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Remarks

These notes are an abbreviated take on what was done in recitation.

Notational conventions:

• fx is the partial derivative of f with respect to x. I prefer writing ∂xf or ∂f
∂x
, but we

decided in recitation to use fx throughout so we will generally be doing that.
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1 Change of Variables and Method of Characteristics

1.1 Chain Rule

We recall the chain rule,

d

dt
f(x(t), y(t), z(t)) = fx(x(t), y(t), z(t))x

′(t)+fy(x(t), y(t), z(t))y
′(t)+fz(x(t), y(t), z(t))z

′(t)

for a differentiable function f = f(x, y, z) : R3 → R and differentiable functions x, y, z : R →
R. But I don’t like using the same letters for dependent variables and independent variables.

1.1.1 A Case Study

Define
f(x, y, z) := x+ 2y + 3z.

We ask two questions:

1. What is ∂f
∂x
(x, y, x)?

2. What is ∂
∂x
f(x, y, x)?

For the first question, we know that ∂f
∂x
(x, y, z) = 1, and when plugging in (x, y, x) into

(x, y, z), we get ∂f
∂x
(x, y, x) = 1 .

For the second question, we know that f(x, y, x) = 4x + 2y, and now ∂
∂x
f(x, y, x) =

∂
∂x
(4x+ 2y) = 4 .

The difference arises in the order in which we plug values in and differentiate, so it is
important to be very vigilant. Instead I prefer to rewrite the two questions as follows:

1. What is ∂f
∂x
(s, t, s)?

2. What is ∂
∂s
f(s, t, s)?

The first question is taking the partial of f with respect to the input variable whose name
is x, i.e. fx. Then I plug in (s, t, s) into (x, y, z).

The second question is plugging in (s, t, s) into (x, y, z), and then I differentiate with
respect to s (not x! there are no more x’s after I plug stuff in).
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Note that it makes no sense to write fs because f does not “know” who s is. f only
knows x, y, and z, which are the input names that I’ve implicitly defined when I wrote
“f(x, y, z) = x+ 2y + 3z”.

One way to explicitly name the variables without writing down a formula for f is to say
something like “f = f(x, y, z)”, i.e. “f is a function of the input variables whose names are
x, y, and z”.

1.1.2 Quick Example

Let’s say we have a function f = f(x, y) of two input variables, defined as f(x, y) = x+2y.
Let’s say that a problem is asking you to find fθ, where (r, θ) are polar coordinates. Morally
speaking, fθ makes no sense because f doesn’t know who θ is. What this is really asking is,
if we defined a new function

g(r, θ) := f(r cos θ, r sin θ),

which is basically f but in new coordinates, then what is gθ? By the chain rule,

gθ(r, θ) = fx(r cos θ, r sin θ) · (−r sin θ) + fy(r cos θ, r sin θ) · (r cos θ).

Note that when taking partials of f , I have to use fx or fy, because writing fθ technically
makes no sense.

Anyways, the “answer” to what “fθ” is in terms of fx and fy would be basically fx ·
(−r sin θ) + fy · r cos θ.

In general I vastly prefer using different letters for functions when I’m introducing new
coordinates. I will be carrying this philosophy forward because I think this can really reduce
confusion.

1.2 Rewriting a PDE in different coordinates

Example 1.1: We have a PDE in u = u(x, t), given by

−uxx + aux + ut = 0

for a constant a ∈ R. Show that under a new coordinate system (y, s) given by
(x, t) = (y+ as, s), this PDE transforms into a heat equation (which basically looks
like −uyy + us = 0).

So I’m trying to show that “−uyy + us = 0”, but this makes no sense to me because u
doesn’t know who y and s are. u only knows x and t. Me, the person using the u, is the one

8
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introducing the y and s in the first place. To wit, what I’m really doing by introducing this
new coordinate system is that I’m defining a new function v = v(y, s), which, in terms of u,
is given by

v(y, s) = u(y + as, s).

Then, I’m asking what PDE v solves. In particular, I want to show that −vyy + vs. (Now it
makes sense to write vy because v knows who y is, they’re childhood friends!)

By the chain rule:

vy(y, s) = ∂yu(y + as, s) = ux(y + as, s) · 1 + ut(y + as, s) · 0 = ux(y + as, s)

and similarly
vyy(y, s) = uxx(y + as, s).

(It’s good to keep writing the inputs if you’re confused, because just writing “vyy = uxx”
looks kinda weird and misleading. But if you’re tryna save time it can be ok.)

For the s partial,

vs(y, s) = ux(y + as) · a+ ut(y + as, s) · 1.

Therefore,

−vyy(y, s) + vs(y, s) = −uxx(y + as, s) + aux(y + as, s) + ut(y + as, s) = 0.

Tada!

1.2.1 What if we don’t know the answer ahead of time?

Example 1.2: We have a PDE in u = u(x, t), given by

−uxx + aux + ut = 0

for a constant a ∈ R. Transform the PDE under the change of coordinates (x, t) =
(y + as, s).

This is the exact same problem, but oh no, they didn’t tell me the answer, so it’s a bit
harder. Briefly speaking, what you’d do here instead is, instead of writing v in terms of u
like v(y, s) = u(y + as, s), we’d go the other way, writing u in terms of v, like

u(x, t) = v(x− at, t).

(Why is this true and how did I come up with it?) Now I can directly take partials of u and
see what they come out to in terms of v.

−uxx(x, t) = −vyy(x− at, t)

9
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aux(x, t) = avy(x− at, t)

ut(x, t) = −avy(x− at, t) + vs(x− at, t)

Adding these equations up gets me what I got before.

Generally this approach requires no guesswork or hope, but it can be a bit messier (e.g.
trying to invert polar coordinates is slightly painful).

1.3 Method of Characteristics

The whole theory of the method of characteristics is motivated by the transport equation:{
ut + c · ux = 0,

u(x, 0) = f(x)

The resolution of many a PDE is obtained by hopeful guessing. The story here is that for
this PDE, we made the hopeful guess that there are certain lines/curves in the space-time
continuum, called characteristics, over which u is constant. Then, to find the value of u at
some (x, t), we follow the characteristic back to the “base line” back at t = 0, where we
know what u is.

Step 1

Let’s follow this story. We guess that, starting from a point on the “base line” (x0, 0),
there is a curve (Xx0(s), Tx0(s)) over which u is constant, meaning as I go along the curve
(i.e. vary s), the value of u does not change:

u(Xx0(s), Tx0(s))
?
= Constant in s.

For this hope to come true, the derivative in s has to be zero, which by the chain rule is:

ux(Xx0(s), Tx0(s))X
′
x0
(s) + ut(Xx0(s), Tx0(s))T

′
x0
(s)

?
= 0.

Step 2

Can we choose a good Xx0 and Tx0 to make the above equality true? Well it almost looks
like the original PDE, cux + ut = 0, and it would match that PDE exactly if we knew that:

X ′
x0
(s) = c

and
T ′
x0
(s) = 1.

10
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These are two ODE’s. But to solve ODEs I need initial conditions. But remember, I am
starting at (x0, 0), and we can say that the “start” is when s = 0. So the initial conditions
are given by (Xx0(0), Tx0(0)) = (x0, 0). This gives us two ODEs:{

X ′
x0
(s) = c

Xx0(0) = x0

and: {
T ′
x0
(s) = 1

Tx0(0) = 0

Solving gives Xx0(s) = cs+ x0 and Tx0(s) = s.

This means that the characteristic (Xx0(s), Tx0(s)) = (cs + x0, s) charts out a line in
space-time.

Step 3

Why did we just do that? Remember that u is constant along the characteristic, so

u(cs+ x0, s) = Constant in s.

Now we are ready to move x0 around, meaning that we are now shooting many different
characteristics. To make the above equation less misleading we now write it as

u(cs+ x0, s) = g(x0)

for some function g of x0. In English, this equation says, “The value of u over the charac-
teristic that starts at x0 depends only on x0.”

What is g? Well, now we go back to the base line by setting s = 0, giving us

u(x0, 0) = g(x0)

for all x0. But wait, u(x0, 0) is just the initial data f(x0), so f = g. That makes a lot of
sense! In English: “The value of u at a point is the value of f at the part of the base line
that we traced back the characteristic line to.”

So u(cs+x0, s) = f(x0) for all x0 and s. But we wanted u(x, t). How can we write f(x0)
in terms of (x, t), where x = cs+ x0 and t = s? Well, we can solve for x0 in terms of x and
t as x0 = x− ct, giving us the final answer,

u(x, t) = f(x− ct).

So that’s the story of how the method of characteristics began. In later problems it may
be a bit more complicated and hopefully we will be doing more of that in the next recitation.
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2 Method of Characteristics

2.1 The Recipe

Let’s summarize the method! Let’s assume that the PDE problem looks like{
A(x, y) · ux +B(x, y) · uy = 0

u = f on S
.

Here, “A(x, y) · ux +B(x, y) · uy = 0” is the PDE part of the problem, for some expressions
A and B. For example, in the transport equation, A = 1 and B = c (if we were to think of
x as time and y as space).

The “u = f on S” is the initial data part of the problem, where S is some curve or line
in the plane and f is a given function whose domain is S. For example, in the transport
equation, S is one of the axes, i.e. the x axis {(x, 0) : x ∈ R} or the y axis {(0, y) : y ∈ R},
and the “initial data” then can be written more simply as something like “u(x, 0) = f(x)”.
I like to think of S as the “base line”, where all the characteristics begin. For this recipe,
let’s assume for now that S is actually an axis, say, the x axis, and I’ll talk about
later what changes we’d need to make if it wasn’t that simple.

Some problems won’t give you initial data and instead ask you to find a general solution
to the PDE part. When that happens, we’ll have to invent our own initial data and our own
“base line” S. We’ll do an example like that.

