2-DESCENT THROUGH THE AGES

Sir Peter Swinnerton-Dyer

The main object of this note, which expands an expository lecture given at the conference, is to provide the reader with an account of the process of 2-descent on elliptic curves defined over \mathbf{Q} which have the form

$$
\Gamma: y^{2}=\left(x-c_{1}\right)\left(x-c_{2}\right)\left(x-c_{3}\right)
$$

- that is, elliptic curves all of whose 2-division points are rational. I have also included a description of the algorithm of Cassels [1] for 4-descents. My intention is to provide the reader with the tools which he may need for applications, in a way which requires minimal effort on his part. I have therefore not included proofs, except in Appendix 2 which contains a proof/algorithm the full details of which may be needed for some applications. Instead, I have provided the necessary references.

This note describes the processes over Q. But the statements of the theory over an arbitrary algebraic number field are not very different, except that the analogues of certain explicit results relating to the prime 2 are not known. On the other hand, some of the proofs are much harder.

We can clearly take the c_{i} to be integers. Let \mathcal{B}, the set of bad primes, be any finite set of primes containing $2, \infty$ and all the odd primes dividing $\left(c_{1}-c_{2}\right)\left(c_{1}-c_{3}\right)\left(c_{2}-c_{3}\right)$; thus \mathcal{B} contains the primes of bad reduction for Γ. If \mathcal{B} also contains some primes of good reduction, that is harmless.

The basic version of 2-descent, which goes back to Fermat, is as follows. (Good places to find proofs of the results that follow are Silverman [5] or Husemöller [3].) To any rational point (x, y) on Γ there correspond rational m_{1}, m_{2}, m_{3} with $m_{1} m_{2} m_{3}=m^{2} \neq 0$ such that the three equations

$$
\begin{equation*}
m_{i} y_{i}^{2}=x-c_{i} \quad \text { for } \quad i=1,2,3 \tag{1}
\end{equation*}
$$

are simultaneously soluble. We can multiply the m_{i} by non-zero squares, so that for example we can require them to be square-free integers; indeed one should really think of them as elements of $\mathbf{Q}^{*} / \mathbf{Q}^{* 2}$, with a suitable interpretation of the equations which involve them. Denote by $\mathcal{C}(\mathbf{m})$ the curve given by the three equations (1), where $\mathbf{m}=\left(m_{1}, m_{2}, m_{3}\right)$. Looking for solutions of Γ is the same as looking for quadruples x, y_{1}, y_{2}, y_{3} which satisfy (1) for some \mathbf{m}. For this purpose we need only consider the finitely many \mathbf{m} for
which the m_{i} are units at all primes outside \mathcal{B}; for if any m_{i} is divisible to an odd power by some prime p not in \mathcal{B} then Γ is already insoluble in \mathbf{Q}_{p}.

One question of interest is the effect of twisting on the arithmetic properties of the curve Γ. If b is a nonzero rational, the twist of Γ by b is defined to be the curve

$$
\Gamma_{b}: y^{2}=\left(x-b c_{1}\right)\left(x-b c_{2}\right)\left(x-b c_{3}\right),
$$

where we can regard b as an element of $\mathbf{Q}^{*} / \mathbf{Q}^{* 2}$. The curve Γ_{b} is often written in the alternative form

$$
v^{2}=b\left(u-c_{1}\right)\left(u-c_{2}\right)\left(u-c_{3}\right) .
$$

The analogue of (1) for Γ_{b} is

$$
m_{i} y_{i}^{2}=x-b c_{i} \quad \text { for } \quad i=1,2,3 ;
$$

we shall call the curve given by these three equations $\mathcal{C}_{b}(\mathbf{m})$. It is often natural to compare $\mathcal{C}(\mathbf{m})$ and $\mathcal{C}_{b}(\mathbf{m})$ for the same \mathbf{m}.

Provided one treats the m_{i} as elements of $\mathbf{Q}^{*} / \mathbf{Q}^{* 2}$, the triples \mathbf{m} form an abelian group under componentwise multiplication:

$$
\mathbf{m}^{\prime} \times \mathbf{m}^{\prime \prime} \mapsto \mathbf{m}^{\prime} \mathbf{m}^{\prime \prime}=\left(m_{1}^{\prime} m_{1}^{\prime \prime}, m_{2}^{\prime} m_{2}^{\prime \prime}, m_{3}^{\prime} m_{3}^{\prime \prime}\right)
$$

The \mathbf{m} for which $\mathcal{C}(\mathbf{m})$ is everywhere locally soluble form a finite subgroup, called the 2-Selmer group. This is computable, and it contains the group of those \mathbf{m} for which $\mathcal{C}(\mathbf{m})$ is actually soluble in \mathbf{Q}. This smaller group is $\Gamma(\mathbf{Q}) / 2 \Gamma(\mathbf{Q})$, where $\Gamma(\mathbf{Q})$, the group of rational points on Γ, is the MordellWeil group of Γ. The quotient of the 2-Selmer group by this smaller group is ${ }_{2} \amalg$, the group of those elements of the Tate-Safarevic group which are killed by 2 . One of the key conjectures in the subject is that the order of ${ }_{2} \amalg$ is a square.

The process of going from the curve Γ to the set of curves $\mathcal{C}(\mathbf{m})$, or the finite subset which is the 2 -Selmer group, is called a 2 -descent, or sometimes a first descent, and the curves $\mathcal{C}(\mathbf{m})$ themselves are called 2 -coverings. The reason for this terminology is that there is a commutative diagram

in which the left hand map is biregular (but defined over \mathbf{C} rather than Q), the top map is multiplication by 2 and the diagonal map is given by $y=m y_{1} y_{2} y_{3}$. A 2-covering which is everywhere locally soluble, and therefore in the 2-Selmer group, can also be written in the form

$$
\eta^{2}=f(\xi) \quad \text { where } \quad f(\xi)=a \xi^{4}+b \xi^{3}+c \xi^{2}+d \xi+e,
$$

and many 2 -coverings do arise in this way; but a 2 -covering which is not in the 2-Selmer group cannot always be put into this form.

