°g( Zin

= log E/" (exp{|An|(—hn§:n + tii/?)})

= 1o Bt (oxpt o2, 7 i)

tlAL]
9 In

Vv

Substituting in (3.7) and using again (2.18) and the fact that Z, 'E""(13,_y.<s) =
1/2 + O(exp(—C|A,|)), we have

Al tA,| _
Haultt) < €+ 2B (e a2 o - 1o

Zn,
< C (3.8)

where the last inequality is due to (2.15) and (2.16). This completes the proof of
(3.5).

The proof of the second part hinges upon a localization procedure. Define, on
YA» the measures p=0 == u,( - | |z, — tyn(t)| < §). By using the estimate (3.5) and
the large deviations, c.f. [1, Theorem 2| for a similar argument, one has that

Hy, (4" |v™) = O(1) (3.9)

Indeed, with the notation A, 15 = {|Z,— Ly, (t)| < 0},

Ha ) = o) + [ 1og (5 dys

= —log pin(An 15 +/lo <d ih) +/log< “n>d +4

1+63F2h$n‘/\ |
= —logpun(An,zs) + / log< 14, . dp’

+,Uln(An :t(f /10g< M”) 1An igd,u‘

Vi

= (1+o0(1)Ha, (pa|7}") +0(1).-

By assumption the measures v/ are weakly mixing with constants v, C' indepen-
dent of n, so one concludes from (3.9) and Theorem 1 that in fact, with n,m as in
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the statement of the proposition,

A, ) [ Y T = 2, s O (3.10)
JEA(m,n)

The conclusion (3.6) follows now by observing that

+é -0 h —h
_ _ _ + e o T
M = T llisnn S nd@af Anes} + lan{Za € Anas}in_Fne =22ty

= B An s} + | 1n{Zn € An s i’ — V4 Am
< 2 {Zn & Anss} + 1n{Tn € Anss It — V2440

O

Remark 5 The symmetry played an essential role in our proof. Indeed, without it,
it would have been impossible to relate the value of Z, and ZM in a straightforward
way.

Example 1. We consider the ferromagnetic Ising model without external field: let
Y. be the two-point set {—1,+1}, a be the fair Bernoulli measure, let

Ua(z) = Bxiz; if A={i,j} with 4,5 nearest neighbors

Us =0 otherwise (3.11)

and denote by [, the critical value. When g < . the solution v of (1.8, 2.2) is
unique, invariant under translations and under the global flip x — —z. We will
consider also the potential U" = U + hX with external field h. In dimension d = 2
complete analyticity for U" has been proved in the full uniqueness region 3 < 3. or
h # 0 [25]; in higher dimension, weak-mixing for U" is known in the strips 3 < (3,
[15] and B > By, h # 0 for some f; > (., though complete analyticity is known for
B < B2 (B2 < fB.) and strong mixing (condition III-c in [10]) is known to hold (locally)
uniformly for large Bh [21].

Consider y, defined (without external field) by (3.1), ¢ > 0 and v, = vy, for the
moment, in the following cases.

case a) B < fB,, t <o 2= (3; E'zox;) ! and U completely analytic. Then,

I(y) > y*/(207). (3.12)

This can be seen from Theorem 3 in Newman [23], which implies by series expansion
the following sub-Gaussian property

E’ expt|A,| 7?2, < Eexptn , n~ N(0,0%),
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which leads to ['(t) < 0?t?/2, and then to (3.12). When ¢ is strictly smaller than the
inverse susceptibility o2 the assumption (3.3) is fulfilled, and therefore Proposition
4, Theorem 1 and Corollaries 1, 2 are in force: the perturbed measure p, is very
close to the original Ising measure v on cubes whose size vanishes with respect to the
volume.

case b) 3 < f., to? = 1 and U completely analytic. We define ¢, = 0,2 as in
Proposition 4. Then part 2 of Proposition 4 applies: indeed, by symmetry we have
that T'(®(0) = 0 while we have that

r®(0) = lim T®W(0) =

> (EV(womizjzy) — [BY (zox) BV (zj2) + EY (207 EY (2324) + B (ozk) EY (2:25)]) -
igkel’
By the Gaussian domination [23], all summands in the square brackets above are
non-positive. Moreover, for ¢ = j = k = 0 the bracket takes the value —2. Hence,
I'™®(0) < —2 < 0. Since I is concave on (0,00) from the GHS inequality [12] (see
the argument below in case c)), it follows that I''(u) < T'(0%) = 02, and hence that
['(u) < 0?u?/2, (u # 0). Therefore, by duality, I;(y) achieves its unique minimum at
0. It follows from part 2 of Proposition 4 that

Hy, (Hn, [v) = O(|Aa]'?).

