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0 Introduction

Over the recent years there has been considerable interest in the study of random walks
in random environment. The asymptotic behavior of this canonical model of random
motion in a random medium remains quite mysterious, especially in the multi-dimensional
situation. Recent advances have mainly been concerned with the ballistic situation where
the walk has a non-degenerate asymptotic velocity, see [16], [13], [14], [17]. Diffusive
behavior has remained largely unexplored, except for the the work of Lawler [8] when the
walk has no local drift, and of Bricmont-Kupiainen [2], for small isotropic perturbations
of the simple random walk in dimension d > 3. The present article provides new examples
of walks with diffusive behavior. It studies a special class of walks for which we are able
to derive in a non-perturbative fashion the law of large numbers as well as central limit
theorems. Interestingly, proofs are simple when compared to [2].

We now describe the setting. We consider two integers d; > 5, dy > 1, and write d =
dy +dy. We view Z% and Z% as the respective subspaces of Z? of vectors with vanishing
last dy and vanishing first d; components. Throughout this work we study random walks
in random environment for which the Z®-projection evolves according to a standard

random walk, and the random environment only affects the Z%-component. Specifically
1

’ 2d1
(2d; + 1)-vector governing the jump-distribution of the Z*% -components of the walk:
(0.0)  (9(e)) gcezss: with 3 q(e) =1, q(e) = q(~¢) > 0, Tor [e] < L,e € Z*,

and ¢(e) > k, for e # 0,

we consider a number x € (0, 52-) (the ellipticity constant for the Z%-component) and a

and introduce
(0.2) Py the set of (2d)-vectors (p(e))je=1, with p(e) € [0, 1], for all e € Z%, |e| = 1,
Z p(e) =1, and p(e) = q(e), for e € Z", le| = 1.

le]=1

The random environment is an element w = (w(x,-)) ez of 2 = qu((_j), endowed with the

product o-algebra and the product measure IP = u®zd, where p is a probability on Py,
governing the distribution of the environment at a single site. The random walk in the
random environment w is the canonical Markov chain (X,)n>0 on (Z*)N with state space
Z% and “quenched” law P, , starting from z € Z¢, under which

Pyl X1 = Xn +e| Xo, ..., Xa] "E* w(Xpye), n>0,]el =1,

(03) Poo[Xo=z]=1.

The annealed laws are then defined as the semi-direct products on © x (Z%)N:

(0.4) P,=PxP,,, forzecZ.

Our very choice of environments w in Q forces the Z% projection of X,, to evolve under
P, as a random walk with jump distribution ¢(-). We assume symmetry of ¢(-) for
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otherwise we would be in a non-nestling situation where the law of large numbers and
the central limit theorem have been proven in [16], [13]. The assumption d; > 5, enables
to exploit the presence of cut times of the random walk, where loosely speaking past and
future of the random walk have no intersection, (for the precise definition, see (1.4)).
These cut times play a somewhat similar role to the regeneration times employed in [16],
[13], although they do not provide a renewal structure.

In the above setting we are able to derive a law of large numbers:

Xn . L
(0.5) Py-a.s., — — v, (with a deterministic v) .
n

Further assuming that either the law of the environment is invariant under the antipodal
transformation (cf. (2.1), in this case v = 0), and d; > 7, or without symmetry assumption
that d; > 13, we obtain a functional central limit theorem under the quenched measure:

IP-a.s., under Py, the Skorohod-space valued B" = %(X [n] — [ 1] )

converges in law to a Brownian motion with deterministic covariance.

(0.6)

One can of course replace the quenched measure by the annealed measure P, in (0.6).
The above result in particular provides examples of diffusive behavior beyond current
knowledge. It can also be applied to certain small perturbations of the standard random
walk. For e € (0, 1), following [15], we define

(0.7) S, = the set of (2d)-vectors (p(€)) ez, With [p(e) — 5| < 15, for all e,
and Z ple) =1,

and write d(z,w) for the local drift:

(0.8) d(z,w) = Z w(z,e)e.

e

It is shown in [15], that for n > 0, and small € depending on d and 7, when the single site
distribution is concentrated on S, and the static expectation of the local drift IE[d(0, w)]
has size bigger than eg_”, when d = 3, €7, when d > 4, the walk has a non-vanishing
limiting velocity (much more is known, see [15]). One can wonder whether the same
remains true for arbitrarily small non-vanishing IE[d(0, w)]. We show here that this is not
the case and provide examples when d > 7, of single site distributions concentrated on
S., for arbitrarily small €, with [E[d(0,w)] # 0, but vanishing limiting velocity v, and even
with diffusive behavior, when d > 15. We also construct further examples of analogous
behavior for walks which are not small perturbations of the simple random walk.

Let us now explain how this article is organized.

In Section 1, we provide an alternative representation of the law of the walk under
the annealed measure which takes advantage of the cut times. We then derive the law of
large numbers in Theorem 1.4.



In Section 2, we prove the functional central limit theorem under the annealed measure.
The case with antipodal symmetry and d; > 7 is covered by Theorem 2.1, the general
case with d; > 13, is treated in Theorem 2.2.

Section 3 explains how the functional central limit theorem under the annealed measure
can be strengthened to a similar statement under the quenched measure.

Section 4 provides examples of walks which are small perturbations of the simple
random walk, for which E[d(0,w)] # 0, but the limiting velocity vanishes, (d > 7), and
which behave diffusively, (d > 15).

Section 5 contains further examples of analogous behavior, which in a certain sense
are small perturbations of a one-dimensional random walk in a random environment.

1 An alternative representation of F;, and a law of
large numbers

In this section we fist introduce some further notations and provide a special representation
of the walk under the measure P, see Proposition 1.2. This representation will provide an
easy comparison of the walk under P, with a process constructed as an additive functional
over a probability space with an ergodic shift. This will lead to a law of large numbers,
cf. Theorem 1.4.

We begin with some notations. We denote by (e;)1<i<4 the canonical basis of R¢, and
by | - | the Euclidean distance on R%. For U a subset of Z*, |U| denotes the cardinality
of U and QU the boundary of U: 0U = {x € Z\U, 3y € U, |z — y| = 1}. The drift will
be the R%valued function on Py(.):

(1.1) dp) =Y _ ple)e= Y (p(e:) — p(—e:))es, for p(-) € Py

le]=1 1>dy
To represent the random walk governing the evolution of the Z -projection of the RWRE,
we consider the product space

W,={ecZ", |e|]<1}%,

endowed with the product o-algebra W, and the product measure P = ¢®Z, (in the
notation of (0.1)). We denote by (6,,),cz the canonical shift on W, and by (I,),cz the
canonical coordinates. We then define

Il++-lna 77/21,
(1.2) X, =140, n=0,
—(In+1+“'+10), le—l.

Observe that X! n >0, and X!, n <0, are two independent random walks on Z% with
jump-distribution ¢, and that

(1.3) Xpobp=X, ,— X, nkeZ.