We now put this process into more modern language. In what follows, italic capitals will always denote vector spaces over \mathbf{F}_{2}, the finite field of two elements, and each of p and q will be either a finite prime or ∞. Write

$$
Y_{p}=\mathbf{Q}_{p}^{*} / \mathbf{Q}_{p}^{* 2}, \quad Y_{\mathcal{B}}=\oplus_{p \in \mathcal{B}} Y_{p} .
$$

Let V_{p} denote the vector space of all triples $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ with each μ_{i} in Y_{p} and $\mu_{1} \mu_{2} \mu_{3}=1$; and write $V_{\mathcal{B}}=\oplus_{p \in \mathcal{B}} V_{p}$. This is the best way to introduce these spaces, because it preserves symmetry; but the reader should note that the prevailing custom in the literature is to define V_{p} as $Y_{p} \times Y_{p}$, which is isomorphic to the V_{p} defined above but not in a canonical way. Next, write $X_{\mathcal{B}}=\mathfrak{o}_{\mathcal{B}}^{*} / \mathfrak{o}_{\mathcal{B}}^{* 2}$ where $\mathfrak{o}_{\mathcal{B}}^{*}$ is the group of nonzero rationals which are units outside \mathcal{B}; and let $U_{\mathcal{B}}$ be the image in $V_{\mathcal{B}}$ of the group of triples (m_{1}, m_{2}, m_{3}) such that the m_{i} are in $X_{\mathcal{B}}$ and $m_{1} m_{2} m_{3}=1$. It is known that the map $X_{\mathcal{B}} \rightarrow Y_{\mathcal{B}}$ is an embedding and $\operatorname{dim} U_{\mathcal{B}}=\frac{1}{2} \operatorname{dim} V_{\mathcal{B}}$; both these depend on the requirement that \mathcal{B} contains 2 and ∞. Finally, if (x, y) is a point of Γ defined over \mathbf{Q}_{p} other than a 2-division point then the product of the three components in the triple $\left(x-c_{1}, x-c_{2}, x-c_{3}\right)$ is y^{2} which is in $\mathbf{Q}_{p}^{* 2}$; so this triple has a natural image in V_{p}. We can supply the images of the 2-division points by continuity; for example the image of $\left(c_{1}, 0\right)$ is

$$
\begin{equation*}
\left(\left(c_{1}-c_{2}\right)\left(c_{1}-c_{3}\right), c_{1}-c_{2}, c_{1}-c_{3}\right), \tag{3}
\end{equation*}
$$

and the image of the point at infinity is the trivial triple $(1,1,1)$, which is also the product of the three triples like (3). Thus we obtain a map $\Gamma\left(\mathbf{Q}_{p}\right) \rightarrow V_{p}$. This map, which is called the Kummer map, is a homomorphism. We denote its image by W_{p}; clearly W_{p} is the set of those triples \mathbf{m} for which (1) is soluble in \mathbf{Q}_{p}. It is sometimes useful to have explicit descriptions of the W_{p}, so these are given in Appendix 1. The 2-Selmer group of Γ can now be identified with $U_{\mathcal{B}} \cap W_{\mathcal{B}}$ where $W_{\mathcal{B}}=\oplus_{p \in \mathcal{B}} W_{p}$; for as was noted above, (1) is soluble at every prime outside \mathcal{B} if and only if the elements of \mathbf{m} are in $X_{\mathcal{B}}$.

Over the years, many people must have noticed that

$$
\begin{equation*}
\operatorname{dim} W_{\mathcal{B}}=\operatorname{dim} U_{\mathcal{B}}=\frac{1}{2} \operatorname{dim} V_{\mathcal{B}} \tag{4}
\end{equation*}
$$

The next major step, which explains and may well have been inspired by this relation, was taken by Tate. He introduced the bilinear form e_{p} on $V_{p} \times V_{p}$, defined by

$$
e_{p}\left(\mathbf{m}^{\prime}, \mathbf{m}^{\prime \prime}\right)=\left(m_{1}^{\prime}, m_{1}^{\prime \prime}\right)_{p}\left(m_{2}^{\prime}, m_{2}^{\prime \prime}\right)_{p}\left(m_{3}^{\prime}, m_{3}^{\prime \prime}\right)_{p}
$$

Here $(u, v)_{p}$ is the multiplicative Hilbert symbol with values in $\{ \pm 1\}$, defined by

$$
(u, v)_{p}= \begin{cases}1 & \text { if } u x^{2}+v y^{2}=1 \text { is soluble in } \mathbf{Q}_{p} \\ -1 & \text { otherwise }\end{cases}
$$

The Hilbert symbol is symmetric and multiplicative in each argument:

$$
(u, v)_{p}=(v, u)_{p} \quad \text { and } \quad\left(u_{1} u_{2}, v\right)_{p}=\left(u_{1}, v\right)_{p}\left(u_{2}, v\right)_{p} .
$$

Effectively it is a replacement for the quadratic residue symbol, with the advantage that it treats the primes 2 and ∞ in just the same way as any other prime. Its other key property is the Hilbert product formula

$$
\prod_{p}(u, v)_{p}=1
$$

where the product is taken over all p including ∞; the left hand side is meaningful because $(u, v)_{p}=1$ whenever p is an odd prime at which u and v are units.