Instead of ux and uy you might see ux and ut, in which case you’ll have to change some
variable names in the recipe.

Step 1: Write down the “hope”.

Our hope is that there is a curve or line (Xx0(t), Yx0(t)) over which u is constant. The x0
subscript indicates that this curve starts at (x0, 0) at t = 0. (Remember that we’re assuming
the “base line” is the x axis, for now.)

Step 2: Use the chain rule and compare with the original PDE to get a condition
that can make our hope come true.

Our hope is true if
d

dt
u(Xx0(t), Yx0(t))

?
= 0.

By the chain rule, this is equivalent to

X ′
x0
(t)ux(Xx0(t), Yx0(t)) + Y ′

x0
(t)uy((Xx0(t), Yx0(t)))

?
= 0.

12
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Our original PDE said that

A(x, y) · ux(x, y) +B(x, y) · uy(x, y) = 0.

So by comparing the above two equations, our hope will become true ifX ′
x0
(t) = A(Xx0(t), Yx0(t))

and Y ′
x0
(t) = B(Xx0(t), Yx0(t)).

Step 3: Deduce a system of ODEs for the X and Y , and solve it.

Combining the fact that Xx0 and Yx0 start at (x0, 0) with what we got in the previous
step, we get this system of ODEs:

Xx0(0) = x0

Yx0(0) = 0

X ′
x0
(t) = A(Xx0(t), Yx0(t))

Y ′
x0
(t) = B(Xx0(t), Yx0(t))

Often enough, if this method is supposed work, these ODEs will be simple. For example,
in the transport equation, we end up with like X ′

x0
(t) = 1 and Y ′

x0
(t) = c, which are super

easy to solve.

Step 4: Reel points back to the “base line” to finish.

Now, to find u(x, y), I have to figure out which (x0, 0) I have to start at for the charac-
teristic (Xx0(t), Yx0(t)) to pass through (x, y). Since u is constant along this characteristic,
this will let me write u in terms of the initial data f . Voila!

More formally, we have

u(Xx0(t), Yx0(t)) = u(Xx0(0), Yx0(0)) = u(x0, 0) = f(x0),

and now to get this into u(x, y) = f(. . .) form, we set x = Xx0(t) and y = Yx0(t) and solve
for x0.

Step 5 (Optional): Review what you’ve done and make sure it makes sense.

For example you can plug in your solution into the original PDE to make sure it works, or
plot the characteristics to make sure they don’t intersect weirdly or something. If something
weird happens, that’s a sign that you should check your work!

13
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2.2 Examples

Example 2.1: Solve the PDE{
yux + uy = 0,

u(x, 0) = x9001.

Solution. Follow the recipe!

Step 1: We hope that u(Xx0(t), Yx0(t)) is constant as t varies, for a characteristic (Xx0(t), Yx0(t))
starting at (x0, 0).

Step 2: Differentiating,

X ′
x0
(t)ux((Xx0(t), Yx0(t))) + Y ′

x0
uy((Xx0(t), Yx0(t))) = 0,

so looking back at yux + uy = 0, we now want X ′
x0
(t) = Yx0(t) and Y ′

x0
(t) = 1. (It’s not

“X ′
x0
(t) = y”, because we replaced the x and y with X and Y .)

Step 3: Since the ODE for X has Y in it, we’ll solve the ODE for Y first, which is{
Y ′
x0
(t) = 1

Yx0(0) = 0
.

This solves as Yx0(t) = t. Now the ODE for X is{
X ′

x0
(t) = t

Xx0(0) = x0
.

This solves as Xx0(t) =
1
2
t2 + x0.

Step 4: So

u(
1

2
t2 + x0, t)

is constant for every x0. Particularly it only depends on which characteristic we’re on, i.e.
u(1

2
t2 + x0, t) = u(x0, 0) = x90010 .

Now let’s get this into u(x, y) form, so we set{
x = 1

2
t2 + x0,

y = t

and solve for x0 in terms of x and y.

14
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Fortunately this isn’t so bad — It’s just x0 = x − 1
2
t2 = x − 1

2
y2. Thus our solution is

u(x, y) =

(
x− 1

2
y2
)9001

.

Step 5: Let’s graph the characteristics because why not. Let’s first take a simple one, like
the one associated with x0 = 0. This characteristic is parametrized as (1

2
t2, t), which can be

written as x = 1
2
y2. This is a parabola that opens rightward. Other values of x0 will also give

parabolas that open up rightward, so we expect that the characteristics are “horizontally
stacked parabolas that open up rightward”. I’ll let you check that this is true.

■

Remarks: What if the initial data was along the y-axis instead? If instead the initial data
was u(0, y) = y9001, then there are NO solutions, whereas if the initial data was u(0, y) = y420,
then there are actually infinitely many solutions. Using the discussion thus far, determine
why this is the case!
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2.3 Complications: When no initial data given

What if we were to try and solve the above PDE without the initial data, i.e. just solving

yux + uy = 0

and finding the general solution to this PDE? In short, we will have to figure out our own
“base line” to start the characteristics. (We can’t just choose any line though! By the
remark, taking the y-axis will end up being disastrous! So we need to figure out how to pick
one that doesn’t suck.)

To do this, we’ll forgo trying to set the starting point for our characteristics and instead
figure out what they look like generally. To wit, we make the hope that u(X(t), Y (t)) is
constant (no subscript this time), and differentiate to find these ODEs:{

X ′(t) = Y (t)

Y (t) = 1

We no longer have initial conditions for these ODEs because we haven’t assigned starting
points for the characteristics. Anyways, we find that Y (t) = t + c2 for a constant c2 and
X(t) = 1

2
t2 + c2t+ c1 for a constant c1.

Each choice of c1 and c2 will give a characteristic, but different choices won’t necessarily
give different characteristics. In fact we should expect that a single characteristic is given by
many many possible (c1, c2) choices (why?). Anyways, how can we now pick a good “base
line” to start characteristics from?

One way is to plot a bunch of characteristics to give us a very good idea. For example,
you can write t = Y (t) − c2 and plug it into the equation for X(t) to get a relationship
between X(t) and Y (t), which you can plot and/or analyze as-is (once you replace X(t) with
x and Y (t) with y). Or you can just pull up Desmos. Either way, you’ll end up getting the
picture on the previous page. Now we want to pick a line that intersects every characteristic
exactly once. A great choice for that is the x-axis! (We also see why the y-axis is a poor
choice: It doesn’t intersect all the characteristics, and it intersects some of them twice!)

(If we do the t = Y (t) − c2 substitution mentioned in the previous paragraph, we’d get
X(t) = 1

2
(Y (t) − c2)

2 + c2(Y (t) − c2) + c1 = 1
2
Y (t)2 + (−c22/2 + c1), so the characteristics

should look like x = 1
2
y2 + c for a constant c.)

If you can think of a more concrete way do let me know, though I suspect there might
not be a very good one.
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2.4 More Examples

Example 2.2: Solve ux + uy = 1.

Solution. If there are characteristics (X(t), Y (t)) then they’ll have to satisfy X ′(t) = 1 and
Y ′(t) = 1. This solves as X(t) = t + c1 and Y (t) = t + c2. What do the characteristics
look like for varying choices of c1 and c2? With some thought, you’ll find that they’re just
diagonal lines going northeast:

Time to choose a base line! What’s a line or curve that intersects every characteristic exactly
once? Hm, both the x-axis and y-axis work fine. Let’s be quirky and choose the y-axis.

Now we can more or less run the recipe. We’ll invent our own initial data: A function
f(y) that specifies what u is on the y-axis. Then the characteristic that starts at (0, y0) is
given by (t, t+ y0). So u(t, t+ y0) is constant and is equal to u(0, y0) which we’ve defined to
be f(y0).

So u(t, t + y0) = f(y0) for all t and y0. Setting x = t, y = t + y0 and solving for y0, we

get y0 = y− x. So our general solution is u(x, y) = f(y − x) for any differentiable function

f . ■

Exercises: Check that this indeed satisfies the PDE. Also, try picking a different base line,
like the x-axis, or even the line {y + x = 0}.

Example 2.3: Find the general solution of the PDE

(1 + x2)ux + uy = 0.

17



Thomas Lam Recitation 2 Feb. 7th 2025

Solution. The characteristics (X(t), Y (t)) will satisfy X ′(t) = 1 +X(t)2 and Y ′(t) = 1. So
Y (t) = t+ c2 and X(t) = tan(t+ c1) for constants c1 and c2.

Hold on now — if we graph just one characteristic, we’ll have multiple branches because
tan is discontinuous...

What does this mean for our recipe?

Basically, each of these branches will be its own characteristic. This is because at a point
of discontinuity in the characteristic (tan(t + c1), t + c2), the value of u is allowed to jump
while still allowing the derivative in t to be 0. (As an analogy, f ′(x) = 0 usually implies that
f is constant, but if we poke a hole in the domain so that it’s now (−∞, 0)∪ (0,∞), then f
can “jump” at 0 while still having derivative 0 wherever it’s defined.)

In short, we see that a good “base line” is the y-axis and the characteristics are given by,
for each choice of y0,

(tan t, t+ y0), t ∈ (−π/2, π/2).
(By restricting t to an interval we’ve selected one branch of tan. Note that we’re not leaving
out anyone by forgetting about the other branches, since we get those branches back anyway
by taking different values of y0.)

