
2-DESCENT THROUGH THE AGES

Sir Peter Swinnerton-Dyer

The main object of this note, which expands an expository lecture given
at the conference, is to provide the reader with an account of the process of
2-descent on elliptic curves defined over Q which have the form

Γ : y2 = (x− c1)(x− c2)(x− c3)

— that is, elliptic curves all of whose 2-division points are rational. I have
also included a description of the algorithm of Cassels [1] for 4-descents. My
intention is to provide the reader with the tools which he may need for appli-
cations, in a way which requires minimal effort on his part. I have therefore
not included proofs, except in Appendix 2 which contains a proof/algorithm
the full details of which may be needed for some applications. Instead, I have
provided the necessary references.

This note describes the processes over Q. But the statements of the
theory over an arbitrary algebraic number field are not very different, except
that the analogues of certain explicit results relating to the prime 2 are not
known. On the other hand, some of the proofs are much harder.

We can clearly take the ci to be integers. Let B, the set of bad primes,
be any finite set of primes containing 2, ∞ and all the odd primes dividing
(c1 − c2)(c1 − c3)(c2 − c3); thus B contains the primes of bad reduction for Γ.
If B also contains some primes of good reduction, that is harmless.

The basic version of 2-descent, which goes back to Fermat, is as follows.
(Good places to find proofs of the results that follow are Silverman [5] or
Husemöller [3].) To any rational point (x, y) on Γ there correspond rational
m1, m2, m3 with m1m2m3 = m2 6= 0 such that the three equations

miy
2

i = x− ci for i = 1, 2, 3 (1)

are simultaneously soluble. We can multiply the mi by non-zero squares, so
that for example we can require them to be square-free integers; indeed one
should really think of them as elements of Q∗/Q∗2, with a suitable interpre-
tation of the equations which involve them. Denote by C(m) the curve given
by the three equations (1), where m = (m1, m2, m3). Looking for solutions
of Γ is the same as looking for quadruples x, y1, y2, y3 which satisfy (1) for
some m. For this purpose we need only consider the finitely many m for
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which the mi are units at all primes outside B; for if any mi is divisible to
an odd power by some prime p not in B then Γ is already insoluble in Qp.

One question of interest is the effect of twisting on the arithmetic prop-
erties of the curve Γ. If b is a nonzero rational, the twist of Γ by b is defined
to be the curve

Γb : y2 = (x− bc1)(x− bc2)(x− bc3),

where we can regard b as an element of Q∗/Q∗2. The curve Γb is often written
in the alternative form

v2 = b(u− c1)(u− c2)(u− c3).

The analogue of (1) for Γb is

miy
2

i = x− bci for i = 1, 2, 3;

we shall call the curve given by these three equations Cb(m). It is often
natural to compare C(m) and Cb(m) for the same m.

Provided one treats the mi as elements of Q∗/Q∗2, the triples m form an
abelian group under componentwise multiplication:

m′ × m′′ 7→ m′m′′ = (m′

1
m′′

1
, m′

2
m′′

2
, m′

3
m′′

3
).

The m for which C(m) is everywhere locally soluble form a finite subgroup,
called the 2-Selmer group. This is computable, and it contains the group
of those m for which C(m) is actually soluble in Q. This smaller group is
Γ(Q)/2Γ(Q), where Γ(Q), the group of rational points on Γ, is the Mordell-

Weil group of Γ. The quotient of the 2-Selmer group by this smaller group is

2X, the group of those elements of the Tate-Safarevic group which are killed
by 2. One of the key conjectures in the subject is that the order of 2X is a
square.

The process of going from the curve Γ to the set of curves C(m), or the
finite subset which is the 2-Selmer group, is called a 2-descent, or sometimes
a first descent, and the curves C(m) themselves are called 2-coverings. The
reason for this terminology is that there is a commutative diagram

Γ −→ Γ
‖ ↗

C(m)
(2)
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in which the left hand map is biregular (but defined over C rather than
Q), the top map is multiplication by 2 and the diagonal map is given by
y = my1y2y3. A 2-covering which is everywhere locally soluble, and therefore
in the 2-Selmer group, can also be written in the form

η2 = f(ξ) where f(ξ) = aξ4 + bξ3 + cξ2 + dξ + e,

and many 2-coverings do arise in this way; but a 2-covering which is not in
the 2-Selmer group cannot always be put into this form.