The set of cut times where “future” and “past” of X! have no intersection will play an
important role in this article. Specifically, for w € W,, we consider

(1.4) D(w)={n € Z, X{ o p 11N Xjnoo) =0},
as well as the stationary point process

(1.5) N(w,dk) =" 6,(dk) 1{n € D(w)}.

nEZ

It will be convenient to restrict P to the shift-invariant set of full P-measure, (cf. Lemma
1.1 below)

(1.6) W ={w e W,, N(w,(—o0,0]) = N(w, [0,00)) = oc}.

We will write W for the restriction of W, to W. We collect some useful properties relative
to the point process N in the following

Lemma 1.1.

(1.7) P(0eD)>0.

(1.8) P(W) =1, and on W, N(w,dk) = > 6rm(dk),

meZ

where T™(w),m € Z are Z-valued variables on W, increasing with m

and such that T° < 0 < T*.

(1.9) P P[-|0 € D] is invariant under 0% 0 .

(1.10) / T'dP = P[0 € D] ! and

T -1
(1.11) /fdP:/ Z fob, dﬁ// Tt d]g, for f bounded measurable on W .
0

(d1—4)

(1.12) P[T' > n] < c¢(log n)H% n- , n>1, for a positive constant ¢

depending only on di and q(-).

Proof. The claim (1.7) follows from the fact that X!, n > 0, and X!
independent random walks on Z%, d; > 5, with jump distribution q(-) using classical
estimates on the decrease of the transition probability, cf. Spitzer [12], p. 75, and similar
arguments as in Section 3.2 of Lawler [9] or Section 4 of Erdés-Taylor [5]. Using the
ergodicity of # and (1.7), P(W) = 1 follows and (1.8) is straightforward. Up to a different
normalization P is the Palm measure attached to the stationary point process N, cf.
Neveu [10], chapter II, (see in particular (10), p. 317). The statements (1.9), (1.10),
(1.11) are then standard. We now turn to the proof of (1.12).

ny m > 0, are
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We consider an integer L > 1, and write:
(1.13) kj=14+Lj, for j>0.
Then for J > 1:
P[T" > koy] = P[N(w,[1, kay]) = 0]

< Z P[X(l—oo,kj—l] ﬂX[IkHMOO) # 0] +

0<j<2J+1
(1.14) Plforall 0 < j < 2J +1, X(l_ooykj_l] N X[l,%hoo) =0,
and N(w, [1, kas]) = 0]
déf a1 + as .
We first bound ay. To this end note that when N(w,[1,ks;]) = 0 and X(l—oo,kj—u N

Xt )=@for0§j<2J+1,thenforany1§j§2J,

[kj+1,00
0 # X (oo =11 N Xiky00) = Xty =11 1 Xty a1 -
Hence using independence, we see that
(1.15) az < P[X[I—L,—l] N X[lo,L—1] #0)” <Plo¢ D).
We now turn to the control of a;. We observe that

(1.16) a1 < (2 + 1) PIX(_go 1) N X1 o0) 7 0]

<(27+1) > PlXL;=01<@7+1)) kPlX.=0]
i>1,j>L k>L
(d1—4)

<(2J+1)const L™z |

using [12], p. 75, in the last step. Choosing a large enough v depending on d;, ¢(-), and
setting J = [ylogn], L = [3%], (1.12) now follows from (1.15), (1.16). O

We will now provide an alternative representation of the law of the walk under the
annealed measure Py. We let W = (Z%)N stand for the space of Z%-valued trajectories
(?I]/(k))kzo and
(1.17) T(w) ={k >0, X;(w) =X ,(w)}, forweW,
denote the non-negative idle times of X'. We specify a probability kernel K (w,dw dw)
from W to W x Q through:

[ w is IP-distributed,
w(0) =0,
for any k£ > 0, conditionally on w, w(0),...,w(k),

w(k + 1) — w(k) equals 0, when k£ >T" or k ¢ Z(w),

w (X + (k) e)
q(0)

e=te;, 1 >dy, if k<T'and k € Z(w).

(1.18) 3

e, with probability , for any




We can then consider the spaces
(1.19) To=Wx(WxQNand T, =W x (W x Q)%,

endowed with their product o-fields, (the subscript “0” refers to Py and the subscript “s”
to stationary) and the probabilities

(120) Q():PXM(), QSZPXMS,

where My and M, stand for the respective kernels from W to (W xQ)N and W to (W x Q)%
defined by

(1.21) My (w, dyo) = K (w, dil dwo) @ Q) K (O w, dily, dwn,) ,

m>1
(with vy = (w, ) = (W, (Wm, Wm)m>0)), and similarly

(1.22) M(w,dys) = ® K(Opm w, dw,, dw,y,),

meEZ

(with v, = (w,7s) = (0, (Wm, Wm)mez)). We will shortly see that (I'g, Qo) is helpful in
providing a representation of X, under P,, whereas (I's, QQ;) processes useful stationarity
properties.

We now define on Ty the Z%-valued process X2, k>0, via

X2=0, X2=wy(k), for 0 <k <T,
(1.23) {0 e = Wo(k)

in the notations of (1.21). In the sequel we will especially be interested in the Z*valued
process defined on I'y:

(1.24) Zy=Xp + X7, k>0,
and by the Py.)-valued process (see (0.2)):

or = wo(Zy,-), when 0 < k < T,
(1.25)
Wi (Zy — Zpm,-), when T™ < k < T™1 m > 1.

The above processes will easily be compared with the processes defined on I',:

(1.26) Zi=X + X keX,

(1.27) 08 = wn(Zf — Zim, ), for T™ < k <T™
in the notations of (1.22), with
(1.28) X" =0and X3, = X258 + W (k A (T™F1 —T™)), form € Z, k > 0.

Tm+k)ANT™+1

The next two propositions clarify the interest of the above objects.
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Proposition 1.2. Under Qq, (Zk, 0k)k>0 has the same law as (Xy, w(Xk, -))k>0 under Py.

Proof. For w € Q, the Z%-projection of X, under P, has same law as (X})g>o under P.
Further for w € Q if Y}, k > 0, is a Z%-valued process such that Y; = 0 and for k& > 0,
conditionally on X!, Yy, ..., Y}, the increment Yy, — Y} is

0, when k£ € Z(w),

(1.29) w(X; + Y e)

takes the value e with probability 0

when k ¢ Z(w),

, for e = %e;, 1 > dy,

then

(1.30) (X} + Y, w(X} + Y, ))k>o is distributed as (Xg, w(Xk, -))k>o under Py, .

Letting (w(z,+))zeze be ii.d. p-distributed (see below (0.2)), and replacing Py, with
Py the above identity of laws holds true as well. But the subsets of Z%: X[l0 1]
X[lTl,TQ—l]’ . ,X[le’Tmel], ... are disjoint. Hence if (wy,)m>o is an i.i.d. sequence with
common distribution IP, and one replaces in (1.29), and in the first expression of (1.30)
w with wy, if 0 < k < T' and wy, (- — (Xpm + Yym),+), if T™ < k < T™%! the identity in

law is still preserved. Our claim now follows straightforwardly. O

To take advantage of the stationarity property on (I's, Qs), we introduce on I'y the
flow (@k)kez via:

(131) Gk(’)’) = (ka, ({En+mawn+m)mEZ)a on Tn(w) S k< Tn+1(w);

with - as below (1.22). This is the natural flow extending (6x)iez, if one views (wy,, wy,)
as marks of the dpm, for m € ZZ.