Theorem 1 then applies and yields that the measure p,4, is close to v in the vari-
ation norm on boxes translates of A,, with m = o(n'/?). On the other hand in two
dimensions it follows from part 3 of Proposition 4 that the same results hold for p,, ;.

case ¢) B < f3., to> > 1 and U completely analytic [respectively 3 > 3., t > 0,
but U" completely analytic, where h is the positive maximizer of h?/2 — I'(h), see
below|. We need here the measure v,, appearing on the right hand side of (3.1) to
be symmetric: it will be the finite volume Gibbs measure with either free or periodic
boundary conditions, or possibly the infinite volume measure in the case g < f..
Obviously, in this case 0 is a local maximizer of I;(-). Due to the symmetry of I;(y),
it is enough to discuss y > 0 [respectively y > y™ = E”xq], and to show I;(y) possesses
a unique minimum on this interval. This amounts to show that, for the conjugate
functions, h?/2 — T'(h) has a unique minimum on [0,0c). The GHS inequality [12]
states that

rY(h) = [A7 > E" (z421;)
i:jykeAn

—|AaTt ST (B (i) BN (2) + BV (zpa ) BV (2) + BV (2,25 BV (2]
iajzkEATL
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+2(A,70 Y BV (2B (1) B () < 0

,j,k€EAn

for h > 0. But for the Ising model it is well known (c.f., for example, [12]) that T is
a C' function on h > 0, and by convexity [ = limI", on this interval. Hence I" is
itself concave on h > 0 and uniqueness of the minimizer follows. Therefore, since U"
is completely analytic, Propositions 3 and 5, and Theorem 1, apply and show that
the measure p, is close to the mixture [ + v-#"]/2 (where h, = h,(m,)) in the
variation norm on boxes translates of A,, with m = o(n).

Turning now more systematically to the case of a sequence of finite volume Gibbs
measures v, in (3.1), we can use Remark 3 in the cases a) and b) to get similar
conclusions as above. In dimension d > 3 we would require symmetry of the v,,’s to
ensure I'®(0) = 0. The case c) has been already discussed above. In particular, in
the two-dimensional case with periodic boundary conditions we obtain all the results
claimed in the Introduction.

We conclude this section with some additional comments. We have recently
learned from F. Martinelli [18] that under weak mixing conditions, with arbitrary
boundary conditions on dA,, one has that with any A,, C A, with d(A,,, 0A,)/logn —
o0,

(|20 =y, 2(A7)) = vg*@ (|2 (A7), = O(1An/|An]) - (3.13)

Integrating over the conditioning and taking into account the fluctuations of z,,, one
checks that this implies, in the context of part 1 of Proposition 4, that for any f with
|f| <1, and with f,, 7, denoting the law of Z,, under p,, vy,

[, F@lpa(de) - v (de)] =

/ / 2)lvn (Al = y)iin(dy) — V(2|70 = )70 (dy)]
-/ / #)vn(dalTn = ) = v (d2)] i (dy) — 70 (dy)]
+/ / )i () [ (dy) — i ()]

—o(}" " 9 ) = v (d)][pnd) — 7o)
<OLT) + [ 1A = vl [1a(d) + )],

where all the estimates above are uniform in f. (In the previous display, we continue
to denote, when no confusion occurs, the restriction of u,,v, on A, by the same
notation). A direct computation reveals that H (v,|v*¥) = O(|A,|h?(y)), while under
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both fi, and 7, h(Z,)|A,|'/? converge to non-degenerate Gaussian random variables.
Hence, using Corollary 2, one concludes that

[ = lla, = OW/[Aal/IAn]) + O(1 A7), (3.14)

namely the same order as we get above, for large |A,|. Note that sharp conditioning
results with a faster rate of convergence than the action of mean field perturbations,
see the different rates in the right hand sides of (3.13) and (3.14).

We also note some recent results of K. Marton [22] concerning concentration in-
equalities for (strongly) mixing Markov fields. We do not see however how to derive
our results from hers.
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