We now put this process into more modern language. In what follows,
italic capitals will always denote vector spaces over F2, the finite field of two
elements, and each of p and q will be either a finite prime or ∞. Write

Yp = Q∗

p/Q
∗2

p , YB = ⊕p∈BYp.

Let Vp denote the vector space of all triples (µ1, µ2, µ3) with each µi in Yp

and µ1µ2µ3 = 1; and write VB = ⊕p∈BVp. This is the best way to introduce
these spaces, because it preserves symmetry; but the reader should note that
the prevailing custom in the literature is to define Vp as Yp × Yp, which is
isomorphic to the Vp defined above but not in a canonical way. Next, write
XB = o

∗
B/o

∗2
B where o

∗
B is the group of nonzero rationals which are units

outside B; and let UB be the image in VB of the group of triples (m1, m2, m3)
such that the mi are in XB and m1m2m3 = 1. It is known that the map
XB → YB is an embedding and dimUB = 1

2
dim VB; both these depend on

the requirement that B contains 2 and ∞. Finally, if (x, y) is a point of Γ
defined over Qp other than a 2-division point then the product of the three
components in the triple (x− c1, x− c2, x− c3) is y2 which is in Q∗2

p ; so this
triple has a natural image in Vp. We can supply the images of the 2-division
points by continuity; for example the image of (c1, 0) is

((c1 − c2)(c1 − c3), c1 − c2, c1 − c3), (3)

and the image of the point at infinity is the trivial triple (1, 1, 1), which is also
the product of the three triples like (3). Thus we obtain a map Γ(Qp) → Vp.
This map, which is called the Kummer map, is a homomorphism. We denote
its image by Wp; clearly Wp is the set of those triples m for which (1) is
soluble in Qp. It is sometimes useful to have explicit descriptions of the
Wp, so these are given in Appendix 1. The 2-Selmer group of Γ can now be
identified with UB ∩WB where WB = ⊕p∈BWp; for as was noted above, (1) is
soluble at every prime outside B if and only if the elements of m are in XB.
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Over the years, many people must have noticed that

dimWB = dimUB = 1

2
dimVB. (4)

The next major step, which explains and may well have been inspired by this
relation, was taken by Tate. He introduced the bilinear form ep on Vp × Vp,
defined by

ep(m
′,m′′) = (m′

1
, m′′

1
)p(m

′

2
, m′′

2
)p(m

′

3
, m′′

3
)p.

Here (u, v)p is the multiplicative Hilbert symbol with values in {±1}, defined
by

(u, v)p =

{

1 if ux2 + vy2 = 1 is soluble in Qp,

−1 otherwise.

The Hilbert symbol is symmetric and multiplicative in each argument:

(u, v)p = (v, u)p and (u1u2, v)p = (u1, v)p(u2, v)p.

Effectively it is a replacement for the quadratic residue symbol, with the
advantage that it treats the primes 2 and ∞ in just the same way as any
other prime. Its other key property is the Hilbert product formula

∏

p
(u, v)p = 1,

where the product is taken over all p including ∞; the left hand side is
meaningful because (u, v)p = 1 whenever p is an odd prime at which u and
v are units.

The bilinear form ep is non-degenerate and alternating on Vp×Vp; we use
it to define eB =

∏

p∈B ep, which is a non-degenerate alternating bilinear form
on VB×VB. (For a bilinear form with values in {±1}, “symmetric” and “skew-
symmetric” are the same and they each mean that e(m′,m′′) = e(m′′,m′);
“alternating” means that also e(m,m) = 1.) It is known from class field
theory that UB is a maximal isotropic subspace of VB. Tate showed that
Wp is a maximal isotropic subspace of Vp, and therefore WB is a maximal
isotropic subspace of VB. (The proof of this, which is difficult, can be found
in Milne [4].) This explains (4); and it also shows that the 2-Selmer group of
Γ can be identified with both the left and the right kernel of the restriction
of eB to UB ×WB.