Proposition 1.3.

n—1
(1.32) Z5 =" Zjo®, forn>1,
k=0
(1.33) o) =0500y,, fornel,
(1.34) O preserves Qs and in fact (s, ©1,Qs) is ergodic.

Proof. Both (1.32) and (1.33) follow by direct inspection using (1.26) - (1.28). The fact
©; preserves () is checked by a straightforward calculation. Let us show the ergodicity
of (T's, 01, Q). The Palm measure

(1.35) Q, ¥ Q,(-|0eD) =P x M,
attached to the stationary point process N preserves

(1.36) O =065,



(see Neveu [10], p. 338), and the analogue of (1.11) with ©, Q,,Q, in place of 6, P, P
and f bounded measurable holds as well. Our claim is equivalent to the ergodicity of
(T, N {0 € D}, ©,Q,). Let A be measurable subset of I'; N {0 € D} invariant under ©
and € > 0. We can find an integer m. > 1 and a measurable subset A, depending only on
W, (Wi, Wm)m|<m., Such that:

(1.37) E9 |14 —1a]] <.
Then for L > 0,
(1.38) 0,(A) = E%[1,1,00;] = B¥[1, 14 00;] + ¢,

with |c¢|] < 2e. On the other hand if L > 2m,, conditioning on the w component and
using the fact that the (W, wm)mez are independent conditionally on w (see (1.22), the
above equals

EP[Q,(Aw) Qs(Adw) 0 0;) + c. .

As a result

=

EP[Qu(Adw) Qs(Acw) 0 8,]]

0

- A 1
(1.39) 2¢ > A}l_f)r;o | Qs(A) — ¥

h
Il

but (W N {0 € D}, §, P) is ergodic as a consequence of the ergodicity of (W, 6, P) and
* Y Q(AJw) o 0, il Q,(A.). We thus find with (1.37) and the above that
Qu(A) = Qu(A)?] < 1Q5(4) = Qs(A)?| + 26 < de.
Letting € tend to 0, we see that @S(A) =0 or 1, and our claim follows. O
We will now apply the above to the derivation of a law of large numbers. In particular
this will prove the existence of a (possibly vanishing) asymptotic velocity for the walk

under the annealed measure Py, when the single site distribution p is concentrated on
Pyys (see (0.1), (0.2), with dy > 5, dy > 1).

Theorem 1.4. Let ¥ be a bounded measurable function on Py, then

3
—

(1.40) Py-a.s., U(w(Xy, ")) — E9%[U(ad)],

n—00
0

S|
=
Il

and moreover in the notation of (1.1),

def

Xy
(1.41) Py-a.5., =" — v E E%[d(0})] = E9[Z]].
n

Proof. In view of Proposition 1.2, it suffices to prove similar statements with (Zj)x>o and
(0k)k>0 in place of (Xi)k>0 and (w(Xk, -))k>o0-



In the notations of (1.19), we consider the kernel M from W to (W x Q) x (W x Q)%:

(1.42) M(w,dy) = K(w,diy dw)) @ Q) K (Ormw, dily, dwm)

meZ

for ~ i(an) = @, (wh, wy)s (Wimywm)mez), and the probability ¢ on the space I' =
W x (W x Q) x (W x Q)% defined as the semi-direct product @ = P x M. Then the
applications

11 ~ ~
Y € I _0) Yo = (’LU, (wz)awg))a (wmawm)mZI) € 1_‘0

Il ~
vyell — Ys = (w’ (wm,wm)mez) ely,

respectively map ) onto @)y and ();. Moreover with a slight abuse of notations, we see
that

(143) Q—a.s., ZT1+k - ZTI = Z';l—l—kz — Z%l, Ok41T1 = O-Z—I—Tl? k 2 0.

As a result we find that for ¥ as in (1.40)

1
U(op) — 0.
0

3

—_

3
|

(1.44) Q-a.s., U(oy) —

0

S

1
n

£
Il
£
Il

In view of Proposition 1.3 we can apply the ergodic theorem to the second expression in
(1.44), and (1.40) follows. By (1.43), we also see that

(1.45) Q-a.s., | Z, — Z5| < 2(T' An),

and from Proposition 1.3 and the ergodic theorem we conclude that
X

(1.46) Py-as., — — E9[Z7].
n

Moreover by a martingale argument (under B, ),

n—1

(1.47) EolX,) = Bo| 3 d(w(Xi, )]

k=0

and by (1.40) we now conclude that
E%[Z]] = E%[d(o9)].

finishing the proof of Theorem 1.4. O

2 Central limit theorem under the annealed measure

In the setting of the previous sections, we now present two central limit theorems for the
walk under the measure Fy. Theorem 2.1 requires a symmetry assumption on the law of
the environment, cf. (2.1) below, and holds when d; > 7, on the other hand Theorem 2.2
makes no symmetry assumption, but holds when d; > 13. We will later use Theorem 2.2
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when providing in Sections 4 and 5 examples of diffusive behavior of the walk in biased
environments.

For the first theorem, we assume the following “antipodal symmetry” of the single site
distribution (see below (0.2))

(2.1) p is invariant under (p(e))je=1 — (P(—€))ei=1 -

Note that when (2.1) holds, Ey[X,] = 0, for n > 0, and the limiting velocity v in (1.41)
necessarily vanishes. In what follows we denote by D(R.,IR%) the set of R%valued
functions on R, which are right continuous with left limits, which is tacitly endowed
with the Skorohod topology and its Borel o-algebra, (cf. Chapter 3 of Ethier-Kurtz [6]).

Theorem 2.1. (d; > 7, under (2.1))

Under Py, the D(R,, Rd)—valued sequence B" = —— X[.n) converges in law to a Brow-

n
nian motion with covariance matriz A given in (2.14).

Proof. In view of Proposition 1.2 and (1.45), it suffices to show that

under @, 1z # . converges in law to a Brownian motion with
(2.2) Vi bl

covariance matrix A .

Define the non-decreasing sequence k,,n > 0, Q)s-a.s. surely tending to infinity such that
Tkn < n < Tkt and

(2.3) Ym = Zim — Zjo, for m > 0.
Note that Q,-a.s., for any T > 0:

1 1 Tk+1 _ Tk
(2.4) SUP |—= Ziy) — —7= Skpay| <2 sup g

i<t |/ Vi T gkt VD
From (1.12) and d; > 7, we see that for v < %,
(2.5) EP[(T')] < o
and using (1.11) we conclude that for v < 3,
(2.6) EP[(T")] = B4[(T")"] < oo.