The bilinear form e_{p} is non-degenerate and alternating on $V_{p} \times V_{p}$; we use it to define $e_{\mathcal{B}}=\prod_{p \in \mathcal{B}} e_{p}$, which is a non-degenerate alternating bilinear form on $V_{\mathcal{B}} \times V_{\mathcal{B}}$. (For a bilinear form with values in $\{ \pm 1\}$, "symmetric" and "skewsymmetric" are the same and they each mean that $e\left(\mathbf{m}^{\prime}, \mathbf{m}^{\prime \prime}\right)=e\left(\mathbf{m}^{\prime \prime}, \mathbf{m}^{\prime}\right)$; "alternating" means that also $e(\mathbf{m}, \mathbf{m})=1$.) It is known from class field theory that $U_{\mathcal{B}}$ is a maximal isotropic subspace of $V_{\mathcal{B}}$. Tate showed that W_{p} is a maximal isotropic subspace of V_{p}, and therefore $W_{\mathcal{B}}$ is a maximal isotropic subspace of $V_{\mathcal{B}}$. (The proof of this, which is difficult, can be found in Milne [4].) This explains (4); and it also shows that the 2-Selmer group of Γ can be identified with both the left and the right kernel of the restriction of $e_{\mathcal{B}}$ to $U_{\mathcal{B}} \times W_{\mathcal{B}}$.

For both aesthetic and practical reasons, one would like to show that this restriction is symmetric or skew-symmetric - these two properties being the
same. But to make such a statement meaningful we need an isomorphism between $U_{\mathcal{B}}$ and $W_{\mathcal{B}}$; and though they have the same structure as vector spaces it is not obvious that there is a natural isomorphism between them. The way round this obstacle was first shown in [2]. It requires the construction inside each V_{p} of a maximal isotropic subspace K_{p} such that $V_{\mathcal{B}}=U_{\mathcal{B}} \oplus K_{\mathcal{B}}$ where $K_{\mathcal{B}}=\oplus_{p \in \mathcal{B}} K_{p}$. Assuming that such spaces K_{p} can be constructed, let $t_{\mathcal{B}}: V_{\mathcal{B}} \rightarrow U_{\mathcal{B}}$ be the projection along $K_{\mathcal{B}}$ and write

$$
U_{\mathcal{B}}^{\prime}=U_{\mathcal{B}} \cap\left(W_{\mathcal{B}}+K_{\mathcal{B}}\right), \quad W_{\mathcal{B}}^{\prime}=W_{\mathcal{B}} /\left(W_{\mathcal{B}} \cap K_{\mathcal{B}}\right)=\bigoplus_{p \in \mathcal{B}} W_{p}^{\prime}
$$

where $W_{p}^{\prime}=W_{p} /\left(W_{p} \cap K_{p}\right)$. The map $t_{\mathcal{B}}$ induces an isomorphism

$$
\tau_{\mathcal{B}}: W_{\mathcal{B}}^{\prime} \rightarrow U_{\mathcal{B}}^{\prime}
$$

and the bilinear function $e_{\mathcal{B}}$ induces a bilinear function

$$
e_{\mathcal{B}}^{\prime}: U_{\mathcal{B}}^{\prime} \times W_{\mathcal{B}}^{\prime} \rightarrow\{ \pm 1\}
$$

The bilinear functions $U_{\mathcal{B}}^{\prime} \times U_{\mathcal{B}}^{\prime} \rightarrow\{ \pm 1\}$ and $W_{\mathcal{B}}^{\prime} \times W_{\mathcal{B}}^{\prime} \rightarrow\{ \pm 1\}$ defined respectively by

$$
\begin{equation*}
\theta_{\mathcal{B}}^{b}: u_{1}^{\prime} \times u_{2}^{\prime} \mapsto e_{\mathcal{B}}^{\prime}\left(u_{1}^{\prime}, \tau_{\mathcal{B}}^{-1}\left(u_{2}^{\prime}\right)\right) \quad \text { and } \quad \theta_{\mathcal{B}}^{\sharp}: w_{1}^{\prime} \times w_{2}^{\prime} \mapsto e_{\mathcal{B}}^{\prime}\left(\tau_{\mathcal{B}} w_{1}^{\prime}, w_{2}^{\prime}\right) \tag{5}
\end{equation*}
$$

are symmetric. (For the proof, see [2] or [8].) Here the images of $w_{1}^{\prime} \times w_{2}^{\prime}$ under the second map and of $\tau_{\mathcal{B}} w_{1}^{\prime} \times \tau_{\mathcal{B}} w_{2}^{\prime}$ under the first map are the same. The 2-Selmer group of Γ is isomorphic to both the left and the right kernel of $e_{\mathcal{B}}^{\prime}$, and hence also to the kernels of the two maps (5).

There is considerable freedom in choosing the K_{p}, and this raises three obvious questions:

- Is there a canonical choice of the K_{p} ?
- How small can we make U^{\prime} and W^{\prime} ?
- Can we ensure that the functions (5) are not merely symmetric but alternating?

These questions were first raised and also to a large extent answered in [6]; proofs of the assertions which follow can be found there. The motive for ensuring that the functions (5) are alternating is that it implies that the ranks of these functions are even; this means that their coranks, which are
equal to the dimension of the 2 -Selmer group, are congruent $\bmod 2$ to $\operatorname{dim} U_{\mathcal{B}}^{\prime}$ and $\operatorname{dim} W_{\mathcal{B}}^{\prime}$.