So, u(tan t, t + y0) = f(y0) for any f we want, and now writing this in u(x, y) form we

get u(x, y) = f(y − tan−1 x) . ■

There is another possible complication that may occur but you won’t need to deal with
it in this week’s homework. I hope you find these examples helpful! If you’re getting stuck
or something weird is happening, remember to do Step 5 of the recipe, and also do note that
this method isn’t necessarily that straightforward and you may have to think on your feet
if a curveball gets thrown at ya. (There may or may not be at least one curveball on the
homework...)3
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3 More Characteristics and Energy

3.1 Characteristics and stuff

We did more stuff with Method of Characteristics. Here’s one example we did (slightly
modified).

Example 3.1: Find the general solution to xux+yuy = u over (x, y) ∈ R2\{(0, 0)}.

Solution. The right side is no longer = 0, it’s = u, so along the characteristics we no longer
can really expect u to be constant. Instead it will change as a function that we’ll call f(s):

f(s) = u(X(s), Y (s))

Differentiating both sides,

f ′(s) = ux(X(s), Y (s))X ′(s) + uy(X(s), Y (s))Y ′(s). (∗)

We want to get this to match the original PDE, so we’ll pick X(s) and Y (s) so that they
satisfy the following: {

X ′(s) = X(s)Y ′(s) = Y (s)

(If this happens, then f ′(s) = X(s)ux + Y (s)uy = u(X(s), Y (s)) = f(s), giving us an ODE
for f ! We’ll come back to this.)

No initial conditions for these ODEs because the original problem didn’t give us any. So,
solving these we get X(s) = c1e

s and Y (s) = c2e
s for some constants c1 and c2.

Before we proceed let’s figure out what this does for us. If we go back to (∗)

What this means is that our characteristics are of the form (c1e
s, c2e

s), which, for each
choice of c1 and c2, look like lines radiating from the origin (check this for yourself!).

Now to choose a good “base line” to set our own initial conditions: A good one to choose
is the circle x2 + y2 = 1 since all the characteristic lines intersect it exactly once. Let’s say
that our new PDE with “initial conditions” is now,{

xux + yux = u

u = g on the circle x2 + y2 = 1

for a function g taking values on the circle x2 + y2 = 1.

Let’s look at the characteristic line that goes through a starting point (x0, y0) on this
circle. To find it, we pick the c1 and c2 so that X(0) = x0 and Y (0) = y0. This gives us

X(s) = x0e
s
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and
Y (s) = y0e

s.

So the characteristic line is (x0e
s, y0e

s).

Now what? Well the whole point of finding a characteristic line is that u should be nice
on it. Going back to equation (∗) with the X(s) and Y (s) we found, and remembering that
X ′ = X and Y ′ = Y , gives us:

f ′(s) = X ′(s)ux + Y ′(s)uy (From the chain rule we did before)

= X(s)ux + Y (s)uy
(Because we chose X and Y so that X ′ and Y ′ match the original PDE)

= u(X(s), Y (s)) (From the original PDE)

= f(s) (By definition of f(s))

So f(s) = ces for a constant c. We can find this constant: Plugging in s = 0 gives f(0) = c,
and we know that f(0) = u(X(0), Y (0)) = g(x0, y0), which “known” because it’s part of the
“initial condition” that we invented. So therefore f(s) = g(x0, y0)e

s.

Now to wrap up,
u(x0e

s, y0e
s) = f(s) = g(x0, y0)e

s.

To simplify things let t = es (t > 0) to turn this into

u(x0t, y0t) = g(x0, y0)t.

Now we get this into u(x, y) form. If x = x0t and y = y0t, we want to solve for x0, y0, and t
all in terms of x and y. But we should remember that x20 + y20 = 1.

All that’s left is algebraic parlor tricks so it’s ok if this seems like black magic. If we
square each equation,

x2 = x20t
2

y2 = y20t
2

then add them up,
x2 + y2 = (x20 + y20)t

2

we can apply the x20 + y20 = 1 condition to get x2 + y2 = t2, so t =
√
x2 + y2. Now

x = x0t = x0
√
x2 + y2 so that x0 =

x√
x2+y2

, and similarly y0 =
y√

x2+y2
. So our final solution

is

u(x, y) = g

(
x√

x2 + y2
,

y√
x2 + y2

)√
x2 + y2.

(Do you see now why I decided to exclude (0, 0) from the domain in the original problem?)
■

We did more examples but these notes are supposed to be abbreviated.
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3.2 Energy

We did not have time for this but here’s what I would have said.

3.2.1 What is energy, anyway?

It’s just some integral quantity that behaves nicely.

3.2.2 Huh?

See it’s just a lot better if you saw examples since in my view it’s more of a methodology
than a formally defined property.

3.2.3 But let’s talk about integration by parts first.

You probably know that ∫ b

a

u′v dx = uv |bx=a −
∫ b

a

uv′.

If for some reason u and/or v happen to be zero at the endpoints x = a and x = b (which is
pretty common!), then this just becomes∫ b

a

u′v dx = −
∫ b

a

uv′ dx.

I’ll write this in two other different ways for fun.∫ b

a

uxv dx = −
∫ b

a

uvx dx

∫ b

a

∂xuv dx = −
∫ b

a

u∂xv dx

Motto #1: Integrationg by parts lets you move derivatives from one term to
the other!

Here’s an important identity we’re going to be using a lot, when in higher dimensions:∫
u∆v = −

∫
∇u · ∇v (If u decays to 0)
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The reason why this is true is because in the ith dimension,∫
uvii = −

∫
uivi,

and now if you add this up over all dimensions i, you get the important identity.

3.2.4 Energy for the Wave Equation

The wave equation is
utt − c2∆u = 0.

To get an “energy result”, you follow these steps:

1. Multiply each side by something (usually ut, sometimes u).

2. Integrate over space.

3. Use integration by parts and chain rule until every term looks like
∫
|something|2, or

maybe
∫
∂t|something|2.

Ok, let’s multiply by ut.
ututt − c2ut∆u = 0

Now integrate over space. Let’s say space is R2. Doesn’t really matter though.∫
R2

ututt − c2
∫
R2

ut∆u = 0

Now we need each integrand to be nice.

• The ututt can be written as 1
2
∂t|ut|2 by the chain rule, so that’s fine. (This trick is

VERY IMPORTANT.)

• ut∆u is not so nice. Let’s use integration by parts, particularly that important
identity, to move derivatives around:

−c2
∫
R2

ut∆u = c2
∫
R2

∇ut · ∇u

(If a minus sign goes away, that’s a VERY GOOD SIGN!)

The new integrand is∇ut·∇u. This still isn’t that nice, but if we write it as (∇u)t·(∇u),
it now looks very similar to the other term we did, which was (ut)t · ut. So we can
actually write this as

(∇u)t · (∇u) =
1

2
∂t|∇u|2.

That looks good, yay!
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So therefore, ∫
R2

∂t
1

2
|ut|2 +

c2

2

∫
R2

∂t|∇u|2 = 0 .

This is our energy result, which is essentially telling us that if we call this expression

E(t) :=

∫
R2

1

2
|ut|2 +

c2

2

∫
R2

|∇u|2

the “energy”, then energy stays constant over time!

(Caveat: I technically made a mistake in the above derivation: You can only apply the
important identity if u goes to 0 as you shoot off to infinity. The “energy” expression we get
from making this generous assumption is very important nevertheless!)

3.2.5 Energy gives Uniqueness

Now for my next motto.

Motto #2: Energy results give uniqueness results

A uniqueness result basically means that if you know what u is like at the start of time
t = 0, then you can determine what it does for all time. In other words, its behavior over
time is unique.

More generally, uniqueness results take the following form: “If we knew that u = v at
some time and in some region, then u = v at [some later time] at [some point].”

The recipe for proving a uniqueness result is as follows:

1. Get a result about the energy.

2. Using that result, demonstrate that if the energy within [some region] at [the earlier
time] is zero, then the energy at [the later time] must also be zero.

3. Therefore, if a solution is zero in [some region] at [the earlier time], then it’s still zero
at [the later time].

4. Conclude that if u− v = 0 in [some region] at [the earlier time], then it’s still still zero
at [the later time].

Here’s an example using the energy for the wave equation.
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Example 3.2: Show that the solution to the PDE
utt − c2∆u = 0

u(x, 0) = f(x)

ut(x, 0) = g(x)

is unique (over all solutions that decay to zero at spatial infinity, but that’s a tech-
nicality that’s just there to make my point easier to make.)

Solution. Let’s remember the energy result we obtained.

The energy E(t) =

∫
R2

1

2
|ut|2 +

∫
R2

c2

2
|∇u|2 is constant in time.

Step one done!

Step two: Let’s prove that the solution to the “zero problem” is unique:
wtt − c2∆w = 0

w(x, 0) = 0

wt(x, 0) = 0

The solution w ≡ 0 is definitely a solution, but I want to show that nothing else is possible.
We can use the energy to prove this:

• At time t = 0, the energy of w, i.e.
∫
R2

1
2
|wt|2 +

∫
R2

c2

2
|∇w|2, is zero.

• But according to our energy result, the energy is constant.

• So the energy of w is always zero.

• The energy of w could only be zero if it’s constant.

• So the initial conditions for w mean that w must be zero everywhere for all time!

Tada.

Last step(s): Let’s suppose that u and v are two solutions to the PDE. Then they must
have the same initial conditions, so u = v and ut = vt at time t = 0. That means that if we
set w = u − v, then w satisfies the “zero PDE”, meaning that w must always be zero. So
u− v = 0 always. So u = v everywhere, always! ■
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3.2.6 Energy for the Beam Equation

Here’s a very silly example just so you get more input on what energy looks like. The
beam equation is given by

utt + uxxxx = 0

u(x, 0) = f(s)

ut(x, 0) = g(s)

u and ut are zero at the endpoints x = 0, 1

over the domain x ∈ (0, 1). (Yes, that’s four derivatives.)

Example 3.3: Show that the solution to the beam equation (if there is one...) is
unique.