For both aesthetic and practical reasons, one would like to show that this
restriction is symmetric or skew-symmetric — these two properties being the
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same. But to make such a statement meaningful we need an isomorphism be-
tween UB and WB; and though they have the same structure as vector spaces
it is not obvious that there is a natural isomorphism between them. The
way round this obstacle was first shown in [2]. It requires the construction
inside each Vp of a maximal isotropic subspace Kp such that VB = UB ⊕KB

where KB = ⊕p∈BKp. Assuming that such spaces Kp can be constructed, let
tB : VB → UB be the projection along KB and write

U ′

B = UB ∩ (WB +KB), W ′

B = WB/(WB ∩KB) =
⊕

p∈B
W ′

p

where W ′
p = Wp/(Wp ∩Kp). The map tB induces an isomorphism

τB : W ′

B → U ′

B,

and the bilinear function eB induces a bilinear function

e′B : U ′

B ×W ′

B → {±1}.

The bilinear functions U ′
B × U ′

B → {±1} and W ′
B × W ′

B → {±1} defined
respectively by

θ[
B : u′

1
× u′

2
7→ e′B(u′

1
, τ−1

B
(u′

2
)) and θ]

B
: w′

1
× w′

2
7→ e′B(τBw

′

1
, w′

2
) (5)

are symmetric. (For the proof, see [2] or [8].) Here the images of w′
1
× w′

2

under the second map and of τBw
′
1
× τBw

′
2

under the first map are the same.
The 2-Selmer group of Γ is isomorphic to both the left and the right kernel
of e′B, and hence also to the kernels of the two maps (5).

There is considerable freedom in choosing the Kp, and this raises three
obvious questions:

• Is there a canonical choice of the Kp?

• How small can we make U ′ and W ′?

• Can we ensure that the functions (5) are not merely symmetric but
alternating?

These questions were first raised and also to a large extent answered in [6];
proofs of the assertions which follow can be found there. The motive for
ensuring that the functions (5) are alternating is that it implies that the
ranks of these functions are even; this means that their coranks, which are
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equal to the dimension of the 2-Selmer group, are congruent mod 2 to dimU ′
B

and dimW ′
B.

The answer to the first question appears to be negative, though there is
little freedom in the optimum choice of the Kp — particularly if one wishes
to obtain not merely Lemma 1 but Theorem 1. Since U ′

B
⊃ UB ∩WB, the

best possible answer to the second question would be that we can achieve
U ′
B = UB ∩WB; we shall do this by satisfying the stronger requirement

WB = (UB ∩WB) ⊕ (KB ∩WB). (6)

For suppose that (6) holds; then WB +KB = (UB ∩WB) +KB and it follows
immediately that

U ′

B = UB ∩ (WB +KB) = UB ∩WB. (7)

The motivation for (6) is that we want to make WB ∩KB as large as possible
— that is, to choose KB so that as much of it as possible is contained in WB.
But because KB must be complementary to UB, only the part of WB which
is complementary to WB ∩ UB is available for this purpose.

Since the 2-Selmer group UB ∩ WB is identified with the left and right
kernels of each of the functions (5), if (7) holds then these functions are trivial
and therefore alternating. The formal statement of all this is as follows.

Lemma 1 We can choose maximal isotropic subspaces Kp ⊂ Vp for each p
in B so that VB = UB ⊕KB. We can further ensure that

WB = (UB ∩WB) ⊕ (KB ∩WB),

which implies U ′
B = UB ∩WB. If so, the functions θ[

B and θ]
B

defined in (5)
are trivial.

For some applications it is convenient to have an explicit description of the
construction of the Kp; this is given in Appendix 2. But the other properties
of the Kp chosen in this way are not at all obvious. Hence it is advantageous
to consider other recipes for choosing the Kp, for which (6) does not hold
but we can still prove that the functions (5) are alternating.