Using stationarity, we see that for u > 0,

. (Tk—H _ Tk) N

P( sup —>u) < (Tn+1) P(T' > vnu) <
0<k<[Tn] Vn

(Tn+1)

EP[(TY?, T > vnu] £ 0.

n n—00

10



On the other hand supy<,<(ry W is invariant under 670, and by (1.11) the image

of P under 670 is T' P/ i T'dP, so that the above calculation also proves that

(Tk+1 _ Tk)
(2.7) sup ———= — 0in P (or Q,)-probability.
0<k<[Tn] Vn n—00
Since Qs-a.s., k, < n for all n, we see from (2.4), (2.7) that our claim will follow if we
show (2.2) with ﬁ k[ i place of ﬁ Ly

Observe then that conditionally on w, under @S, the variables Z7,, — Z7,, k > 0, are
independent, cf. (1.22), (1.26), (1.28), with zero mean thanks to (2.1). Further from the

ergodic theorem:

~ 1 ~ of ~
28)  Qeas, = Y (Ziew — Z0) (Zien — Z3)' — E[(Z5)(Z0)) % 4.

0<k<n

Using the martingale central limit theorem, see Durrett [4], p. 334, or Ethier-Kurtz [6],
p. 340, it follows from (2.6), (2.8) that

for P-a.e. w, conditionally on w under @, ﬁ 3., converges in law

(2.9) to a Brownian motion with covariance matrix A, provided ¥, s > 0,
stands for the linear interpolation of X,,,m > 0.

Noting that ﬁ 3., is invariant under ©70 and the image of Q, under ©40 is T" Q,/ JT dp,

it follows that

(2.10) under (), ﬁ 3., converges in law to a Brownian motion with
' covariance matrix A.

From the ergodic theorem, we know that

m

T - ~
(2.11) ~—— — EP[TY Q,-aus.,
m

and by similar arguments as above the same holds true )s-a.s.. It then follows that Q;-a.s.
o 1/ [ T'dP, and with the help of Dini’s theorem:

it t
(2.12) Qs-a.s., for all T > 0, sup L) — =0.
o<i<T | M EP[T?]

From (2.10) and (2.12), we then conclude that

(2.13) under @, Yk, converges in law to a Brownian motion

1
N
with covariance matrix
(2.14) A = E®[(Z3:)(Z3)]/ERITY] (= A/EP[TY),

which finishes the proof of our claim. O
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We now turn to the second theorem which does not require the symmetry assumption
(2.1), and covers situations with possibly non-vanishing limiting velocity v, see (1.41).

Theorem 2.2. (d; > 13)

Under Py, the D(Ry, R%)-valued sequence B" = ﬁ (X[ = ['n]v) converges in law to
a Brownian motion with covariance matriz A given in (2.20).

Proof. By Proposition 1.2 and (1.45), it suffices to prove a similar result for the sequence

(2.15)

4-

['n]—1
(1.32)—(1.41) 1
(Zfm — ['n]v) = —= E Y0,
Vn P

with the notation
(2.16) Y = 7§ — E9[Z]].
We now introduce on Ty, see (1.19), the filtration

Ge=0(Z)— Z,,n<k, for k>0,
(2.17)
(=0(Z, n <k, since Z; =0).

The main step in proving Theorem 2.2 is provided by

Lemma 2.3. There is a G € L*(T'*, Gy, Q,) such that

n—1

(2.18) M, o O, —-G+Z:—nmv=Go0O, -G+ Z Y 0 ©y is a (G,)-martingale.
k=0

Let us for the time being admit Lemma 2.3 and explain how we conclude the proof of
Theorem 2.2. Observe that for any € > 0:

Qs( sup GOy > ev/n) < nQy(G > ev/n)
(2.19) 1smsn
< e ?E%[G% G > eyn] — 0,

n—oo

S

so that it suffices to prove that —= M., converges in law to conclude that —=(Z{,; — [n]v)
converges in law to the same limit. However

3
—

Mn: (Go@l—G+Y)O®k
0

ES
Il

is a martingale with stationary increments and from the theorem of Billingsley and Ibrag-
imov, see Durrett [4], p. 375, it follows that

under (), ﬁ M., converges in law to a Brownian motion with

2.2
(2.20) covariance matrix A = E9[(Go©; —G+Y)(G-0, - G+Y)],

12



which proves Theorem 2.2.

Proof of Lemma 2.3: To simplify notations, we drop the superscript (), when writing
expectations or conditional expectations. It follows from (1.12) that

(2.21) T € L*(Q,)(or L*(P)).
As we now explain the claim will follow once we show that

(2.22) > IIE[(H 1{0 € D}) 0 6, [Go]|l> < oo,

p>0
where we recall the notation (1.4) and

T'-1
(2.23) H= Z Y 0O, (note that [H| < 2T", since |Z§]| < 1).
k=0

Indeed, if we define for m > 1,
(2.24) G™=E[H|G]+ Y E[H1{0€D}) 0,|G],

1<p<m

then G™ converges in L*(Q,) towards G € L*(T',, Gy, @Qs). Moreover, for m > 1, we can
define in the notation of (1.5), N = N(w,[1,m — 1]) + 1, so that for n > 0,

TN _1

(2.25) GoO, = lim E[( Z Yo@k)o®n|gn},
k=0

m—0o0

where the limit holds in L? and we have used stationarity. Hence

E[Go@n+1+iYo@k—GOGn—nZ_lyogﬂgn]
k=0 k=0
~ tim B[B[(S ¥06,) 060y [Gu] +V 00,
(2.26) ™
— ( Z YO@k) O@n|gn]
k=0
_ "}i_l}éoE[(TkZ::)lyo@k) 60,41 +Y 00, — (Tkzz;lyo@k> o@n‘gn]

The quantity under the conditional expectation in the above expression equals
(2.27) H{n+m eD}HoO, 1y =(H1{0 € D})0Opin

and using (2.22) and stationarity we see that the last line of (2.26) vanishes. This proves
that M, with the notation of (2.18), is a (G, )-martingale.