Solution. Following the recipe, multiply by ut to get

ututt + utuxxxx = 0.

Integrate in space to get ∫ 1

0

ututt dx+

∫ 1

0

utuxxxx dx = 0.

Now we fix each term to make it square.

• ututt is the time derivative of 1
2
|ut|2, so that’s fine.

• utuxxxx is not so nice, but we can move some derivatives over using integration by parts
(note that the zero boundary conditions let us do this!), giving us∫ 1

0

utuxxxx dx = −
∫ 1

0

uxtuxxx dx (Integrated by parts)

=

∫ 1

0

uxxtuxx dx (Integrated by parts again!)

Oh look now we can write this new integrand as

uxxtuxx = ∂t|uxx|2.

So we have the energy result∫ 1

0

∂t|ut|2 dx+
∫ 1

0

∂t|uxx|2 dx = 0.
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The energy result tells us that if we set

E(t) :=

∫ 1

0

|ut|2 dx+
∫ 1

0

|uxx|2 dx

as the energy, then this is constant in time.

How does this give uniqueness? Well, let me repeat the argument but written with a
slightly different rhythm:

• If u and v are two solutions, then they have the same initial conditions.

• So u− v is also a solution, but with initial conditions being zero instead.

• So the energy of u− v at time t = 0 is zero.

• By the energy result, we find that the energy of u− v at all later times is zero.

• So u− v has to be constant and thus zero at all times (I skipped some reasoning here,
convince yourself this is true).

• So u = v everywhere, always.

■

3.2.7 Energy for the Heat Equation

The heat equation is
ut − c∆u = 0.

I’ll skip the derivation for brevity, but essentially if you multiply each side by u and do some
(comparatively easy) math, you deduce that∫

∂t|u|2 + c

∫
|∇u|2 = 0

where the integrals are over space. If we toss out the ∇u term, we get an inequality :∫
∂t|u|2 ≤ 0

This is an energy result: The “mass” part of the energy,
∫
|u|2, can only decrease in time

(...provided that u decays to 0 at infinity / at the boundary of the domain over which we’re
integrating. small caveat so i don’t get sued!)

This gives a uniqueness result!
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• If u = v at the start of time, then u− v has zero energy.

• The energy result says energy can only decrease.

• But energy can’t go below zero.

• So since the energy of u− v starts at zero, it must stay at zero!

• So you can deduce that u = v everywhere, always.

3.2.8 Back to the Wave Equation: Causality

Now that we know a bit more about what energy looks like, and what it can do, let’s
try and prove a more “advanced” uniqueness property for the wave equation: the causality
principle.

Well, actually you’ve already seen the proof in lecture, so to save myself some time and
not upset my advisor I’ll just include some notes on what exactly the proof is doing.

Chiefly, the proof is using an energy result, comparing the energies of u(x, t) at two
different time slices of a cone.

The “sketch” of the proof is actually not that complicated after all that energy discussion.
Let’s assume that space has two dimensions, so that spacetime has three dimensions (x, y, t).

• We start with an upright cone in spacetime with vertex (x0, y0, t0).

• (What that means is that the bottom of the cone is the beginning of time, and the
time-cross-section of the cone shrinks to a point as time moves up towards t0.)

• I claim that the energy in this cone(’s cross section) can only go down with time.

• Let’s pick two slices of the cone: Call them the “earlier time” and the “later time”.
The “earlier time” is a bigger slice of the cone.

• Then the claim is that

Energy(later time) ≤ Energy(earlier time).

• Proving that is the messy part! But this is our energy result.

• Now we want to prove that if u = v in the cone at the earlier time, then u = v in the
cone at the later time.

• Well, the energy of u− v in the cone is zero at the earlier time.
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• By the energy result, the energy can only go down, so it’s still zero at the later time.
So u− v = 0 at the later time.

• Letting “earlier time” be time t = 0 and “later time” be all the later times up to t0,
we deduce that u− v = 0 within the entire spacetime cone!

• So u(x0, y0, t0) = v(x0, y0, t0).

How do we prove that energy result? This is the messier part. The idea is to apply the
divergence theorem (in spacetime!) to the part of the cone between the earlier time and the
later time. But how?

Ok, let’s remember that the energy is this guy:∫
1

2
|ut|2 +

∫
c2

2
|∇u|2

That means that we need to be integrating 1
2
|ut|2 + c2

2
|∇u|2, and it needs to over both the

top part (the later time) and the bottom part (the earlier time).

Let’s also remember that the divergence theorem says that∫
inside

div(F ) =

∫
surface

F · n,

where the surface consists of the top part, bottom part, and the curved part. Which vector
field F should we choose so that the surface integral part will have us integrating 1

2
|ut|2 +

|∇u|2?

Well, note that on the top and bottom, the unit outward normal n is going to either
point straight up or straight down, i.e. is either (0, 0, 1) and (0, 0,−1). So, a first attempt is
to take the vector field

(0, 0,
1

2
|ut|2 + |∇u|2)

so that the dot product with n spits out 1
2
|ut|2 + c2

2
|∇u|2.

Does this work? Well, not really, and that’s because I really want the whole inside integral∫
inside

div(F ) to be zero. That means that I really want the divergence of the vector field I

choose to be zero, and (0, 0, 1
2
|ut|2 + c2

2
|∇u|2) doesn’t look very divergence-free to me.

So what would we need to replace the first two components with to make the divergence
equal to zero? Well, the divergence would take the time derivative of 1

2
|ut|2 + c2

2
|∇u|2

(remember we’re doing calculus in spacetime and the third dimension is time), and this
would give

ututt + c2∇ut · ∇u
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which is equal to
ututt + c2utxux + c2utyuy.

Hold on, from the original wave equation I know that utt = c2∆u = c2uxx + c2uyy. So this is
all equal to

c2utuxx + c2utuyy + c2utxux + c2utyuy.

Whoa hold on! By some miracle this is all equal to

c2(utux)x + c2(utuy)y

by the product rule! That sure looks like a divergence to me! This tells us that to make the
divergence zero, we should slot in a −c2utux into the x-component and a −c2utuy into the
y-component. Finally our left side of the divergence theorem says this:∫

inside

div(−c2utux,−c2utuy,
1

2
|ut|2 + |∇u|2)

Of course, this is equal to zero because we forced the integrand to be completely zero. But
the divergence theorem says this is equal to this:

=

∫
surface

(−c2utux,−c2utuy,
1

2
|ut|2 +

c2

2
|∇u|2) · n

So

0 =

∫
top

(−c2utux,−c2utuy,
1

2
|ut|2+

c2

2
|∇u|2)·n+

∫
bottom

(−c2utux,−c2utuy,
1

2
|ut|2+

c2

2
|∇u|2)·n

+

∫
curvy part

(−c2utux,−c2utuy,
1

2
|ut|2 +

c2

2
|∇u|2) · n.

The top and bottom parts should spit out the energy we want, as we devised from the
very beginning. Indeed, the normal on the top is n = (0, 0, 1), giving us an integrand of
1
2
|ut|2 + c2

2
|∇u|2. And, the normal on the bottom is n = (0, 0,−1), giving us an integrand of

−
(

1
2
|ut|2 + c2

2
|∇u|2

)
. So∫

top

1

2
|ut|2+

c2

2
|∇u|2+

∫
curvy part

(−c2utux,−c2utuy,
1

2
|ut|2+

c2

2
|∇u|2)·n =

∫
bottom

1

2
|ut|2+

c2

2
|∇u|2.

In other words,

Energy at later time+

∫
curvy part

(−c2utux,−c2utuy,
1

2
|ut|2+

c2

2
|∇u|2)·n = Energy at earlier time.

This almost looks like our energy result! Now we just need to prove that the curvy part
term is ≥ 0.
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...

Ok screw it I’ve already spent two hours writing this so I may as well finish the proof.

I’m going to make this as simple as I possible can. So shift the whole cone so that
it’s centered at (0, 0). Now take a point (x, y, t) on the curvy part of the cone. What is
the unit outward normal?

Let’s not worry about finding the exact coordinates of the outward normal. In fact, I’m
not even going to worry about making it have length 1, because if I’m proving that something
is ≥ 0 then it doesn’t matter if I multiply it by 3 or something. I just care about how the
length of the “space” part of the normal compares with the length of the “time” part of the
normal.

Draw this funny diagram.

t0

ct0

space part

time part

This is a side-view of the cone. The red line is the outward normal. Now look at the gray
triangle. By geometry, it’s similar to a right t0 by ct0 triangle. So the space and time parts
of the normal have to be in a 1 to c ratio.

Therefore, the normal at (x, y, t) looks like (x̂, ŷ, c) where (x̂, ŷ) is a vector with length 1.
That’s it. If you don’t mind, I’m going to call this r̂ := (x̂, ŷ) and write the normal as (r̂, c).

We’re almost done. The integral we’re wrestling is∫
curvy part

(−c2utux,−c2utuy,
1

2
|ut|2 +

c2

2
|∇u|2) · n.

Actually I only care about the integrand,

(−c2utux,−c2utuy,
1

2
|ut|2 +

c2

2
|∇u|2) · n.

We agreed that the normal looks like (x̂, ŷ, c), so this is just

−c2utuxx̂− c2utuyŷ +
c

2
|ut|2 +

c3

2
|∇u|2.

Let me rewrite this as

−c2ut∇u · r̂ +
c

2
|ut|2 +

c3

2
|∇u|2.
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Let me toss a common factor of c so that it’s clearer what’s going on. And also multiply by
2 for fun. Why not.

−2cut∇u · r̂ + |ut|2 + c2|∇u|2.
Now, I’m going to marry c with ∇u. This is looking nicer and nicer!

|ut|2 − 2ut(c∇u · r̂) + |c∇u|2.