The answer to the first question appears to be negative, though there is little freedom in the optimum choice of the K_{p} - particularly if one wishes to obtain not merely Lemma 1 but Theorem 1 . Since $U_{\mathcal{B}}^{\prime} \supset U_{\mathcal{B}} \cap W_{\mathcal{B}}$, the best possible answer to the second question would be that we can achieve $U_{\mathcal{B}}^{\prime}=U_{\mathcal{B}} \cap W_{\mathcal{B}}$; we shall do this by satisfying the stronger requirement

$$
\begin{equation*}
W_{\mathcal{B}}=\left(U_{\mathcal{B}} \cap W_{\mathcal{B}}\right) \oplus\left(K_{\mathcal{B}} \cap W_{\mathcal{B}}\right) . \tag{6}
\end{equation*}
$$

For suppose that (6) holds; then $W_{\mathcal{B}}+K_{\mathcal{B}}=\left(U_{\mathcal{B}} \cap W_{\mathcal{B}}\right)+K_{\mathcal{B}}$ and it follows immediately that

$$
\begin{equation*}
U_{\mathcal{B}}^{\prime}=U_{\mathcal{B}} \cap\left(W_{\mathcal{B}}+K_{\mathcal{B}}\right)=U_{\mathcal{B}} \cap W_{\mathcal{B}} . \tag{7}
\end{equation*}
$$

The motivation for (6) is that we want to make $W_{\mathcal{B}} \cap K_{\mathcal{B}}$ as large as possible - that is, to choose $K_{\mathcal{B}}$ so that as much of it as possible is contained in $W_{\mathcal{B}}$. But because $K_{\mathcal{B}}$ must be complementary to $U_{\mathcal{B}}$, only the part of $W_{\mathcal{B}}$ which is complementary to $W_{\mathcal{B}} \cap U_{\mathcal{B}}$ is available for this purpose.

Since the 2-Selmer group $U_{\mathcal{B}} \cap W_{\mathcal{B}}$ is identified with the left and right kernels of each of the functions (5), if (7) holds then these functions are trivial and therefore alternating. The formal statement of all this is as follows.

Lemma 1 We can choose maximal isotropic subspaces $K_{p} \subset V_{p}$ for each p in \mathcal{B} so that $V_{\mathcal{B}}=U_{\mathcal{B}} \oplus K_{\mathcal{B}}$. We can further ensure that

$$
W_{\mathcal{B}}=\left(U_{\mathcal{B}} \cap W_{\mathcal{B}}\right) \oplus\left(K_{\mathcal{B}} \cap W_{\mathcal{B}}\right),
$$

which implies $U_{\mathcal{B}}^{\prime}=U_{\mathcal{B}} \cap W_{\mathcal{B}}$. If so, the functions $\theta_{\mathcal{B}}^{b}$ and $\theta_{\mathcal{B}}^{\sharp}$ defined in (5) are trivial.

For some applications it is convenient to have an explicit description of the construction of the K_{p}; this is given in Appendix 2. But the other properties of the K_{p} chosen in this way are not at all obvious. Hence it is advantageous to consider other recipes for choosing the K_{p}, for which (6) does not hold but we can still prove that the functions (5) are alternating.

For this purpose we write \mathcal{B} as the disjoint union of \mathcal{B}^{\prime} and $\mathcal{B}^{\prime \prime}$, where we shall always suppose that 2 and ∞ are both in \mathcal{B}^{\prime}. For any odd prime p we denote by T_{p} the subset of V_{p} consisting of those triples $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ with $\mu_{1} \mu_{2} \mu_{3}=1$ for which each μ_{i} is in $\mathfrak{o}_{p}^{*} / \mathfrak{o}_{p}^{* 2}$ - that is, each μ_{i} is the image of
a p-adic unit. The main point of the following theorem is that for p in $\mathcal{B}^{\prime \prime}$ it enables us to replace the complicated inductive definition of K_{p} used in the proof of Lemma 1 by the much simpler choice $K_{p}=T_{p}$. How one chooses $\mathcal{B}^{\prime \prime}$ depends on the particular application which one has in mind.

Theorem 1 Let \mathcal{B} be the disjoint union of $\mathcal{B}^{\prime} \supset\{2, \infty\}$ and $\mathcal{B}^{\prime \prime}$. We can construct maximal isotropic subspaces $K_{p} \subset V_{p}$ such that $V_{\mathcal{B}}=U_{\mathcal{B}} \oplus K_{\mathcal{B}}$,

$$
\begin{equation*}
W_{\mathcal{B}^{\prime}}=\left(U_{\mathcal{B}^{\prime}} \cap W_{\mathcal{B}^{\prime}}\right) \oplus\left(K_{\mathcal{B}^{\prime}} \cap W_{\mathcal{B}^{\prime}}\right) \tag{8}
\end{equation*}
$$

and $K_{v}=T_{v}$ for all v in $\mathcal{B}^{\prime \prime}$; and (8) implies that $U_{\mathcal{B}^{\prime}}^{\prime}=U_{\mathcal{B}^{\prime}} \cap W_{\mathcal{B}^{\prime}}$. Moreover

$$
\begin{equation*}
U_{\mathcal{B}}^{\prime}=\jmath_{*} U_{\mathcal{B}^{\prime}}^{\prime} \oplus \tau_{\mathcal{B}} W_{\mathcal{B}^{\prime \prime}}^{\prime}=\jmath_{*} U_{\mathcal{B}^{\prime}}^{\prime} \oplus\left(\oplus_{p \in \mathcal{B}^{\prime \prime}} \tau_{B} W_{p}^{\prime}\right) \tag{9}
\end{equation*}
$$

and the restriction of $\theta_{\mathcal{B}}^{b}$ to $\jmath_{*} U_{\mathcal{B}^{\prime}}^{\prime} \times \jmath_{*} U_{\mathcal{B}^{\prime}}^{\prime}$ is trivial.
If \mathcal{B}^{\prime} also contains all the odd primes p such that the $v_{p}\left(c_{i}-c_{j}\right)$ are not all congruent $\bmod 2$, then we can choose the K_{p} for p in \mathcal{B}^{\prime} so that also $\theta_{\mathcal{B}}^{b}$ is alternating on $U_{\mathcal{B}}^{\prime}$.