13



We are thus reduced to proving (2.22). To this end, we consider B € L*(T, Go, Qs)
with unit L2-norm. Then for p > 1,

(2.28) E[(H1{0 € D})0©, B] = ZE[( 3 Yo@k)B, Tm:p].
m>1 Tm§k<Tm+1
Note that B is Gp-measurable and hence a function of w and (W, Wm)m<o, and Y rm <k<Tmt1

Y 00 = Zhnis — Zjm — (T4 — Ty WO YL XL @, (T - T —
(T™+1 — T™)v. Hence conditioning on w in the right member of (2.28), and using the
notation of (1.22), we find that for p > 1:

E[(H1{0€D})o©,B] =Y E"[(M,H)o0, M,B, T™ = p] =
EP[(M;H)1{0 € D}) 0 0, M,B].
Then observe that we can find measurable functions ¢/ and ¢ such that
(2.30) M,B = (T, (X})i<o), (M;H)1{0 € D} = o(T", (X )i»o) 1{0 € D}.
To take advantage of decoupling effects, we define

(2.31) I = [E] ,

and introduce two copies (X, ) and (X;5) of (X}), such that X, coincides with X} for

n < L and then “evolves” independently, whereas X coincides with X} +p Xpl, for

n > —L, and for n < —L, “evolves” independently. We then define

U = MSB, U= ’l[J(Ti, (Xi_)i<0)
(232) V= ((MH)H0€DY) o, = p(I" 06, (X}, — X})iz0) L{p € D}
V= QD(T+7 (XZ—F)ZZO) 1{0 € D+}:
where T~ and T are respectively defined like 7° and T* relatively to (X ) and (X )
and D7 is defined analogously to D with (X ) in place of X .. We of course tacitly abuse

the notations since the above objects are defined on an extension of the space (W, W, P).
Note that

(2.33) Uy, vEyt,

We now find that for p > 1:

(2:29)

E[(H1{0 € D}) 00, B] “Z EP[vU] =

(2.34)
EP[V+U-]+ EP[VH(U — U™)] + EP[(V — VU],

Note also that:

(2.35) EP[V]=E"[V']=E[H1{0 € D} = E|Y| E"[T1] =0,

14



using the analogue of (1.11) for Q,, @, and (2.16) in the third equality. Note that V' and
U~ are independent. Hence the first term in the last member of (2.34) vanishes. Keeping
in mind that B has unit L?-norm we find

(2.36) [E[(H{0€D}Ho 0, Bl < [VI(U-U )i + [V =VTs.
In view of (2.32) and the inequality |H| < 2T, we find
VI < 2T 08y, [VF] < 2/T7],
(2.37)
V-V <2{T" #T" 0 0,} +|1{p e D} - 1{0 e DT})(TT+T"00,).

Using Cauchy-Schwarz’s inequality and stationarity, we find

(2.38) IV = Vo < 4|TYo (P[IF # T 06,)2 + 2 P[{p € D}\{0 € D}]3).
Since X, and X}, , — X, coincide for n > —L, we see that:
(2.39)

(T8, #T7} CH{X ()N X[ ooy Z 0FU{(X 00p) (00, 1) N (X" 06p)0,00 7 0}

and by a similar argument {p € D}\{0 € D"} is included in the right hand side of (2.39).
As a result we obtain:

(2.40) IV = VF[s < 24T |> PIX(_ oo 1) N XKooy # 01 -
By analogous arguments we also have
U-U"[< (U + U ) {T° # T}
(2.41)
< (U + U7X ooy N X Loo) 7 OF + WX o N X7 o) # 03) -
Using Holder’s inequality and ||U||s = ||[U~ || < 1, we find
(2.42) VU = U7l < 41T 4 PIX (Zoo0) NV X[p,00)]% -

Collecting (2.36), (2.40), (2.42), and using the fact that (X}) and (X' ) have same law
(see (1.2)), we find

(2.43) IE[(H 1{0 € D}) 0 O/Go]lla < 28T 4 PIX (oo N Xfp ) 7 017

By the calculation in (1.16) we know that the rightmost expression is bounded by const
p’%, (recall (2.31)), and hence summable in p since d; > 13. This concludes the proof

of (2.22) and consequently of Lemma 2.3. O
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3 Central limit theorem under the quenched measure

In this section we will explain how the central limit theorems of the previous section can
be strengthened into statements under the quenched measure F,, for IP-a.e. w.

Theorem 3.1. Assume d; > 7 and (2.1) or dy > 13. Then for P-a.e. w, under P, the
D(R,,R%)-valued B" = ﬁ (X[n] — ['n]v) converges in law to a Brownian motion with
covariance A given in Theorem 2.1 and 2.2 respectively.

Proof. The claim will follow from a variance calculation. It is convenient to introduce the
space C(IRy,IR?%) of continuous R%valued functions on R, and the C (IR, R%)-valued
variable

(3.1) B™ = the polygonal interpolation of % — B%, k>0.

It will also be useful to consider the analogously defined space C([0, T],1R?), of continuous
R%valued functions on [0, 7], for T > 0, which we endow with the distance

(3.2) dr(v,v") =sup |v(s) —v'(s)| A 1.

s<T

From Lemma 4.1 of [1], the claim will follow once we show that for all 7" > 0, for all
bounded Lipschitz functions F on C([0,7T],IR%) and b € (1, 2]:

(3.3) > varp(Eou[F(B™)]) < oo,

(with a slight abuse of notations).

Before proving (3.3) we still need to introduce some further notations. Given w € €,
we consider two independent copies (Xj)x>o and ()Z' k) k>0 evolving according to P . The
respective Z* -projections (X})x>o and (X +)k>0 are then independent and with distribu-
tion given in (1.2). We then denote by C the set of one-sided cut-times of X

(3.4) C={k>1, Xjo, N X} =0},

with an analogously defined C attached to X'. We then pick:

(3.5) be (1,2], 0<u<v<%,

and for m > 1, we define n = [b™],

(3.6) T = Inf{C N [n*,00)} < 00, Py,-a.s. (cf. Lemma 1.1),

as well as the corresponding variable 7, attached to X'. We will also need the event:

(37) Am — {Tm V ?m S ’]’),V and X[le,oo) M X[lfm,oo) = @} .
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We now prove (3.3). Without loss of generality, we assume that |F| < 1 and the Lipschitz
constant of F'is smaller than 1. Then for m > 1:

varp(Eo,[F(87)]) = E[Eou ® Eou[F(87) F(B™)]] — Eo ® Eo[F(8") F(57)]

3.8 ~ ~
. = E|[Eow ® Eoo[F(B") F(BY), Aml] — Eo ® Eo[F(8") F(87), Al + dum,

and with a slight abuse of notations
(3.9) dn] < 2(P x P)(AS,).
Moreover observe that FPy-a.s.

(3.10)  sup ‘(ﬁ8”+77m = ﬂﬁTm) - ﬁsn‘ < in (Tm +1), and

§>0 \/_
. . . . ko1
(3.11) ﬂ.+%m — i = the polygonal interpolation of - = NG (Xkir, — X, — kv).

From the Lipschitz property of F' and (3.7) we see that the first two terms of the last
member of (3.8) equal

(3.12) E[Eow ® Bou[F (B — ) F(B" 2, — 5%,), Anl]
— By ® Eo[F(B" n — ) F(B", 5, — BY,), Am] + e, with
8 (.
(3.13) em| < 5 (07 4+ 1)

Keeping in mind the definition of A, in (3.7), we see by conditioning on X! and X! that
the difference of the first two terms of (3.12) vanishes. Since clearly > |en| < oo, (recall
n = [b™]), we only need to observe that

(3.14) D (P x P)(AL) < 0.

m

By a similar calculation as in (1.16), we see that

(d1-4)

(3.15) P X PIX o oy N X ooy # 0] < const n 7,

[n#,00) n#,00

moreover 7, — n# is stochastically dominated by 7" (under the P-measure) so that from
(1.12), for large m:

d;—4 —v(dy1—4)
2

(3.16) P[r,, > n"] < const(logn”)'™ 2 n

—const m
e .