This almost looks like a perfect square trinomial! How do I make this actually factor cor-
rectly? My next trick is to marry the r̂ with ut to get

|ut|2 − 2(utr̂) · (c∇u) + |c∇u|2.

And now for my final magic trick! Sneak in a r̂ · r̂ into the first term, because |r̂|2 = 1!!!

|utr̂|2 − 2(utr̂) · (c∇u) + |c∇u|2.

At last, this factors as:
|utr̂ − c∇u|2,

which is ≥ 0.
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4 Heat and Wave

FYI I call ut − kuxx = 0 the heat equation rather than what the book calls it.

4.1 Solving the Heat Equation

In lecture we derived a formula for solving the heat equation{
ut − kuxx = 0

u(x, 0) = ϕ(x)

with initial condition ϕ. It turns out that the solution is quite “simple”, at least when
compared to the wave equation. It’s given by the following formula:

u(x, t) =

∫ ∞

−∞
s(x− y, t)ϕ(y) dy

where s(x, t) is the heat kernel or Green’s function,

s(x, t) :=
1√
4πkt

e−
x2

4kt .

(In other texts you might see this denoted as K(x, t) or G(x, t) or Φ(x, t).)

I said this was relatively simple, but it might look intimidating. To help with intuition,
here are the main points I brought up in recitation.

4.1.1 The Heat Kernel describes how heat flows

Let’s take a closer look at this s(x, t) function, the heat kernel. The point of the 1√
4πkt

factor is to normalize the function to always have a total mass of 1. That is, we always want∫ ∞

−∞
s(x, t) dx

to be true for all time. (The way we actually find that factor to be 1√
4πkt

is by doing quirky

Gaussian integral stuffs.)

Now, if you graph the heat kernel for certain values of t, you’ll see that it basically looks
like a lump of heat that’s dissipating and spreading out!
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t = 0.1

t = 0.5

t = 1.0

t = 3.0
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Now you might be wondering, what happens at t = 0? Well, when t = 0 in the equation

s(x, t) =
1√
4πkt

e−
x2

4kt ,

we kinda get nonsense. It’s simply not defined! But judging from the graphs I drew, if we
really wanted to make s(x, 0) make “sense”, I think we can make a little guess...

Vague Concept: s(x, 0) is a “delta function”, which has a “point mass” at x = 0 and is
zero everywhere else.

(NOTE: Now that the cat’s out of the bag I’m obligated to mention: (1) The delta function is
NOT a function. (2) Nothing I say here is rigorous. (3) Actually understanding what a delta
function actually is requires advanced real analysis that I will not be discussing whatsoever!)

Thus, in essence, we can think of the heat kernel as “solving” the following “PDE” with
a rather weird “initial condition”: {

st − ksxx = 0

“s(x, 0) = δx=0”

It is possible to make this discussion mathematically correct but I’m not going to do it.
Here’s the takeaway that I want you to get from this:

Key Point: The heat kernel s(x, t) describes how a single “point mass of heat” will spread
out over time.

s(x, t) simply says that if you put a bunch of heat at a single point, then it will spread
out smoothly as described by the pictures on the previous page. This is the picture I want
you to have in mind.

4.1.2 Solution via Convolution

The solution of the heat equation with initial data ϕ is

u(x, t) =

∫ ∞

−∞
s(x− y, t)ϕ(y) dy.

What exactly is this? The intuition here is that we are using the heat kernel and “applying
it to every part of ϕ”, and this thus spreads out the initial “heat” that is described by ϕ.
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This integral expression is known as a convolution, and is a way of essentially combining
two functions in a nice way. Here, we are using it to mix the heat kernel with the initial
condition ϕ, and the convolution happens to be the correct way to mix them together so
that the “rules for spreading heat” as described by s(x, t) are applied to ϕ.

(I would write more to explain the convolution more, but I told myself to keep these
notes brief, so at the very least I hope you can kinda see the picture I’m trying to paint here
even if the exact mechanisms and details are fuzzy. If you’re lost, I encourage you to stare
at the convolution and process what exactly it’s doing...)

4.2 Practice with waves

We did two examples in recitation.

Example 4.1: Let u(x, t) solve the 1D wave equation with initial conditions ϕ ≡ 0
and

ψ(x) =

{
1, |x| < a

0, |x| ≥ a

where a > 0 is a constant. Sketch a graph of u(x, t) (horizontal axis x, vertical axis
u) at the following fixed times: t = a

2c
, t = 2a

2c
, and t = 3a

2c
.

Example 4.2: Where does a three-dimensional wave have to vanish if its initial
data ϕ and ψ vanish outside a sphere?

I think the first exercise is great for understanding how to use the formulas we’ve derived
in class to determine what solutions should look like.

The second exercise is great for your conceptual understanding of how waves propagate.

4.2.1 Odd versus Even dimensions

I won’t include my solutions to these exercises in these notes (at least, for now; I’d be
happy to include some upon popular demand). So I’ll just briefly mention the interesting
stuff that happens with waves in different dimensions.

In odd dimensions ≥ 3, the value u(x0, t0) for u a solution to the wave equation depends
only on the values of the boundary of the cone’s base, i.e. only depends on the value of the
initial data (ϕ and ψ) on ∂B(x0, ct0). Roughly speaking, this means that sound travels in
one direction and never echoes back.

In even dimensions, this is not true: u(x0, t0) depends on the whole part of the cone’s
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base, i.e the initial data inside the ball B(x0, ct0). So living in 2 dimensions kinda sucks —
if you say anything, you’ll hear yourself forever! (But it will get quieter at an exponential
rate.)

That’s why it’s a miracle that our reality is in 3 dimensions — it’s the smallest possible
dimension for which talking to each other isn’t terrible.

One dimension is a bit of an exception: If we look at the formula

u(x, t) =
ϕ(x+ ct) + ϕ(x− ct)

2
+

1

2c

∫ x+ct

x−ct

ψ(y) dy,

we see that u(x0, t0) depends on ϕ’s value on the boundary of the interval (x − ct, x + ct),
but also ψ’s value in the interior of this interval.
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5 Some Practice with the Heat Equation

5.1 Fire Drill

At the beginning of class there was an announcement over the speakers that was like,
we’re gonna have a fire drill please leave when you hear alarm! And we all thought that
the alarm would happen soon so we decided to leave. So we’re standing outside for like 5
minutes and I decide to go back in and ask the security lady when the drill would end, and
she’s like, oh actually it didn’t start yet it, it starts like half an hour into class. So I’m
like, dang they did not make that clear at all, so now we all go back and talk about math
anticipating the very loud fire alarm to happen and destroy our eardrums. But then like 40
minutes later the fire people come and they’re like, yeah people are taking an exam so we
won’t sound the fire alarm, so instead of a drill we’ll just tell you that if you ever hear an
alarm you should walk out and turn left. Unless there’s smoke there, then you should turn
right. Then they turned left and left leftwards.

5.2 The Inhomogenous Problem

How do you solve {
ut − k∆u = f

u |t=0 = g
?

Now there’s an annoying f there.

Important Trick: To solve this, you can solve it for when f = 0, solve it for when g = 0,
and then add up these two solutions.

This is because if u(1) solves the PDE{
u
(1)
t − k∆u(1) = f

u(1) |t=0 = 0
,

and u(2) solves the PDE {
u
(2)
t − k∆u(2) = 0

u(2) |t=0 = g
,

then it turns out that u = u(1) + u(2) solves the PDE that has both the f and g? Why?
Well, u(x, 0) = u(1)(x, 0) + u(2)(x, 0) = 0 + g = g and

ut − k∆u = u
(1)
t − k∆u(1) + u

(2)
t − k∆u(2) = f + 0 = f.
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This is a very important prank that is used for other PDEs! Keep it in mind.

Why is this trick important?

Key Point: This trick lets us assume that g = 0.

This is because if we solve the PDE for g = 0, then we can add the solution for when
f = 0, which we know how to solve!

So how do we solve this PDE? {
ut − k∆u = f

u |t=0 = 0
?

This requires Duhamel’s Principle. We didn’t have time to really explore this though.
Instead...

5.3 What the f does f do?

Often you’ll see the f in
ut − k∆u = f

be referred to as a forcing term. Essentially this means that f is constantly adding heat.
Why does it do that though?

It’s important to remember where the heat equation comes from. Going back to just
ut− k∆u = 0 for now, let’s integrate both sides over some domain Ω just for fun. This gives
us

∂t

∫
Ω

u(x, t) dx = k

∫
Ω

∆u(x, t) dx.

The left side is the rate of change in the total amount of heat inside Ω. What about the
right side? By the Divergence Theorem,

k

∫
Ω

∆u(x, t) dx = k

∫
Ω

div∇u(x, t) dx = k

∫
∂Ω

∇u(x, t) · n⃗ dS

where n⃗ is the unit outward normal. This expression is basically how “steep” the temperature
difference is between the inside and outside of Ω, along the boundary.

Thus, the heat equation just says (roughly) that if the inside is really cold (near the
boundary) and the outside is really hot (near the boundary), then a lot of heat will come
rushing in. The constant k controls how much faster it will come in.
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Now let’s add in the f term. This gives us an integral equation that looks like

∂t

∫
Ω

u(x, t) dx = k

∫
∂Ω

∇u(x, t) · n⃗ dS +

∫
Ω

f(x, t).

Aha! Now this equation says, in addition to how much heat is flowing across the boundary,
a function f is adding in some heat to Ω at time t. Interesting!

Having this picture and concept in mind is useful for understanding Duhamel’s formula.
Perhaps we’ll talk about that more next week.

5.4 Some Exercises

For the following examples that we talked about, the main idea is to do the following:

• Use your intuition about how heat works to try and guess the answer. (In my opinion,
this is half the battle!)

