Thomas Lam Quiz 9

Quiz 9 Rubric

Problem

Let $f_n(x) := \frac{nx^4}{1 + nx^4}$.

- (a) Show that f_n converges pointwise on [0,1].
- (b) Is it true that

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \to \infty} f_n(x) dx?$$

Rubric

- The argument for (a) can be very brief as long as it is not wrong.
 - If x = 0 is not considered, and there is no argument that we can ignore one point, comment but do not deduct.
 - If (a) is missing or very incorrect, deduct 1 to 2 points.
- For full credit the student must choose a convergence theorem (likely one of: bounded convergence, monotone convergence, dominated convergence) and justify why it can be used.
 - If the student chooses bounded convergence theorem:
 - * Deduct up to **2 points** for not obtaining a bound on $f_n(x)$ which is uniform in n and x.
 - * Deduct **0.5 points** for not observing that [0, 1] is bounded.
 - * Deduct **0.5 points** for not observing that f_n and the pointwise limit are Riemann integrable.
 - If the student chooses monotone convergence theorem:
 - * Deduct up to **2 points** for not showing that the sequence of functions is monotone.
 - * Deduct **0.5 points** for not observing that f_n and the pointwise limit are Riemann integrable.
 - If the student chooses dominated convergence theorem:
 - * Deduct up to **2 points** for not showing that the sequence is dominated by an integrable function.
 - * Deduct **0.5 points** for not observing that f_n and the pointwise limit are Riemann integrable.
 - It is not true that $f_n \to f$ uniformly.

Thomas Lam Quiz 9

Solution 1

When x > 0, we have $nx^4 \to \infty$ as $n \to \infty$, so it is clear that $\frac{nx^4}{1+nx^4} \to 1$ for all x > 0. For x = 0 we have $f_n(0) = 0$ for all n. So f_n converges pointwise to $f(x) := \begin{cases} 0, & x = 0 \\ 1, & 0 < x \le 1 \end{cases}$.

Now note that

$$|f_n(x)| \le 1$$

for all n and $x \in [0, 1]$. Hence f_n is dominated by 1, which is integrable over [0, 1]. Moreover both f and f_n are Riemann integrable. Thus by dominated convergence the interchange of limit and integral is justified.

Solution 2

Instead of dominated convergence we can use the bounded convergence theorem, thanks to the fact that [0,1] is bounded..

Solution 3

We claim $\{f_n\}_n$ is a monotone sequence. Indeed, we claim it is increasing in n, in that

$$\frac{nx^4}{1+nx^4} \stackrel{?}{\leq} \frac{(n+1)x^4}{1+(n+1)x^4}.$$

Dividing by x^4 and cross-multiplying, we wish to show that

$$n + n^2 x^4 + n x^4 \stackrel{?}{\leq} n + 1 + n^2 x^4 + n x^4,$$

which simplifies to $0 \le 1$, so the claim is proven. Now by the monotone convergence theorem the interchange is justified.

Solution 4

We have that

$$\int_0^1 f_n(x) \, dx = \int_0^1 \frac{nx^4}{1 + nx^4} \, dx = 1 - \int_0^1 \frac{1}{1 + nx^4} \, dx.$$

Thomas Lam Quiz 9

It is clear that $\int_0^1 f(x) dx = 1$ where $f_n \to f$ so it suffices to show that $\int_0^1 \frac{1}{1 + nx^4} dx \to 0$. Indeed,

$$0 \le \int_0^1 \frac{1}{1 + nx^4} dx = \int_0^{\frac{1}{n^{1/8}}} \dots dx + \int_{\frac{1}{n^{1/8}}}^1 \dots dx$$
$$\le \frac{1}{n^{1/8}} + \int_{\frac{1}{n^{1/8}}}^1 \frac{1}{1 + n\left(\frac{1}{n^{1/8}}\right)^4} dx$$
$$= \frac{1}{n^{1/8}} + \int_{\frac{1}{n^{1/8}}}^1 \frac{1}{1 + \sqrt{n}} dx$$
$$\le \frac{1}{n^{1/8}} + \int_0^1 \frac{1}{\sqrt{n}} dx = \frac{1}{n^{1/8}} + \frac{1}{\sqrt{n}} \to 0.$$