For this purpose we write B as the disjoint union of B′ and B′′, where
we shall always suppose that 2 and ∞ are both in B′. For any odd prime p
we denote by Tp the subset of Vp consisting of those triples (µ1, µ2, µ3) with
µ1µ2µ3 = 1 for which each µi is in o

∗
p/o

∗2
p — that is, each µi is the image of
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a p-adic unit. The main point of the following theorem is that for p in B′′ it
enables us to replace the complicated inductive definition of Kp used in the
proof of Lemma 1 by the much simpler choice Kp = Tp. How one chooses B′′

depends on the particular application which one has in mind.

Theorem 1 Let B be the disjoint union of B′ ⊃ {2,∞} and B′′. We can

construct maximal isotropic subspaces Kp ⊂ Vp such that VB = UB ⊕KB,

WB′ = (UB′ ∩WB′) ⊕ (KB′ ∩WB′) (8)

and Kv = Tv for all v in B′′; and (8) implies that U ′
B′ = UB′ ∩WB′ . Moreover

U ′

B = ∗U
′

B′ ⊕ τBW
′

B′′ = ∗U
′

B′ ⊕
(

⊕p∈B′′τBW
′

p

)

, (9)

and the restriction of θ[
B

to ∗U
′
B′ × ∗U

′
B′ is trivial.

If B′ also contains all the odd primes p such that the vp(ci − cj) are not

all congruent mod 2, then we can choose the Kp for p in B′ so that also θ[
B

is alternating on U ′
B
.

The appearance of ∗U
′
B′ in and just after (9) calls for some explanation.

Let u be any element of UB′; then u is in UB. Moreover, for p in B′′ the image
of u in Vp is in Tp = Kp and therefore in Kp +Wp; hence u is in U ′

B. In this
way we define a map U ′

B′ → U ′
B which is clearly an injection and which we

denote by ∗.
Lemma 1 is the special case of Theorem 1 in which B′ = B and B′′ is

empty. But the proof of Lemma 1 is a necessary step (and indeed the most
substantial step) in the proof of Theorem 1. Indeed, to prove Theorem 1
we construct the Kp for p in B′ according to the recipe in Appendix 2; for
the final sentence of the theorem we need the particular version of the recipe
which involves the functions φi.

The main application of Theorem 1 is to twisted curves Γb, where we can
clearly take b to be an integer. Let S denote the set of bad primes for Γ
itself — that is, 2,∞ and the odd primes dividing (c1 − c2)(c1 − c3)(c2 − c3);
and let B ⊃ S be the set of bad primes for Γb. If we are to apply any part
of Theorem 1, B must also contain all the odd primes dividing b; and such
applications are much simpler when b is a unit at every prime of S. (We
can always arrange this by treating Γb as the twist of Γc by b/c, where c
is the largest divisor of b which is a unit outside S.) To describe the effect
of twisting, we shall denote by db the dimension of the 2-Selmer group of
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Γb regarded as a vector space over F2; we write d = d1 for the dimension
of the 2-Selmer group of Γ itself. It is now possible to prove results about
db − d, the change in the dimension of the 2-Selmer group as one goes from
Γ to Γb. There is reason to expect that statements about the parities of d
and db will be simpler and much easier to prove than statements about their
actual values. The two major statements known about db are Lemma 2 and
Theorem 2; Lemma 2 is an easy consequence of the last sentence of Theorem
1, and Theorem 2 is an easy consequence of Lemma 3 below.

Lemma 2 If b is in o
∗
p for every p ∈ S, then db ≡ dim(US ∩ WS) mod 2

where WS = ⊕p∈SWp and the Wp must be defined with respect to Γb and not

with respect to Γ. Thus db mod 2 only depends on the classes of b in the

k∗p/k
∗2
p for p in S.

To prove Lemma 3 we need to take B′ = S \ {p}; thus the last sentence
of Theorem 1 is not applicable though the rest of that theorem is.

Lemma 3 Let p be an odd prime in S such that

vp(c1 − c2) > 0, vp(c1 − c3) = vp(c2 − c3) = 0.

Let b in k∗ be such that b is in k∗2q for all q in S other than p and b is a

quadratic non-residue at p. Then d and db have opposite parities.