The appearance of $\jmath_{*} U_{\mathcal{B}^{\prime}}^{\prime}$ in and just after (9) calls for some explanation. Let u be any element of $U_{\mathcal{B}^{\prime}}$; then u is in $U_{\mathcal{B}}$. Moreover, for p in $\mathcal{B}^{\prime \prime}$ the image of u in V_{p} is in $T_{p}=K_{p}$ and therefore in $K_{p}+W_{p}$; hence u is in $U_{\mathcal{B}}^{\prime}$. In this way we define a map $U_{\mathcal{B}^{\prime}}^{\prime} \rightarrow U_{\mathcal{B}}^{\prime}$ which is clearly an injection and which we denote by \jmath_{*}.

Lemma 1 is the special case of Theorem 1 in which $\mathcal{B}^{\prime}=\mathcal{B}$ and $\mathcal{B}^{\prime \prime}$ is empty. But the proof of Lemma 1 is a necessary step (and indeed the most substantial step) in the proof of Theorem 1. Indeed, to prove Theorem 1 we construct the K_{p} for p in \mathcal{B}^{\prime} according to the recipe in Appendix 2; for the final sentence of the theorem we need the particular version of the recipe which involves the functions ϕ_{i}.

The main application of Theorem 1 is to twisted curves Γ_{b}, where we can clearly take b to be an integer. Let \mathcal{S} denote the set of bad primes for Γ itself - that is, $2, \infty$ and the odd primes dividing $\left(c_{1}-c_{2}\right)\left(c_{1}-c_{3}\right)\left(c_{2}-c_{3}\right)$; and let $\mathcal{B} \supset \mathcal{S}$ be the set of bad primes for Γ_{b}. If we are to apply any part of Theorem $1, \mathcal{B}$ must also contain all the odd primes dividing b; and such applications are much simpler when b is a unit at every prime of \mathcal{S}. (We can always arrange this by treating Γ_{b} as the twist of Γ_{c} by b / c, where c is the largest divisor of b which is a unit outside \mathcal{S}.) To describe the effect of twisting, we shall denote by d_{b} the dimension of the 2 -Selmer group of
Γ_{b} regarded as a vector space over \mathbf{F}_{2}; we write $d=d_{1}$ for the dimension of the 2-Selmer group of Γ itself. It is now possible to prove results about $d_{b}-d$, the change in the dimension of the 2 -Selmer group as one goes from Γ to Γ_{b}. There is reason to expect that statements about the parities of d and d_{b} will be simpler and much easier to prove than statements about their actual values. The two major statements known about d_{b} are Lemma 2 and Theorem 2; Lemma 2 is an easy consequence of the last sentence of Theorem 1 , and Theorem 2 is an easy consequence of Lemma 3 below.

Lemma 2 If b is in \mathfrak{o}_{p}^{*} for every $p \in \mathcal{S}$, then $d_{b} \equiv \operatorname{dim}\left(U_{\mathcal{S}} \cap W_{\mathcal{S}}\right) \bmod 2$ where $W_{\mathcal{S}}=\oplus_{p \in \mathcal{S}} W_{p}$ and the W_{p} must be defined with respect to Γ_{b} and not with respect to Γ. Thus d_{b} mod 2 only depends on the classes of b in the $k_{p}^{*} / k_{p}^{* 2}$ for p in \mathcal{S}.

To prove Lemma 3 we need to take $\mathcal{B}^{\prime}=\mathcal{S} \backslash\{p\}$; thus the last sentence of Theorem 1 is not applicable though the rest of that theorem is.

Lemma 3 Let p be an odd prime in \mathcal{S} such that

$$
v_{p}\left(c_{1}-c_{2}\right)>0, \quad v_{p}\left(c_{1}-c_{3}\right)=v_{p}\left(c_{2}-c_{3}\right)=0
$$

Let b in k^{*} be such that b is in $k_{q}^{* 2}$ for all q in \mathcal{S} other than p and b is a quadratic non-residue at p. Then d and d_{b} have opposite parities.

It is not hard to prove the analogue of Lemma 3 for the case $p=\infty$, though the proof falls outside the machinery described in this note. The combination of this result and Lemma 3 yields Theorem 2. (The analogue of Lemma 3 for $p=2$ can be confidently asserted, on the basis of a large amount of numerical evidence, and the proof of it probably requires no new ideas. But even the statement involves so extensive a separation of cases that it is unlikely soon to appear in print.)

Theorem 2 Let $b^{\prime}, b^{\prime \prime}$ in k^{*} be such that $b^{\prime} / b^{\prime \prime}$ is a unit at all $p \in \mathcal{S}$ and $b^{\prime} / b^{\prime \prime} \equiv 1 \bmod 8$. Let \mathcal{S}^{*} be the set of $p \in \mathcal{S}$ for which $b^{\prime} / b^{\prime \prime}$ is not in $k_{p}^{* 2}$. Let $\mathcal{S}^{* *}$ consist of the finite odd p in \mathcal{S}^{*} for which the $v_{p}\left(c_{i}-c_{j}\right)$ are not all equal and the smallest two of them are even, together with ∞ if $b^{\prime} / b^{\prime \prime}<0$. Then

$$
d_{b^{\prime}}-d_{b^{\prime \prime}} \equiv \# \mathcal{S}^{* *} \bmod 2
$$

We can define a 4 -covering and a 4-descent (sometimes called a second descent) by extension of the diagram (2). Let \mathcal{C} be a 2 -covering of Γ; then a 4 -covering of Γ above this 2 -covering is a curve \mathcal{D} which fits into the commutative diagram

in which the vertical maps are biregular (but defined over \mathbf{C} rather than Q) and each upper map is multiplication by 2 . If \mathcal{C} is everywhere locally soluble, we say that it admits a second descent if we can find such a \mathcal{D} which is everywhere locally soluble. If \mathcal{C} is actually soluble in \mathbf{Q}, then it certainly admits a second descent; thus carrying out a second descent is a way of replacing the 2 -Selmer group by a hopefully smaller group which however still contains $\Gamma(\mathbf{Q}) / 2 \Gamma(\mathbf{Q})$. A second descent may therefore refine the information about the Mordell-Weil group which is obtained from the 2-descent.