Combining (3.15) and (3.16) we deduce (3.14). O
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4 Diffusive behavior in a slightly biased environment

As explained in the introduction, it was shown in [15], that when the single-site distri-
bution is concentrated on e-perturbations of the d-dimensional simple random walk and
[E[d(0,w)] has size bigger than ¢, when d = 3, €7, where d > 4, then for small
¢, depending on d and n € (0,1), the walk has non-vanishing limiting velocity (in fact
much more is known, see [15]). In this section we provide examples of e-perturbations
of the simple random walk for which [E[d(0,w)] # 0, but the ballistic behavior is lost,
when d > 7, and the diffusive behavior is even demonstrated when d > 15. We keep the
notations of the previous sections, and specialize here & to 25, and ¢(-) in (0.1) to

8d’
ale) =2, ife =0,
(4.1) )
= oq ife=2e¢;, 1<i<d;.

Recall the definition of S, in (0.7). Note that when p(-) € S, p(e) > k, for all e, and & is
a global ellipticity constant. The main object of this section is the following

Theorem 4.1. Assume d > 7, then for all € € (0,1), we can find p concentrated on S,
such that

(4.2) E[d(0,w)] # 0, but

Xn
(4.3) Py-a.s., — — 0, asn — 0.
n

In addition when d > 15, we can make sure that for IP-a.e. w,

(4.4) under Py, ﬁ X[ converges in law towards a Brownian motion
' with covariance matriz A (independent of w).

Proof. With the help of Theorem 1.4 and Theorem 3.1, it suffices to show that for any
€ (0,1), dy > 5, dy > 2, we can find p concentrated on Py.y N S,, for which the limiting
velocity v of (1.41) vanishes, but [ d(p) du(p) # 0, (see (1.1), and recall d = d; + dy).

Let us denote by qu(_) the set of symmetric vectors in Py.y:
(4.5) 2() = 1p(+) € Py, such that p(e) = p(—e) for all e},
and define o = (P;, N S%)Zd. We will use the following

Lemma 4.2. Suppose ¢ is a measurable function on 735(_) ﬂS; with values in [—1,1], and
1o a probability on ’P;(_) N Se such that:

(4.6) / ¢(p) duo(p) = 0, and

(4.7) E%[p(03)] #0,

where Q% denotes the probability constructed in (1.20) when the single site distribution
is pro. Then one can find a p concentrated on Py.y NS, for which [ d(p)du(p) # 0, but
v=0.
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Proof. We will look for environments of the form
(4.8) wpr(T,€) = wy(z, €) + plp(wo(z,-)) + Neq-e, x € Z%, le| =1,

with p € [0, 7], A € [—1,1], two parameters and wy distributed according to Py = u{‘f’zd
The distribution p will correspond to the single site distribution f, x of the above w, \ for

small p and an appropriate choice of A. Note that 1, is automatically concentrated on
Pq(.) N S..

For p, ) as above, we consider the kernel K”* from W to W x o, defined as in (1.18)
with the difference that w is replaced by w, x, and denote by v,  the asymptotic velocity
corresponding to the single site distribution p, 5, see (1.41). We now find that

T1-1

vor = BPR 3T dlepa (X3 + 0 (K), )| /87T
(4.8) Qp(

From the above formula one deduces that

(4.9)

Elsfo’J‘ T' -1

B [Z o (wo (X, +@(k),-))} +A) eq

k=0

4.10 P, A) € O,L x |—=1,1] = v, is a continuous function.
16d ?

Indeed given (pg, Ao) and (p1, A1), one can couple the two kernels K?0*0 and K?1A1 so
that when both walks are at time k& < T! in the same location z, they simultaneously
jump to x + e with probability wp, x, (%, €) A wp, (2, €). The asserted continuity follows
then from dominated convergence. Note also by direct inspection of the last line of (4.9)
that

(4.11) vp1-€4>0and v, 1-e4<0,for0<p< @

We can hence define for 0 < p < £

(4.12) Ap ¢ the largest zero of the continuous function A — Up -

We see that for 0 < p < 3£

p
?)p,,\p = 0,
-1

(4.13) ) Ap=—Eﬁ><K”’*[ plwo(XE + k), )| /EP [T,

/d ) dptpn, = 2p/ ) dpo(p A,,)ed(g)?p)\ped.

On the other hand a similar coupling argument as above shows that

5

) EPxKe ! 1~ EPxK® T'-1 o
(4.14) l‘i’%ﬁ[g p(wo (X, +W(k),-))] = m[; o(wo (X} +w(k),.))]

= E%p(03)].-
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As a result, we obtain that
. C)
(4.15) limy A, = ~E%[p(a)] # 0.

so that for small p, p, », satisfies the claims of Lemma 4.2. O

Remark 4.3. With minor modifications one obtains a similar statement for an R%-
valued ¢, with |p| < 1, and analogous assumptions as in (4.6), (4.7). One now chooses

for0<p< T6d and ) in the closed unit ball of IRdz,

wp (2, €) = wo(x, €) + p(p(wo(z,)) +A) - e,

in place of (4.8), and uses Brouwer’s fixed point theorem, cf. Dugundji [3], p. 341, to
find )\, for 0 < p < £, satisfying the second equality of (4.13). This remark may be
helpful if one wishes that the distribution p of Theorem 4.1 accommodates a genuinely

vector-valued local drift. O
We now proceed with the proof of Theorem 4.1. We are reduced to checking the
assumptions of Lemma 4.2. To this end we will use the general
Lemma 4.4. (under the assumptions of Section 1)
For ¥ bounded measurable on Py

Y (w(0,-))
0,€)P, ,[Hy = o]

(416)  E%[U(o})] = lim + > E[en(x’o’“) 3w

n—oo N
z€Ze

] , with

e]=1

(4.17) en(2,y,w) = By [u™, H, < o0, for z,y € Z%, w € Q, n> 1, where
u= 1—% and H, = int{k > 0, X), = 2}, for » € Z°.

Proof. We write Sy, =Y 1t ¥(w(Xg, ), for m > 0, and S_; = 0, so that

i U™ (W(Xom, -)) = ium(S’m — Sot) = % i u™ S
m=0 m=0 m=0

Noting that = Y>> mu™ =1 — 1, it follows from (1.40) that:
. 1 = m s
(4.18) Tim EO[ZO u xp(w(xm,.))] = E%[0(02)].

On the other hand for w € (2, setting

(4.19) gu(5,,w) = Eoo| 30w 1{ X =y},

m>0
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we find

Bou| 3w 9(@(X, )| = 3 0n(0,2,0) ¥(w(z, ).
m=0 zeZ?
(4.20) €
N} )
LS e )
z€Z? 1- Ew’w[u m]
by a classical Markov chain calculation, provided
(4.21) H,=inf{k>1, X, =z} for z € Z°.