• Try to prove it by using what we know about the heat equation.

Example 5.1 (Cold half-line vs. Warm half-line): Let u solve
ut − uxx = 0

u |t=0 =

{
1, x > 0

0, x ≤ 0.

.

What is the long-time behavior of u(x, t)? For example, can you tell me what
limt→∞ u(3, t) is?

Example 5.2 (Evolution of the maximum): Let’s assume that the solution
u(x, t) to the problem {

ut − uxx = 0

u |t=0 = ϕ
.

is smooth and has a maximum maxx∈R u(x, t) for all times t ≥ 0.
Is this maximum increasing with time, or decreasing with time? Or neither?
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Example 5.3 (Lighting a never-ending fire inside (0, 1)): Let u solveut − uxx =

{
1, 0 < x < 1

0, otherwise.

u |t=0 = 0

.

What is the long-time behavior of u(x, t)?

The last exercise is a bit harder than the other two, and the correct answer may go
against your intuition! I didn’t solve this last exercise in depth, but I did spoil the answer
:) I think it’s super interesting.
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6 Duhamel and Midterm Review

6.1 Midterm Review

We talked about some of the problems.

6.2 Another Example of Method of Characteristics

I saw there was some confusion as to how to apply this methodology when the RHS is
not zero (i.e. we’re not necessarily constant along characteristics). So I wanted to include
one more example for your reference.

Example 6.1: Please solve this PDE:{
ut + xux + x = tu

u |t=0 = sinx

Solution. To find the characteristics, you just need the derivative terms. That
means ut + xux. You’d find them the same way as in the PDE ut + xux = 0.

Let’s start our characteristic (X(s), T (s)) at (x0, 0). Then to match the derivative terms
of our PDE, we have the ODEs {

X ′(s) = X(s)

X(0) = x0

and {
T ′(s) = 1

T (0) = 0
,

which solves as X(s) = x0e
s and T (s) = s.

Now we analyze behavior along the characteristic. Meaning, we look at u(x0e
s, s).

The derivative of this in s is
d

ds
u(x0e

s, s) = ut(x0e
s, s) + x0e

sux(x0e
s, s)

= su(x0e
s, s)− x0e

s

where we got the last equality from ut + xux = tu− x, with x0e
s in place of x and s in place

of t.

Now, we recognize this as an ODE. If we define g(s) := u(x0e
s, s) then g satisfies the

ODE
g′(s) = sg(s)− x0e

s.
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We now solve this ODE. We move sg(s) to the other side and multiply by the integrating

factor e−
s2

2 to get
d

ds

(
g(s)e−

s2

2

)
= −x0es−

s2

2 .

Integrating each side from 0 to s gives

g(s)e−
s2

2 − g(0) = −x0
∫ s

0

er−
r2

2 dr.

The RHS here is doomed and we will not simplify it. To finish solving for g it remains to figure
out what g(0) is. Looking back at how we defined g, we see that g(0) = u(x0, 0) = sinx0.
Therefore

g(s) = e
s2

2 sin(x0)− x0e
s2

2

∫ s

0

er−
r2

2 dr.

Finally we use g to solve for u. Since we solved for g, we look back at how we defined
g. This gives

u(x0e
s, s) = g(s) = e

s2

2 sin(x0)− x0e
s2

2

∫ s

0

er−
r2

2 dr.

This holds for all x0 and s. So now we replace x0e
s with x and s with t. This means replacing

x0 with xe−t and s with t. Thus

u(x, t) = e
t2

2 sin(xe−t)− (xe−t)e
t2

2

∫ t

0

er−
r2

2 dr.

■

...I will not be checking if this is actually right since it’s a mess, I just want to showcase
the method.

6.3 Duhamel’s Formula

Alright so one problem on the midterm uses this so we should chat about this. From the
previous section in this notes, we found that the f(x, t) term in the PDE{

ut − k∆u = f

u |t=0 = 0

is a forcing term. Intuitively, this means that at every small bit of time, f adds a bit of heat.
Specifically, we can imagine that at time s, f adds some heat to the real line according to
the function f(x, s).
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How would this heat disperse? Naturally, it would be according to the solution to the
standard heat equation if the initial data were f(x, s), i.e. solving{

vt − kvxx = 0

v |t=0(x) = f(x, s)
.

I will now introduce some silly notation that nobody uses. Let

PDE SOL
ϕ=[initial data]

(x, t)

be the solution to the heat equation with initial data given by [initial data], i.e. it is the
function v where v solves the PDE{

vt − kvxx = 0

v |t=0 = [initial data]
.

With this silly notation I think it will be easier to write down Duhamel’s formula, which
I will now derive.

6.3.1 Derivation of Duhamel

Let’s say we want to figure out what u(x, t) is. That is, we want to find out how much
heat there is at the point x after t seconds. Since there is no initial data, all the heat
contribution will come from the forcing term f(x, t).

So, we need to “add up” all the heat contribution from f(x, s) up to time t. Thus

u(x, t) =

∫ t

0

(
Amount of heat that [f at time s] will contribute to x

)
ds.

How do we find out how much heat f at time s will contribute?

To do this, we need to look at f at time s and see what it does over time. For that, we
just consider what f is at time s, and apply the heat equation to it! This is the function

PDE SOL
ϕ=(f at time s)

.

(To be clear, “f at time s” is the function that takes y to f(y, s), often denoted f(·, s).)

What values are we plugging into this quirky function? Well, I need to know how much
heat it’s adding to the point x, so we’re plugging in x for the space variable. How about the
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time variable? That’s how long we’re running the heat for until we reach time t. Since we’re
at time s, we are letting the heat spread for t− s seconds. Therefore,(

Amount of heat that [f at time s] will contribute to x
)
= PDE SOL

ϕ=(f at time s)
(x, t− s).

We have hence derived Duhamel’s formula for the heat equation,

u(x, t) =

∫ t

0

PDE SOL
ϕ=(f at time s)

(x, t− s) ds .

6.3.2 Duhamel (Ugly Version)

The above expression is a good way to remember the formula. For a more traditional
way to write it, we can expand this expression further. We know that

PDE SOL
ϕ=(f at time s)

(x, t) =

∫ ∞

−∞

1√
4πkt

e−
(x−y)2

4kt · (f at time s)(y) dy

=

∫ ∞

−∞

1√
4πkt

e−
(x−y)2

4kt · f(y, s) dy.

So,

PDE SOL
ϕ=(f at time s)

(x, t) =

∫ ∞

−∞

1√
4πk(t− s)

e−
(x−y)2

4k(t−s) · f(y, s) dy.

Plugging this in to the formula we derived, we obtain the nasty formula,

u(x, t) =

∫ t

0

∫ ∞

−∞

1√
4πk(t− s)

e−
(x−y)2

4k(t−s) · f(y, s) dy ds.

Remember, this is just the solution to

{
ut − kuxx = f

u |t=0 = 0
. If we wanted the solution to{

ut − kuxx = f

u |t=0 = ϕ
, we’d have to add the solution to the homogenous problem with initial

condition ϕ, which we know how to solve. This gives the general solution

u(x, t) =

∫ ∞

−∞

1√
4πkt

e−
(x−y)2

4kt ϕ(y) dy +

∫ t

0

∫ ∞

−∞

1√
4πk(t− s)

e−
(x−y)2

4k(t−s) · f(y, s) dy ds

to the heat equation with forcing term f and initial condition ϕ.

The ideas of Duhamel also work for other PDEs but the logic will be slightly different.
Note that I haven’t actually proven anything here, I’m just giving what I believe to be the
most intuitive way to derive the formula on the spot.
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7 Separation of Variables I: Fourier Series

Only like 3 people showed up today so let’s talk about how to find a Fourier series.

IMPORTANT: In this chapter and the next, I’m going to be telling a lot of
lies. This is because the underlying mathematics here is EXTREMELY

advanced, and so it is impossible to teach this in any rigorous capacity without
assuming years of experience in real analysis. Instead, it makes a lot more
sense to teach this “only kinda correctly”, trading truth for intuition. I will

quietly point out every time I tell a big lie, but I won’t elaborate very much on
why I’m lying or how to remedy the lie.

7.1 The Punchline

We will ruin the joke by giving the punchline upfront so you know what the general goal
is. The central idea is that we want to express a function as a sum of waves. To
wit, the Fourier series of a function f defined on an interval [0, L] can look like any of the
following:

1. Fourier sine series: f(x) =
∞∑
n=1

an sin
(nπ
L
x
)
for some real numbers a1, a2, . . ..

2. Fourier cosine series: f(x) =
∞∑
n=0

an cos
(nπ
L
x
)
for some real numbers a0, a1, . . ..

3. Fourier sine-cosine series: f(x) =
∞∑

m=1

am sin

(
2nπ

L
x

)
+

∞∑
n=0

bn cos

(
2nπ

L
x

)
for some

real numbers a1, a2, . . . , b0, b1, . . ..

4. Fourier exponential form: f(x) =
∞∑

n=−∞

ane
−2πinx for some real numbers . . . , a−1, a0, a1, . . ..

We won’t worry about the fourth one because, while I like it a lot, it’s actually not going
to be very helpful for the next chapter. So we’ll stick with real numbers.

Anyways, there are a bunch of different Fourier series and actually remembering how to
find the coefficients (the an’s and bn’s) is very annoying. There is only one good way to find
them, and it is using...
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7.2 A Review of Linear Algebra

7.2.1 Basis

Let V be a vector space, like Rn. Remember what a basis is? If V has dimension n, then
there is a set of vectors {v1, v2, · · · , vn} in V called a basis such that any vector x ∈ V can
be uniquely represented in the form

x = a1v1 + . . .+ anvn

for some real numbers a1, . . . , an.

The prototypical example for a basis is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, for R3.