In its classical form, the process of 4-descent was constructive but it was arithmetically unattractive, largely because it involved a field extension. But Cassels [1] has shown how to determine which elements of the 2-Selmer group do admit a second descent, while working entirely in \mathbf{Q}. He constructs an alternating bilinear form g on the 2-Selmer group, whose kernel consists of exactly those elements which admit a second descent. Let \mathcal{S} again be the set of bad primes for Γ, with $\mathcal{S} \supset\{2, \infty\}$, and let \mathbf{m}^{\prime} and $\mathbf{m}^{\prime \prime}$ be two triples in $U_{\mathcal{S}}$ which represent elements of the 2-Selmer group of Γ. If i, j, k is any permutation of $1,2,3$ we denote by $\mathcal{C}_{i}\left(\mathbf{m}^{\prime}\right)$ the conic

$$
\begin{equation*}
m_{j}^{\prime} y_{j}^{2}-m_{k}^{\prime} y_{k}^{2}=\left(c_{k}-c_{j}\right) y_{0}^{2} \tag{10}
\end{equation*}
$$

In view of (1) there is a $\operatorname{map} \mathcal{C}\left(\mathbf{m}^{\prime}\right) \rightarrow \mathcal{C}_{i}\left(\mathbf{m}^{\prime}\right)$; so $\mathcal{C}_{i}\left(\mathbf{m}^{\prime}\right)$ is everywhere locally soluble. Because $\mathcal{C}_{i}\left(\mathbf{m}^{\prime}\right)$ is a conic, this implies that it is soluble in \mathbf{Q}; so choose a rational point P_{i} on $\mathcal{C}_{i}\left(\mathbf{m}^{\prime}\right)$ and let $\mathrm{L}_{i}\left(y_{0}, y_{j}, y_{k}\right)=0$ be the equation of the tangent to $\mathcal{C}_{i}\left(\mathbf{m}^{\prime}\right)$ at P_{i}. By abuse of language, we can treat L_{i} as a homogeneous linear form in y_{0}, y_{j}, y_{k}; strictly speaking, it is only defined up to multiplication by an element of \mathbf{Q}^{*}, but it will not matter which multiple we choose. For each p in \mathcal{S}, choose a p-adic point Q_{p} on the affine curve $\mathcal{C}\left(\mathbf{m}^{\prime}\right)$. Then g is defined by

$$
g\left(\mathbf{m}^{\prime}, \mathbf{m}^{\prime \prime}\right)=\prod_{p \in \mathcal{S}} \prod_{i}\left(\mathrm{~L}_{i}\left(\mathrm{Q}_{p}\right), \mathbf{m}_{i}^{\prime \prime}\right)_{p}
$$

where the bracket on the right is as usual the Hilbert symbol.

APPENDIX 1 - Explicit description of the W_{p}

The main purpose of this Appendix is to give an explicit description of the W_{p}. The calculations are sometimes simplified by using the fact that W_{p} is isotropic and contains the three triples like (3); thus if \mathbf{m} is in W_{p} then the three results like

$$
\left(c_{1}-c_{2}, m_{3}\right)_{p}=\left(c_{1}-c_{3}, m_{2}\right)_{p}
$$

all hold. The case $p=\infty$, which is trivial, is Lemma 5. The case when p is odd, the simplest proof of which can be found in [6], is Lemma 5. The results for the case $p=2$ are much more complicated; they can be found in [7] but are not reproduced here.

Lemma 4 After renumbering, suppose that $c_{1}>c_{2}>c_{3}$. Then W_{∞} consists of the classes of $(1,1,1)$ and $(-1,-1,1)$.

In Lemma 5 and Theorem 3, $a_{1} \sim a_{2}$ will mean that a_{1} / a_{2} is in $k_{p}^{* 2}$.
Lemma 5 Let p be an odd prime.
If p divides all the $c_{i}-c_{j}$ to the same even power, then $W_{p}=\left(\mathfrak{o}_{p}^{*} / \mathfrak{o}_{p}^{* 2}\right)^{2}$. If p divides all the $c_{i}-c_{j}$ to the same odd power, then W_{p} consists of the classes of $(1,1,1)$ and the three triples like (3).

Now suppose that p does not divide all the $c_{i}-c_{j}$ to the same power. After renumbering, let

$$
v_{p}\left(c_{1}-c_{2}\right)>v_{p}\left(c_{1}-c_{3}\right)=v_{p}\left(c_{2}-c_{3}\right)
$$

Denote by η the class of $c_{1}-c_{2}$, by ϵ the class of $c_{1}-c_{3}$ and $c_{2}-c_{3}$, and by ν the class of quadratic non-residues $\bmod p$.

If $v(\epsilon)$ is odd then W_{p} consists of the classes of

$$
(1,1,1),(\eta \epsilon, \eta, \epsilon),(-\eta,-\eta \epsilon, \epsilon),(-\epsilon,-\epsilon, 1)
$$

If $v(\eta)$ is odd and $v(\epsilon)$ even then W_{p} consists of the classes of

$$
(1,1,1),(\eta \epsilon, \eta, \epsilon),(\nu, \nu, 1),(\nu \eta \epsilon, \nu \eta, \epsilon) .
$$