Since the Z*-projection of X, under By, is distributed as X! under P, we have:
(4.22) 1 — Eyu[uffs] > 1 — Py ,[H, < 00] > P[X}#0, forall k> 1] > 0.
Moreover for any |e| =1,
(4.23) nh_)ngo sgp ‘Ee,w[uHO] — P, ,[Hoy < oo]| =0,
since for M > 0,
0 < P, [Hy < ] — E,,[u] = E,[(1 — u"°), Hy < 0]
< 1—uM+Pe,w[M<H0 < ool £1—uM+ P[X} =0, for some n > M],

from which (4.23) follows by letting n and then M tend to infinity. From (4.20) we see
by choosing ¥ = 1, that for w € €,

(4.24) > 0,3 w) <1
z€Z?

Integrating over the environment in (4.20) and using translation invariance, as well as
(4.22), (4.23), we obtain:

(4.25)
lim B[S (X, )] = lm L ST Efen(s,0,0) M] _

n—oo N — ﬁo

lim Z %lE[en(x,O,w) %] :

which together with (4.18), finishes the proof of (4.16). O

The distribution py of Lemma 4.2, that we now construct, will be concentrated on
small perturbations of

py(€) :i, fore=+e¢;,1<d-2,
2d
14 . €
(4.26) 5" fore =+ e4_1, with v =1 — L
2—v
7 fore=+¢eq4.
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Note that p,(-) € P,y NSe. We denote by Py, for z € Z¢, the canonical law of the
random walk with jump distribution p,(-), starting from z. Let us admit for the time
being the fact that for small e,

(4.27) A(e) € P2 [Hy < 00] — P!, [Hy < 00] > 0,

€d—1

and explain how we complete the construction of py and ¢ of Lemma 4.2. We choose pyg
concentrated on 73;(_) N S% such that

(4.28) po-a.s., p(e) = p,(e), for e = £e;, 1 <i<d—2,and

5 = plea) — pulea) = —(p(ea—1) — pulear)) is such that

I S S Y
(4.29) 0 < 5l < 25, /Muo—o, /5 dpo > Lo

Such a choice is of course possible. We then define

(4.30) p(p) =7,

so that || < 1, and (4.6) is satisfied. Writing 6(z) for w(z, eq) — pu(eq), @ € Z°, we
deduce from (4.16) that

3(0) I

o a1
(4.31) E¥p(09)] = lim — 3 IE[en(x,O,w) A=

n—oo M
T

where [E stands for the ,uff’zd-expectation. Note that

Po,w[f‘j() = OO] = ﬁO,w[ﬁO = OO] (1 + z (CL)(O, 6) — p,,(e)) _’~—_

lel=1

where Fo,w denotes the probability corresponding to the environment @, which coincides
with w outside 0 and such that @(0,-) = p,(-). Note that the sum inside the parenthesis

~ (4.29)
in the above expression is a.s. bounded by % < 4,

about k). Using the inequality |ﬁ —1+7] <292, for |y| < %, we see that for z € Z*,

(see also the remark below (4.1)

]E[en(x,O,w) &] = E[en(x,o,w) g(—o)]

Po’w[f‘jo = OO] ﬁO,w[ﬁO = OO]
wiy B[l 50) S w0,0) - () PeulHo = o]
PO,w[HO = OO] \e|:1
en(z,0,w) ) 32“5“20
+E[m B(:c,w)], with |B(r,w)| < =50
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Using independence we see the first term in the right hand side of (4.32) vanishes, and

5(0)  1_
—Z [en:Eme—

z€Z?
en(z,0,w) ~
4.33 - (PeywHo = 00] = Pe,_ w[Ho = 00]) | E[67]
( ) gi [POw [Hy = oc]? d d ]
NIE
+C, with 0] < 2l Lo T_enlen D)
& n z€Z4 PO‘”[HO ]

Note that by choosing ||0]|« sufficiently small, we can make sure that p®% -a.s.

(4.34) P, [Ho < o] = Pay_, u[Ho < 00] > £ A(e), cf. (4.27),

N | =

so that using (4.29) as well, the first term in the left member of (4.33) is bigger than:

1 1 en(z,0,w)
(4.35) 3 A@IIE = > B[]
$Ezd PO,UJ [HO = Oo]
Observe that nFOw[ﬁO oo < POQ,[HO o] <1 PO,W[HO oo| and
en(x, Ow (4 16)

lim, + > ]E[PM[H0 o] ] 1. As a result we see that

~n 32]9)12 ~
(4.36) E%[p(a})] > g Ae)|I8]1%, = |’L3”°° > 0, when |[|6]|o is small.

Hence (4.7) holds as well and Theorem 4.1 follows.

There now remains to prove (4.27). Let us denote by g,(-,-) the Green function of
the random walk with jump distribution p,(-) and by ¢, () the characteristic function of
py(+). Then for |e|] =1 or 0,

(e, 0
(4.37) P;’[H0<oo]:%, and

e—zte dt
4. ,(e,0) = , with t = (t,...,tq) € T = (=7, 7)<.
( 38) g (6, ) /Tl—@u(t) (27T)d Wl (1 d)E ( T 7T)

Using the symmetry of ¢, we find:

2 ( 0) _ a(pu e~ite dt symmetry 890,, COS(t-e) dt
ws @07 T hw G-ey e W Goa) @
. (4.26) cos(t-e) dt

= — (cos tg 1 — cos tg)

2d (1—¢,)% (2m)¢"
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Note in particular that 2 ¢”(0,0)[,—1 = 0, so that by (4.37)

0
8_]/ (Pé;[HO < OO] — Pé;_l[Ho < OO])|,/:1 =
(4.40) 1 / (costy 1 —costy)? dt -0
9v=1(0,0) (I—g)?  (2m)*
On the other hand Pe'fl[Ho < o0 — Pé;i[Ho < oo] = 0, by symmetry, and the claim
(4.27) follows. O
Remark 4.5. We know from Lawler[8], that for ugz’zd—a.e. w, Py-a.s. Lﬂ (] CONverges

in law to a Brownian motion with diagonal covariance matrix A = diag(a;), where
(4.41) a; = 2/ w(0, ;) dQ(w), for 1 <i<d,
Qo

and @ is the unique invariant measure for the Markov chain of the environment viewed
from the particle, which is absolutely continuous with respect to ug)@zd. The measure @
is known to be an ergodic invariant measure and from (1.40), we see that w(0, ) under
@ has same law as of under Q%. As a by-product of the above example, cf. the choice
(4.30), we see that one cannot in general replace the dynamic measure Q with the static
measure u(}@zd when calculating the limiting diffusion coefficient in (4.41). O

5 Perturbations of one-dimensional RWRE and ve-
locity reversal

We construct in this section another class of examples of multidimensional walks that
satisfy the law of large numbers with a velocity which has an opposite direction to the
expected local drift, or can vanish even if the latter does not vanish. The examples in this
section can be considered as perturbations of one-dimensional random walks in random
environment, as opposed to the examples in Section 4 which were obtained as perturbation
of the simple random walk in dimension d.