It is not hard to prove the analogue of Lemma 3 for the case p = ∞,
though the proof falls outside the machinery described in this note. The
combination of this result and Lemma 3 yields Theorem 2. (The analogue
of Lemma 3 for p = 2 can be confidently asserted, on the basis of a large
amount of numerical evidence, and the proof of it probably requires no new
ideas. But even the statement involves so extensive a separation of cases that
it is unlikely soon to appear in print.)

Theorem 2 Let b′, b′′ in k∗ be such that b′/b′′ is a unit at all p ∈ S and

b′/b′′ ≡ 1 mod 8. Let S∗ be the set of p ∈ S for which b′/b′′ is not in k∗2p . Let

S∗∗ consist of the finite odd p in S∗ for which the vp(ci − cj) are not all equal

and the smallest two of them are even, together with ∞ if b′/b′′ < 0. Then

db′ − db′′ ≡ #S∗∗ mod 2.
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We can define a 4-covering and a 4-descent (sometimes called a second

descent) by extension of the diagram (2). Let C be a 2-covering of Γ; then
a 4-covering of Γ above this 2-covering is a curve D which fits into the com-
mutative diagram

Γ −→ Γ −→ Γ
‖ ‖ ↗
D −→ C

in which the vertical maps are biregular (but defined over C rather than
Q) and each upper map is multiplication by 2. If C is everywhere locally
soluble, we say that it admits a second descent if we can find such a D
which is everywhere locally soluble. If C is actually soluble in Q, then it
certainly admits a second descent; thus carrying out a second descent is
a way of replacing the 2-Selmer group by a hopefully smaller group which
however still contains Γ(Q)/2Γ(Q). A second descent may therefore refine
the information about the Mordell-Weil group which is obtained from the
2-descent.

In its classical form, the process of 4-descent was constructive but it was
arithmetically unattractive, largely because it involved a field extension. But
Cassels [1] has shown how to determine which elements of the 2-Selmer group
do admit a second descent, while working entirely in Q. He constructs an
alternating bilinear form g on the 2-Selmer group, whose kernel consists of
exactly those elements which admit a second descent. Let S again be the
set of bad primes for Γ, with S ⊃ {2,∞}, and let m′ and m′′ be two triples
in US which represent elements of the 2-Selmer group of Γ. If i, j, k is any
permutation of 1, 2, 3 we denote by Ci(m

′) the conic

m′

jy
2

j −m′

ky
2

k = (ck − cj)y
2

0
. (10)

In view of (1) there is a map C(m′) → Ci(m
′); so Ci(m

′) is everywhere locally
soluble. Because Ci(m

′) is a conic, this implies that it is soluble in Q; so
choose a rational point Pi on Ci(m

′) and let Li(y0, yj, yk) = 0 be the equation
of the tangent to Ci(m

′) at Pi. By abuse of language, we can treat Li as a
homogeneous linear form in y0, yj, yk; strictly speaking, it is only defined up
to multiplication by an element of Q∗, but it will not matter which multiple
we choose. For each p in S, choose a p-adic point Qp on the affine curve
C(m′). Then g is defined by

g(m′,m′′) =
∏

p∈S

∏

i
(Li(Qp),m

′′

i )p
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where the bracket on the right is as usual the Hilbert symbol.

APPENDIX 1 — Explicit description of the Wp

The main purpose of this Appendix is to give an explicit description of
the Wp. The calculations are sometimes simplified by using the fact that Wp

is isotropic and contains the three triples like (3); thus if m is in Wp then
the three results like

(c1 − c2, m3)p = (c1 − c3, m2)p

all hold. The case p = ∞, which is trivial, is Lemma 5. The case when p
is odd, the simplest proof of which can be found in [6], is Lemma 5. The
results for the case p = 2 are much more complicated; they can be found in
[7] but are not reproduced here.

Lemma 4 After renumbering, suppose that c1 > c2 > c3. Then W∞ consists

of the classes of (1, 1, 1) and (−1,−1, 1).

In Lemma 5 and Theorem 3, a1 ∼ a2 will mean that a1/a2 is in k∗2p .

Lemma 5 Let p be an odd prime.

If p divides all the ci − cj to the same even power, then Wp = (o∗p/o
∗2
p )2.