If $v(\eta)$ and $v(\epsilon)$ are both even and $\epsilon \sim \nu$ then W_{p} consists of the classes of

$$
(1,1,1),(\nu, \nu, 1),(\nu, 1, \nu),(1, \nu, \nu)
$$

If $v(\eta)$ and $v(\epsilon)$ are both even and $\epsilon \sim 1$ then W_{p} consists of the classes of

$$
(1,1,1),(\nu, \nu, 1),(p, p, 1),(p \nu, p \nu, 1)
$$

A number of people have proved results of the form: let p be in \mathcal{S} and assume that $\mathcal{C}(\mathbf{m})$ is locally soluble at all primes other than perhaps p; then provided that certain local conditions on Γ hold, $\mathcal{C}(\mathbf{m})$ is also locally soluble at p. The best approach to this kind of result is as follows. For any permutation i, j, k of $1,2,3$ let $\mathcal{C}_{k}(\mathbf{m})$ denote the conic

$$
m_{i} y_{i}^{2}-m_{j} y_{j}^{2}=\left(c_{j}-c_{i}\right) y_{0}^{2}
$$

this being essentially the same as the notation of (10). The existence of a $\operatorname{map} \mathcal{C}(\mathbf{m}) \rightarrow \mathcal{C}_{k}(\mathbf{m})$ implies that $\mathcal{C}_{k}(\mathbf{m})$ is also locally soluble everywhere except possibly at p. Since $\mathcal{C}_{k}(\mathbf{m})$ is a conic, it follows that $\mathcal{C}_{k}(\mathbf{m})$ is also locally soluble at p - a condition which is equivalent to

$$
\begin{equation*}
\left(m_{i}\left(c_{j}-c_{i}\right), m_{k}\right)_{p}=1 \tag{11}
\end{equation*}
$$

Hence $\mathcal{C}(\mathbf{m})$ is locally soluble at p provided that this is implied by the local solubility of the three $\mathcal{C}_{k}\left(\mathbf{m}^{\prime}\right)$ at p - that is, by the three conditions like (11). The question is under what local conditions on Γ at p this holds. Such results can be read off from the description of W_{p}; but in fact we can decide this question without knowing W_{p}. For we do know that the order of W_{p} is 2,4 or 8 according as p is ∞, odd or 2 . It is therefore enough to count the set of triples \mathbf{m} which satisfy the three equations like (11); for this set contains W_{p}, so that it is equal to W_{p} if and only if it has the same order as W_{p}. Even when $p=2$, this calculation is trivial to program.

The conclusions for $p=\infty$ and p odd are given in the following theorem. Those for $p=2$ are too complicated to justify explicit statement.

Theorem 3 Suppose that $\mathcal{C}(\mathbf{m})$ is everywhere locally soluble except possibly at one prime p which is in \mathcal{S}. If $p=\infty$ then $\mathcal{C}(\mathbf{m})$ is also locally soluble at p. If p is odd then $\mathcal{C}(\mathbf{m})$ is also locally soluble at p except perhaps when $c_{i}-c_{k} \sim c_{j}-c_{k} \sim 1$ for some permutation i, j, k of $1,2,3$.

APPENDIX 2 - Construction of the K_{p}

In this Appendix we show how to construct the K_{p}. We do in fact prove a more general result, but this is only because otherwise we would be forced into a needlessly complicated notation. The reader will see that (subject to the introduction of the temporarily mysterious functions ϕ_{i}) the hypotheses of Lemma 6 mimic the structure described in the main body of the text. I give here only that part of the proof which is really an algorithm for the construction; a complete proof can be found in [6].

Lemma 6 Let the V_{i} be n vector spaces over \mathbf{F}_{2}, each equipped with a nondegenerate additive alternating bilinear form ψ_{i} with values in \mathbf{F}_{2}. Denote by ψ the sum of the ψ_{i}, which is a non-degenerate bilinear form on $V=\oplus V_{i}$. For each i let W_{i} be maximal isotropic in V_{i}, and let U be maximal isotropic in V with respect to ψ. Then there exist maximal isotropic subspaces $K_{i} \subset V_{i}$ such that $V=U \oplus K$ and

$$
\begin{equation*}
W=(U \cap W) \oplus(K \cap W) \tag{12}
\end{equation*}
$$

where $W=\oplus W_{i}$ and $K=\oplus K_{i}$. Moreover $U \cap(W+K)=U \cap W$.
Suppose also that there are functions ϕ_{i} on V_{i} with values in \mathbf{F}_{2} which satisfy

$$
\begin{equation*}
\phi_{i}(\xi+\eta)=\phi_{i}(\xi)+\phi_{i}(\eta)+\psi_{i}(\xi, \eta) \tag{13}
\end{equation*}
$$

for any ξ, η in V_{i}, and let ϕ on V be the sum of the ϕ_{i}. Assume that ϕ is trivial on U and ϕ_{i} is trivial on W_{i}. Then we can further ensure that ϕ_{i} is trivial on K_{i} and therefore ϕ is trivial on K.

Proof If any V_{i} has dimension greater than 2, we can decompose it as a direct sum of mutually orthogonal subspaces of dimension 2 , on each of which the restriction of the bilinear form ψ_{i} is non-degenerate and each of which meets W_{i} in a subspace of dimension 1 . This only reduces our freedom to choose the K_{i}, and the triviality of ϕ_{i} on the old K_{i} will follow from its triviality on the new and smaller K_{i} by (13). Thus we can assume that every V_{i} has dimension 2 and every W_{i} has dimension 1 . We proceed by induction on n, the case $n=0$ being trivial.

We shall assume that the ϕ_{i} exist, noting in the appropriate place how to modify the argument to prove the first part of the lemma without using the existence of the ϕ_{i}. If we regard W_{n} as a subspace of V, either $W_{n} \subset U$ or
W_{n} is not contained in U and therefore meets it only in the origin. In each of these cases, we shall choose an α_{i} in V_{i} with $\phi_{i}\left(\alpha_{i}\right)=0$ and use it to generate K_{i}. After reordering, we can assume that either W_{n} is not contained in U or every W_{i} is contained in U and therefore $W \subset U$.