It is useful to first recall some known facts about one-dimensional random walks in
random environment. Let j denote a Borel probability measure on (0,1), set  :=
(0,1)%, and define the measure IP = i®% on the environment 2. For every @ € €,
the one-dimensional walk X, under the law Py = P x Py is defined as in (0.3). Set
p, = (1 —a,)/w,, define dy = 2Fp(wy) — 1 and ty = Ep(logpg). The following facts are
well known:

Lemma 5.1. 1. Ifty > 0 then Py-a.s., lim X,, = —oo. Further, if there exists a constant
k > 0 such that iy € (k,1 — k)] = 1, then Ey(X,) < 0 for all n large enough.
2. One may construct a law g with dy > 0, k > 0, but t; > 0.

Proof. The first part is a consequence of [11] and [7]. Concerning the second part, take
d € (0,1) small enough such that
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and define ({0}) = 1/5 and ({2/3}) = 4/5. O

Fix a g as in part 2 of Lemma 5.1, and an ¢y > 0 small enough such that, if G, denotes
a modified geometric random variable of parameter ¢ independent of {X,}, then

(5.1) Ag == Ey(Xg,,) < 0

(this is always possible due to part 1 of Lemma 5.1). For every 1 > € > ¢, and d; > 5, set
dy =1, gle) = ¢/2dy,e € Z™, and p € Py such that 7z governs the law of the single site
jump distribution conditioned on non-vanishing of the Z%-component. Let X, denote
the random walk in random environment corresponding to the law IP = u®zd, and let
v = v([i,dy, €) be the limiting velocity appearing in Theorem 1.4. Note that v -e = 0 for
every e € Z%. Let v, = v - eq denote the projection of v into the direction corresponding
to the Z% subspace. We now claim the following:

Theorem 5.2. There ezxists an integer d = J(ﬁ, €0) such that for any d, > d, it holds
that ’Ug(ﬂ, dl, 60) < 0 while 1im6_>1 ’Ug(ﬂ, dl, 6)/(1 — 6) = d() > 0.

By the continuity of vy(fi,ds,€) in €, which follows from similar considerations as
in (4.10), we see that for every d; > d one may find an € > ¢y such that v(ji,d;,€) = 0.
Moreover, when d; > dV 13, Theorem 2.2 implies that the corresponding walk X,, exhibits
a diffusive behavior.

It is interesting to comment on the nature of the phenomenon described in Theorem
5.2: for € close to 1, between consecutive cut points of the Z% walk, X,, does not spend
much time moving in the d-th direction, and with high probability makes at most one step
in that direction. This then averages out to give a positive displacement since dy > 0. On
the other hand, when d; is large, most moves in the Z%-walk are cut points. If also € is
small enough, the walker effectively executes in the d-direction a one-dimensional random
walk in random environment between cut points, for a geometric time of mean 1/e. That
one-dimensional random walk in random environment is constructed such that while it
does not have a negative speed (this is impossible since dy > 0), it is transient to —oo
and hence leads to a negative displacement.

Proof. Recall the cut times T*. From (1.41) and similar considerations as in (4.9),

EQS[ZZSFI  e4]

v (i, d1, €0) = Eﬁ[Tl]

Hence, the first part of the theorem follows as soon as we show that for € = ¢; and d;
large enough it holds that

~

(5.2) E®[Z5, - eq) < 0.

Define 7 = {n: X! # X! },and let ... < j_1 < jo <0 < j; < ... denote the
elements of J. Set V;! = X/ , and note that under P = ¢®%, {V,!} is a d;-dimensional
simple random walk, independent of the i.i.d., geometric(ep) random variables {j;+1 —
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JiYiem\0; J1, —jo + 1. Recall the cut times 7%, note that 7% € J, and write .J; = j, for the
element of J corresponding to T%. Note that the ¢; are precisely the cut times for the
walk {V/!}.

Call a cut time T* good if X} = X7, for n € [T, T**" — 1], that is if Ji11 = je,41. To
prove (5.2), note first that

B (75, - eq) = E9[Z2, - e41 |+ E9[Z5, - eq1 =A+B.

{rois good} {T°is not good}] :

We claim that under the measure P[-|T°is good], T* is geometric(ep). Indeed, with
DV = {c;}icz denoting the cut times of {V!},
P[T' =k,0 € D,T%is good] = P[0 € DY,1€D",j,=0,j1 = k|
= Pl0eD",1eD"|(1-e)" e,
implying that
P[T" = k|T"is good] = (1 — €)* ¢ .

On the other hand, under the law @5, on the event {T?is good}, X2 performs, for n €
[0,7' — 1], a one dimensional random walk in random environment, with environment
generated by g (c.f. (1.22)). Hence,

A = Q\S[T0 is good]E"js [Z51 - 4T is good]

= P[T is good] Z@S[Tl = k[T is good]E@s[ 5. eq|T s good, Ty = K]
k=1

= P[T is good] ZEO[Xk_l]ﬁ[Tl = k|T is good]
k=1
= AP[T’is good]

where Ay < 0 is as in (5.1). We next note that

PoeD1eD"] PLgD"]
PloeD] =~ PoeDp] ‘“Te

(5.3) P[T"is good] =

because (see [5], Remark 3, p. 248) P[1 € DV] = P[0 € DY] =4, 500 1 while
P[0 € D] = P[0 € DY, jo = 0] = P[0 € D]

is uniformly bounded below for d; > 5. Thus, A —4, 500 Ao < 0. On the other hand,
a repeat of the proof of (1.12), using the fact that P[X! = 0] decreases with d; as can
be checked via characteristic functions, shows that, as a function of d; > 9, EF[(T*)?] is
uniformly bounded. Hence, E@*[(T")?] is uniformly bounded for d; > 9. The estimate
(5.3) and the Cauchy-Schwarz inequality imply then that

Qs
|Bl < E¥[T Lirois not good}] 100 0.

Choosing d; large enough such that A + B < 0, the first part of the theorem follows.
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The second part is actually easier: with the notations of (1.2),
E%(Z-ed = Qsll{n € [1L,T"] : I, = 0}| = 1do+E% [1jpneps,r1y:0,0y51) Zi1-ed] = doC+D.

But, setting fjvz = j; for 2 > 1 and 50 =0,

P(0 e D)

Pl{nel,TY]: I, =0} =0]= EP[e)

while, similarly,

Pl{ne1,T":I,=0} >1] < PE0<i<k<ci—1:jis1—ji—1=17Jp1—jr—1=1]

+PE0<i<ei—1: i1 —ji—1>2]
S (1 — E)QEP[(Cl)Q + Cl] .

Note that the law ﬁ[cl € -] does not depend on e. Since for d; > 7 it holds that
E*(c?) < oo, we conclude that D/(1 — €) —._,; 0. Further, we also get

Since also lime,; P(c; # T*) = 0, one has that EP(T') —.,; E(c;), and the theorem
follows. =
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