If p divides all the ci − cj to the same odd power, then Wp consists of the

classes of (1, 1, 1) and the three triples like (3).
Now suppose that p does not divide all the ci−cj to the same power. After

renumbering, let

vp(c1 − c2) > vp(c1 − c3) = vp(c2 − c3).

Denote by η the class of c1 − c2, by ε the class of c1 − c3 and c2 − c3, and by

ν the class of quadratic non-residues mod p.
If v(ε) is odd then Wp consists of the classes of

(1, 1, 1), (ηε, η, ε), (−η,−ηε, ε), (−ε,−ε, 1).

If v(η) is odd and v(ε) even then Wp consists of the classes of

(1, 1, 1), (ηε, η, ε), (ν, ν, 1), (νηε, νη, ε).
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If v(η) and v(ε) are both even and ε ∼ ν then Wp consists of the classes of

(1, 1, 1), (ν, ν, 1), (ν, 1, ν), (1, ν, ν).

If v(η) and v(ε) are both even and ε ∼ 1 then Wp consists of the classes of

(1, 1, 1), (ν, ν, 1), (p, p, 1), (pν, pν, 1).

A number of people have proved results of the form: let p be in S and
assume that C(m) is locally soluble at all primes other than perhaps p; then
provided that certain local conditions on Γ hold, C(m) is also locally sol-
uble at p. The best approach to this kind of result is as follows. For any
permutation i, j, k of 1, 2, 3 let Ck(m) denote the conic

miy
2

i −mjy
2

j = (cj − ci)y
2

0
,

this being essentially the same as the notation of (10). The existence of a
map C(m) → Ck(m) implies that Ck(m) is also locally soluble everywhere
except possibly at p. Since Ck(m) is a conic, it follows that Ck(m) is also
locally soluble at p — a condition which is equivalent to

(mi(cj − ci), mk)p = 1. (11)

Hence C(m) is locally soluble at p provided that this is implied by the local
solubility of the three Ck(m

′) at p — that is, by the three conditions like
(11). The question is under what local conditions on Γ at p this holds. Such
results can be read off from the description of Wp; but in fact we can decide
this question without knowing Wp. For we do know that the order of Wp

is 2, 4 or 8 according as p is ∞, odd or 2. It is therefore enough to count
the set of triples m which satisfy the three equations like (11); for this set
contains Wp, so that it is equal to Wp if and only if it has the same order as
Wp. Even when p = 2, this calculation is trivial to program.

The conclusions for p = ∞ and p odd are given in the following theorem.
Those for p = 2 are too complicated to justify explicit statement.

Theorem 3 Suppose that C(m) is everywhere locally soluble except possibly

at one prime p which is in S. If p = ∞ then C(m) is also locally soluble

at p. If p is odd then C(m) is also locally soluble at p except perhaps when

ci − ck ∼ cj − ck ∼ 1 for some permutation i, j, k of 1, 2, 3.
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APPENDIX 2 — Construction of the Kp

In this Appendix we show how to construct the Kp. We do in fact prove
a more general result, but this is only because otherwise we would be forced
into a needlessly complicated notation. The reader will see that (subject to
the introduction of the temporarily mysterious functions φi) the hypotheses
of Lemma 6 mimic the structure described in the main body of the text. I
give here only that part of the proof which is really an algorithm for the
construction; a complete proof can be found in [6].

Lemma 6 Let the Vi be n vector spaces over F2, each equipped with a non-

degenerate additive alternating bilinear form ψi with values in F2. Denote by

ψ the sum of the ψi, which is a non-degenerate bilinear form on V = ⊕Vi.

For each i let Wi be maximal isotropic in Vi, and let U be maximal isotropic

in V with respect to ψ. Then there exist maximal isotropic subspaces Ki ⊂ Vi

such that V = U ⊕K and

W = (U ∩W ) ⊕ (K ∩W ) (12)

where W = ⊕Wi and K = ⊕Ki. Moreover U ∩ (W +K) = U ∩W .

Suppose also that there are functions φi on Vi with values in F2 which

satisfy

φi(ξ + η) = φi(ξ) + φi(η) + ψi(ξ, η) (13)

for any ξ, η in Vi, and let φ on V be the sum of the φi. Assume that φ is

trivial on U and φi is trivial on Wi. Then we can further ensure that φi is

trivial on Ki and therefore φ is trivial on K.