Since U is isotropic it cannot contain V_{i}; so if $W_{n} \subset U$ and therefore $W_{i} \subset U$ for each i, then each V_{i} contains just two elements which do not lie in U. Denote them by α_{i}^{\prime} and $\alpha_{i}^{\prime \prime}$, and let β_{i} be the nontrivial element of W_{i}; thus $\alpha_{i}^{\prime \prime}=\alpha_{i}^{\prime}+\beta_{i}$. Since $\phi_{i}\left(\beta_{i}\right)=0$ it follows from (13) and the non-degeneracy of ψ_{i} on V_{i} that

$$
\phi_{i}\left(\alpha_{i}^{\prime}\right)+\phi_{i}\left(\alpha_{i}^{\prime \prime}\right)=\psi_{i}\left(\alpha_{i}^{\prime}, \beta_{i}\right)=1 ;
$$

choose α_{i} to be whichever of α_{i}^{\prime} and $\alpha_{i}^{\prime \prime}$ satisfies $\phi_{i}\left(\alpha_{i}\right)=0$. (If we do not assume the existence of the ϕ_{i} then we can take α_{i} to be either of α_{i}^{\prime} and $\alpha_{i}^{\prime \prime}$.) Let K_{i} be the vector space generated by α_{i}; thus

$$
W_{i}=U \cap W_{i}=\left(U \cap W_{i}\right) \oplus\left(K_{i} \cap W_{i}\right)
$$

for each i, which implies (12). Moreover $U \supset W$ and therefore $U=W$ because U and W have the same dimension. So

$$
V=\oplus V_{i}=\oplus\left(W_{i} \oplus K_{i}\right)=W \oplus K=U \oplus K
$$

If U does not contain W_{n}, then the non-trivial element of W_{n} is not in U. Denote this element by α_{n}, so that $\phi_{n}\left(\alpha_{n}\right)=0$ by hypothesis. Let K_{n} be the vector space generated by α_{n}; thus $K_{n}=W_{n}$ and

$$
\begin{equation*}
W_{n}=\left(U \cap W_{n}\right) \oplus\left(K_{n} \cap W_{n}\right) . \tag{14}
\end{equation*}
$$

The construction now proceeds by induction on n. Write

$$
\begin{equation*}
V^{-}=V_{1} \oplus \ldots \oplus V_{n-1}, \quad U^{-}=V^{-} \cap\left(U \oplus W_{n}\right) \tag{15}
\end{equation*}
$$

It is straightforward to show that U^{-}is maximal isotropic in V^{-}. For the pair U^{-}, V^{-}we must replace the question whether $U \supset W$ by the question whether $U \oplus W_{n}$ contains $W^{-}=W_{1} \oplus \ldots \oplus W_{n-1}$. By the induction hypothesis for the pair $U^{-} \subset V^{-}$, there exist K_{i} maximal isotropic in V_{i} for each $i<n$ such that if $K^{-}=\left(K_{1} \oplus \ldots \oplus K_{n-1}\right)$ then $V^{-}=U^{-} \oplus K^{-}$and

$$
\begin{equation*}
W^{-}=\left(U^{-} \cap W^{-}\right) \oplus\left(K^{-} \cap W^{-}\right) \tag{16}
\end{equation*}
$$

The need to check the remaining details of the argument can be circumvented by an appeal to Cassels' Axiom: all vector space theorems are trivial.

When we apply Lemma 6 to the construction of the K_{p} for p in \mathcal{B}^{\prime} and the proof of Theorem 1 , we replace i by p and ψ_{i} by e_{p}; but note that we have chosen to write e_{p} multiplicatively and ψ_{i} additively. For \mathbf{m} in V_{p} we take $\phi_{p}(\mathbf{m})$ to be any one of the expressions

$$
\left(m_{i}\left(c_{i}-c_{j}\right)\left(c_{i}-c_{k}\right), m_{j}\left(c_{j}-c_{i}\right)\left(c_{j}-c_{k}\right)\right)_{p}
$$

whose values are easily shown to be equal. The significance of ϕ_{p} is as follows. The antipodal involution $(x, y) \mapsto(x,-y)$ on Γ induces an involution on each 2-covering $\mathcal{C}(\mathbf{m})$; in the notation of (1) this involution reverses the signs of y_{1}, y_{2}, y_{3}. The quotient of $\mathcal{C}(\mathbf{m})$ by this involution is a smooth projective curve $\mathcal{D}(\mathbf{m})$ of genus 0 , which is given by

$$
\begin{equation*}
\left(c_{2}-c_{3}\right) m_{1} y_{1}^{2}+\left(c_{3}-c_{1}\right) m_{2} y_{2}^{2}+\left(c_{1}-c_{2}\right) m_{3} y_{3}^{2}=0 \tag{17}
\end{equation*}
$$

and $\phi_{p}(\mathbf{m})$ is just the class $[\mathcal{D}(\mathbf{m})]$ as an element of $\mathrm{Br} k_{p}$.

REFERENCES

[1] J.W.S.Cassels, Second descent for elliptic curves, J. reine angew. Math. 494(1998), 101-127.
[2] J-L.Colliot-Thélène, A.N.Skorobogatov and Sir Peter Swinnerton-Dyer, Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points, Invent. Math. 134(1998), 579-650.
[3] D.Husemöller, Elliptic Curves, Graduate Texts in Mathematics, 111 (Springer, 1987).
[4] J.S.Milne, Arithmetic Duality Theorems (Academic Press, Boston, 1986).
[5] J.H.Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106 (Springer, 1986).
[6] A.N.Skorobogatov and Sir Peter Swinnerton-Dyer, A further refinement of 2-descent on elliptic curves, I (to appear).
[7] Sir Peter Swinnerton-Dyer, Rational points on certain intersections of two quadrics, in Abelian varieties (ed. W.Barth, K.Hulek and H.Lange) (de Gruyter, Berlin, 1995), 273-292.
[8] Sir Peter Swinnerton-Dyer, Some applications of Schinzel's hypothesis to diophantine equations, in Number theory in progress (ed. K.Györy, H.Iwaniec and J.Urbanowicz) (Berlin, 1999), 503-530.