7.2.2 Inner products

When V is nice enough, it has sometime called an inner product, which I shall write as
⟨v, w⟩. In Rn, this is the “dot product”, which can be used to measure the angle between
the vectors.

Sadly, angle doesn’t make sense in weirder vector spaces, so instead let’s think of
an inner product ⟨v, w⟩ as measuring how much v “agrees” with w, or more
concretely, how much of v is pointing in the direction of w.

That last bolded bit is very important, but it only works well when the length of w is
1. Remember that the length or norm of a vector w, written as ∥w∥, can be given by the
identity ∥w∥2 = ⟨w,w⟩. 1

This notion is needed to talk about what an orthonormal basis is.

7.2.3 Orthonormal basis

The nicest possible basis {v1, . . . , vn} is called an orthonormal basis. Let’s break down
that word:

• “Ortho” means perpendicular to each other. This means that ⟨vi, vj⟩ = 0 for all vi and
vj distinct.

• “normal” means length 1. This means that each vi has length 1. In other words,
⟨vi, vi⟩ = 1 for all i.

1Wowie look at me lying already! This is technically a definition, not an identity.
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The prototypical example basis for R3, i.e. {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, is an orthonormal
basis.

The reason why this an orthonormal basis is so nice is because it makes it very easy to
write a vector x in terms of an orthonormal basis {v1, . . . , vn}. That is, it’s easy to solve for
the coefficients a1, a2, . . . , an to make the representation

x = a1v1 + a2v2 + . . .+ anvn (∗)

true.

Indeed, the coefficient ai is just given by ai = ⟨x, vi⟩ . That’s it!

Intuitively this makes a ton of sense: ai should be how much of x is pointing in the vi
direction. And, well, the inner product ⟨x, vi⟩ indeed measures “how much vi is in x”!

Brief Exercise: Check that my formula for ai is indeed true by taking the equation (∗) and
inner-product’ing each side with vi. (Remember that the inner product has a “distributive
property”. All the terms on the right side should get zero’d except for the ith one.)

The bottom half of this page is intentionally blank. I hope you’re having fun!
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7.3 The vector space of functions

Let’s apply linear algebra2 to figure out what Fourier series are! The underlying vector
space V in this case is the space of all functions on [0, L]. 3

I want to find an orthonormal basis for this vector space. But before I can do that, I
need to know if V has an inner product. It does!4 It’s given by integration: For any two
functions f, g : [0, L] → R, I define their inner product as follows.

⟨f, g⟩ :=
∫ L

0

f(x)g(x) dx

If you haven’t seen this before, it’s very important5.

This satisfies all the properties that an inner product needs to satisfy6, letting us measure
“how much the function g is ‘part of’ f”. It also lets us measure the “length” of a function:

∥f∥2 := ⟨f, f⟩ =
∫ L

0

f(x)f(x) dx =

∫ L

0

f(x)2 dx.

This is called the L2 norm of f 7.

Alright, let’s find a basis for V .

7.4 One possible basis for this vector space

This vector space of functions V is infinite-dimensional, so our basis {v1, v2, v3, . . .} will
also be infinite. Many years ago, Fourier got super drunk and decided to try using sine
functions to form a basis.

He chose the functions sin
(
πn
L
x
)
for n = 1, 2, 3, . . .. Essentially, these are all the frequen-

cies for sine functions so that the sines will be 0 at both x = 0 and x = L. You can think
of this as all the simple waves you can make on a string if both of its ends stay fixed. You
should plug in x = 0 and x = L into these functions to make sure I’m not lying to you!

2This is a lie, it’s functional analysis
3Huge lie. This doesn’t rigorously work.
4It doesn’t. But it’ll work out.
5Made you look! This is not a lie at all. Incredibly important notion here and pops up all the time in

mathematics. For example, in probability and statistics you often see the expression E[XY ] right? That’s
basically what this is.

6Alright this is the lie that explains why V is bad. If you’re bored I encourage you to figure out why this
is wrong, it’s very subtle. Fortunately even if I’m lying here, the lie doesn’t actually impact the core of the
math so we’re chilling.

7This is more lingo that’s good to know.
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Here’s something interesting about this basis: The basis vectors are orthogonal to each
other! I won’t write it out here8, but you can check that whenever m ̸= n,∫ L

0

sin
(πm
L
x
)
sin
(πn
L
x
)
dx = 0.

Therefore the inner product is zero, i.e.
〈
sin
(
πm
L
x
)
, sin

(
πn
L
x
)〉

= 0.

Most takes on Fourier series will stop the linear algebra analogy here. I think this is
insufficient and I will go one step further: Is this basis an orthonormal basis? We have the
“ortho” part, but now we need the “normal” part, meaning we want these sine functions to
all have “length 1”.

Unfortunately this isn’t true. Indeed, let’s compute the the integral

∫ L

0

sin2
(πn
L
x
)
dx

to see why.

Alright I’m going to do this really stupidly to minimize pain. Do you
remember the double angle formula? Probably not. What I do want
you to know, though, is that it basically says that sin2 is a sinusoid! It
just oscillates between 0 and 1, thus having a mean value of 1

2
(instead

of 0 like sin does). Therefore,∫ L

0

sin2
(πn
L
x
)
dx = L · Average value = L · 1

2
=

L

2
.

Fantastic. So, since the length (squared) of our basis vectors is∫ L

0

sin2
(πn
L
x
)
dx =

L

2
,

and L
2
isn’t necessarily equal to 1, our basis isn’t orthonormal. But we can fix this by

scaling our basis vectors by a constant! Indeed,∫ L

0

[√
2

L
sin
(πn
L
x
)]2

dx = 1.

We now have an orthonormal basis!

8This computation uses the product-to-sum formula from trigonometry. I only remember it because I was
one of those math competition kids.
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7.5 Sine Fourier Series

Our orthonormal basis is

vn(x) =

√
2

L
sin
(πn
L
x
)
.

Since we now have an orthonormal basis, we can now write any function f in our vector
space in terms of this basis! This means that we can write f uniquely as a linear combination

f(x) = a1v1(x) + a2v2(x) + a3v3(x) + . . . ,

for some correct choice of real numbers a1, a2, . . ..
9

Figuring out what these ai’s need to be for this to work might sound hard, but it’s
actually stupidly easy because we have an orthonormal basis! Indeed, mimicking what we
did when we were reviewing linear algebra, we immediately get the formula

an = ⟨f, vn⟩ =
∫ L

0

f(x)vn(x) dx .

Congratulations, you now know Fourier series.

7.6 ...a slight omission

So, I’ve explained why the set of weird sinusoid functions {v1, v2, · · · } is orthonormal.
Did you notice that I never actually explained why it’s actually a basis?

This is because that’s very hard to prove. So, uh, just trust me.10

9The equals sign here is a bit of a lie, I’ll come back to this
10It is because of this that I sometimes have trouble figuring out whether I’m “using enough” sine/cosine

functions to correctly form a Fourier series expansion for f . The next chapter of this notes gives some way
to actually ensure that we have all the ones we actually need.
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7.7 Example

Let’s find the sine Fourier series of x on [0, 5]. (You have to specify the interval! You
can’t Fourier series something on the entire real line.)

Step 1: Find the sine basis

For sine series, the pro-tip is to take all sine functions sin(kx) that vanish at the endpoints
(and also ignore k < 0). In this case I want sin(k·0) = 0 (I get that for free) and sin(k·5) = 0.
So 5k is a multiple of π. So 5k = nπ. So k = nπ/5.

We take sin(nπ/5 · x) , where n runs through positive integers, as our basis. (i encourage

you to ponder why it makes sense that we ignore the sine functions we get for n = 0 and
n < 0.)

Step 2: Scale the sine basis so it becomes orthonormal

By either memorizing that the correcting factor is
√

2/L (where L = 5) or just running
through the quick “silly computation” on the previous page, we take

vn(x) :=

√
2

5
sin(nπ/5 · x) .

Personally I rederive it every time because I find memory to be very unreliable.

Step 3: Use inner products to find the coefficients

The sine Fourier series of x over [0, 5] is

x = a1v1(x) + a2v2(x) + . . . .

It remains to find the coefficients {an}n. As I’ve emphasized, this is just given by the inner
product

an = ⟨x, vn(x)⟩.
By plugging in what vn is, this inner product is

⟨x, vn(x)⟩ =
∫ 5

0

x ·
√

2

5
sin(nπ/5 · x) dx =

√
2

5

∫ 5

0

x sin(nπ/5 · x) dx.

Unfortunately the resulting integral is often very annoying and easy to mess up. Here
we must integrate by parts.

=

√
2

5

[
x · − cos(nπ/5 · x)

nπ/5

∣∣∣∣5
x=0

−
∫ 5

0

− cos(nπ/5 · x)
nπ/5

dx

]
=

√
2

5

[
x · − cos(nπ/5 · x)

nπ/5

∣∣∣∣5
x=0

]
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= −
√

2

5
· 25 cos(nπ)

nπ
− 0 =

√
2

5
· 25(−1)n+1

nπ

(Note that cos(nπ) = 1 when n is even, and cos(nπ) = −1 when n is odd. This observation
can be written succinctly as cos(nπ) = (−1)n.)

Therefore the sine Fourier series of x over [0, 5] is

x =
∞∑
n=1

anvn(x) =
∞∑
n=1

√
2

5

25(−1)n+1

nπ
·
√

2

5
sin(nπ/5 · x) =

∞∑
n=1

2

5
· 25(−1)n+1

nπ
sin(nπ/5 · x) .

If you are not a fan of the Step 2 normalization step, you can memorize that the correcting
factor in this final answer is 2/L. Personally I will absolutely forget that after I finish writing
these notes though.