Proof If any Vi has dimension greater than 2, we can decompose it as a direct
sum of mutually orthogonal subspaces of dimension 2, on each of which the
restriction of the bilinear form ψi is non-degenerate and each of which meets
Wi in a subspace of dimension 1. This only reduces our freedom to choose
the Ki, and the triviality of φi on the old Ki will follow from its triviality
on the new and smaller Ki by (13). Thus we can assume that every Vi has
dimension 2 and every Wi has dimension 1. We proceed by induction on n,
the case n = 0 being trivial.

We shall assume that the φi exist, noting in the appropriate place how to
modify the argument to prove the first part of the lemma without using the
existence of the φi. If we regard Wn as a subspace of V , either Wn ⊂ U or
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Wn is not contained in U and therefore meets it only in the origin. In each of
these cases, we shall choose an αi in Vi with φi(αi) = 0 and use it to generate
Ki. After reordering, we can assume that either Wn is not contained in U or
every Wi is contained in U and therefore W ⊂ U .

Since U is isotropic it cannot contain Vi; so if Wn ⊂ U and therefore
Wi ⊂ U for each i, then each Vi contains just two elements which do not
lie in U . Denote them by α′

i and α′′
i , and let βi be the nontrivial element

of Wi; thus α′′
i = α′

i + βi. Since φi(βi) = 0 it follows from (13) and the
non-degeneracy of ψi on Vi that

φi(α
′

i) + φi(α
′′

i ) = ψi(α
′

i, βi) = 1;

choose αi to be whichever of α′
i and α′′

i satisfies φi(αi) = 0. (If we do not
assume the existence of the φi then we can take αi to be either of α′

i and α′′
i .)

Let Ki be the vector space generated by αi; thus

Wi = U ∩Wi = (U ∩Wi) ⊕ (Ki ∩Wi)

for each i, which implies (12). Moreover U ⊃ W and therefore U = W
because U and W have the same dimension. So

V = ⊕Vi = ⊕(Wi ⊕Ki) = W ⊕K = U ⊕K.

If U does not contain Wn, then the non-trivial element of Wn is not in
U . Denote this element by αn, so that φn(αn) = 0 by hypothesis. Let Kn be
the vector space generated by αn; thus Kn = Wn and

Wn = (U ∩Wn) ⊕ (Kn ∩Wn). (14)

The construction now proceeds by induction on n. Write

V − = V1 ⊕ . . .⊕ Vn−1, U− = V − ∩ (U ⊕Wn). (15)

It is straightforward to show that U− is maximal isotropic in V −. For the
pair U−, V − we must replace the question whether U ⊃ W by the question
whether U⊕Wn contains W− = W1⊕. . .⊕Wn−1. By the induction hypothesis
for the pair U− ⊂ V −, there exist Ki maximal isotropic in Vi for each i < n
such that if K− = (K1 ⊕ . . .⊕Kn−1) then V − = U− ⊕K− and

W− = (U− ∩W−) ⊕ (K− ∩W−). (16)
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The need to check the remaining details of the argument can be circumvented
by an appeal to Cassels’ Axiom: all vector space theorems are trivial.

When we apply Lemma 6 to the construction of the Kp for p in B′ and
the proof of Theorem 1, we replace i by p and ψi by ep; but note that we
have chosen to write ep multiplicatively and ψi additively. For m in Vp we
take φp(m) to be any one of the expressions

(mi(ci − cj)(ci − ck), mj(cj − ci)(cj − ck))p,

whose values are easily shown to be equal. The significance of φp is as follows.
The antipodal involution (x, y) 7→ (x,−y) on Γ induces an involution on each
2-covering C(m); in the notation of (1) this involution reverses the signs of
y1, y2, y3. The quotient of C(m) by this involution is a smooth projective
curve D(m) of genus 0, which is given by

(c2 − c3)m1y
2

1
+ (c3 − c1)m2y

2

2
+ (c1 − c2)m3y

2

3
= 0; (17)

and φp(m) is just the class [D(m)] as an element of Br kp.
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