7.8 How to check your work

It is extremely easy to mess up. Therefore, I encourage you to use Desmos to check your
work. Here is an example of me using Desmos to check that my answer for the sine Fourier
series of x over [0, 5] was correct: https://www.desmos.com/calculator/rk18pgjy39

In fact, while writing these notes I totally messed up the computation of an the first time.
I only figured out I messed up by graphing my Fourier series and seeing that it didn’t match
up at all!

52

https://www.desmos.com/calculator/rk18pgjy39


Thomas Lam Recitation 7 Mar. 14th 2025

7.9 Other Fourier Series

Thus far we’ve been talking about sine Fourier series.

Definition 7.1 (Sine Fourier Series)

The sine Fourier series of f : [0, L] → R is the representation of f in terms of the
orthonormal basis v1, v2, . . ., where

vn(x) :=

√
2

L
sin
(πn
L
x
)
.

That is, it is the unique way to represent f in the form f(x) =
∞∑
n=1

anvn(x) for some

real numbers a1, a2, . . ..

But we can also choose a different orthonormal basis, such as using cosines. Here, to
figure out what cosines to use over [0, L], we choose all the cosine functions cos(kx) that
have derivative zero at the endpoints, i.e. there is a peak / valley at both x = 0 and
x = L. Doing the math, we find that we need to use c for n = 0, 1, 2, . . .. This time we
need to include n = 0. (Whereas in the sine case, sin(0) = 0 and zero can’t be part of a
basis.)

We still have

∫ L

0

cos2(nπ/L · x) dx =
L

2
, so vn(x) :=

√
2
L
cos(nπ/L · x) will form an

orthonormal basis, where n runs from 0 to ∞. What’s tricky is that the computations
change slightly for n = 0 which is why the normalization factor is different. (This is exactly
why I can’t afford to memorize this — it’s a total mess!)

Definition 7.2 (Cosine Fourier Series)

The cosine Fourier series of f : [0, L] → R is the representation of f in terms of the
orthonormal basis v0, v1, v2, . . ., where

vn(x) :=

√
2

L
cos
(πn
L
x
)

for all n ≥ 1, and v0(x) =

√
1

L
.

That is, it is the unique way to represent f in the form f(x) =
∞∑
n=0

anvn(x) for some

real numbers a0, a1, a2, . . ..

(I’ll update what the cosine series for x will be after the homework is due...)
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There is also the sine-cosine series, which uses both sine and cosines. But the frequencies
we use is different from before: Here we use all the sines and cosines that do a positive
integer number of periods in [0, L]. This means we’re using sin(2πn/L·x) for n = 1, 2, . . .
and cos(2πn/L · x) for n = 0, 1, 2, . . ..

Definition 7.3 (Sine-Cosine Fourier Series)

The sine-cosine Fourier series of f : [0, L] → R is the representation of f in terms
of the orthonormal basis v1, v2, . . . , w0, w1, w2, . . ., where

vm(x) :=

√
2

L
sin

(
2πn

L
x

)
for all m,

wn(x) :=

√
2

L
cos

(
2πn

L
x

)
, n ≥ 1

w0(x) =

√
1

L
.

That is, it is the unique way to represent f in the form

f(x) =
∞∑

m=1

amvm(x) +
∞∑
n=0

bnwn(x)

for some real numbers a1, a2, . . . , b0, b1, b2, . . ..

It goes without saying that I think the resulting formulas for the coefficients here are
practically impossible to memorize, so I choose to rederive them every time. I know these
notes are long, but that’s all just setup for the concepts. The actual computations for the
derivation are quite short.

It turns out that in the sine-cosine Fourier series for x over [0, 5] pretty much all the
cosine terms die out except for the constant term (i.e. b0), and so the sine-cosine series for
x over [0, 5] is

x =
5

2
+

∞∑
n=1

−5

πn
sin

(
2nπ

5
x

)
.

7.10 (Optional?) Convergence of Fourier Series

Just real quick, I should address a lie I’ve been telling throughout: The Fourier series
does not always “work”! That is, the “equality”

f(x) =
∞∑
n=1

anvn(x)
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where an and vn are chosen according to, e.g. the sine Fourier series, is not necessarily for
all x.

Typically though, the only problematic x-values are where f is doing something weird at
x, like a jump discontinuity.

In general, if f is differentiable at x, you can be rest assured that the Fourier series of f ,
when evaluated at x, will converge correctly to f(x).

I will not prove any of this because it is hard.
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8 Separation of Variables II: Defeating the Laplacian

In both of the two time-dependent PDEs we’ve studied thus far, there has been an evil
annoying triangle:

• The wave equation, utt −∆u = 0.

• The heat equation, ut −∆u = 0.

This is the Laplace operator,

∆u :=
n∑

i=1

∂2u

∂x2i
=

n∑
i=1

∂2xi
u =

n∑
i=1

uii,

and it is evil. Our main enemy here is the Laplacian. The point of separation of
variables is to defeat the Laplacian.

note: i am presenting a different perspective on this topic than what the professor does,
you may or may not find it more intuitive. there nevertheless is some overlap in philosophy
and the resulting computations are going to be the same.

if you’re pressed for time, just read the examples. most of what i write here is for intu-
ition’s sake and justifying what’s happening.

8.1 (Optional) The real enemy is the negative Laplacian

Pretty much always, our real target is going to be −∆ rather than ∆. In short, this is
because −∆ is a more natural operator than ∆. I don’t want to distract too much from
the main topic so see the first answer in https://math.stackexchange.com/questions/

4884068/the-positive-laplacian-is-indeed-the-negative-laplacian.

8.2 More linear algebra review

Symmetric matrices have a surprising incredible property, that you hopefully learned in
your linear algebra class.
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Theorem 8.1 (Spectral Theorem)

Let A be an n×n symmetric matrix. Then there is an orthonormal basis v1, . . . , vn
of Rn such that under this basis, A becomes a diagonal matrix.
To be precise, if we take any vector x ∈ Rn and represent it in terms of this basis as
x = a1v1 + a2v2 + . . .+ anvn for some real numbers {ai}i, then

Ax = λ1a1v1 + λ2a2v2 + . . .+ λnanvn

where λi is the eigenvalue associated with eigenvector vi.

Some ways to think of this theorem are:

• All symmetric matrices are basically diagonal.

• All symmetric matrices can be diagonalized using an orthonormal basis.

• Symmetric matrices just choose n orthogonal vectors and stretch space in those n
directions.

8.3 “Separation of variables” in linear algebra

Everything I’m doing here is basically separation of variables but for Rn instead of the
infinite-dimensional vector spaces we deal with for PDEs. This analogy should help you
process what’s going on.

Let A be symmetric and y ∈ Rn. How can we solve Ax = y? Here, y is a given vector
and we are solving for x. We follow these simple steps:

1. Diagonalize A. That is, we first find the orthonormal eigenvectors v1, . . . , vn and associ-
ated eigenvalues λ1, . . . , λn for A. They’re guaranteed to exist because A is symmetric.

2. Write knowns and unknowns in terms of the basis {vi}i. For x, we write

x = a1v1 + . . .+ anvn

where the {ai} are unknown real numbers we must solve for. We win once we figure
out what they are.

For y, we write
y = b1v1 + . . .+ bnvn

where the {bi} are known values that can be found in terms of y, via bi = ⟨y, vi⟩.

57



Thomas Lam Recitation 8 Mar. 21st 2025

3. Plug in x and y into Ax = y, and use the fact that the {vi} are eigenvectors to simplify.
We have

A(a1v1 + . . .+ anvn) = b1v1 + . . .+ bnvn.

But now the left side simplifies, using Avi = λivi, giving us

λ1a1v1 + . . .+ λnanvn = b1v1 + . . .+ bnvn.

4. Compare coefficients to solve for the unknowns. The coefficient of vi on each side needs
to be equal, so

λiai = bi

for every i. Since we’re solving for ai, we find that ai = bi/λi . (of course, we should

assume that all eigenvalues are nonzero for this expression to be valid.)

5. Clean up. Plugging in the value we got for ai into the equation for x, we have

x = a1v1 + . . .+ anvn

=
b1
λ1

· v1 + . . .+
bn
λn
vn

=
⟨y, v1⟩
λ1

· v1 + . . .+
⟨y, vn⟩
λn

vn .

This is basically what separation of variables is. As it pertains to PDE, the only step
that arguably gets more complicated is solving for the coefficients.

8.4 Hold on, what is a “symmetric matrix” when doing PDE
stuff?

Great question! The “matrix” we’re trying to tame is the operator −∆ (which in 1D is
just −∂xx). 1 Is this symmetric? What does that even mean?

To do this we need one more linear algebra analogy. Recall that for any n× n matrix A,
we have that

⟨Ax, y⟩ = ⟨x,ATy⟩.
So, a way to characterize A being symmetric is that ⟨Ax, y⟩ = ⟨x,Ay⟩ for all x and y. We
can play the same game for −∆.

1Although I am thinking of −∆ as if it were a matrix, you can’t really represent it as a matrix because
we’re in infinite dimensions.
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Definition 8.1 (When is the Laplacian “symmetric”?)

We can say that −∆ is symmetric on a vector space of functions V if ⟨−∆f, g⟩ =
⟨f,−∆g⟩ for all functions f and g in this vector space. That is,∫

(−∆f)g =

∫
f(−∆g).

In 1D, this equates to verifying that∫
fxxg =

∫
fgxx.

(i’ve tossed the negative sign for temporary ease.)

Let’s check whether −∆ is symmetric in general. I’ll stick with 1D but it’s the same in
higher dimensions. For any functions f and g over some vector space V of functions on [a, b],
we can spam integration by parts to get:∫ b

a

fxx(x)g(x) dx = fx(x)g(x)|bx=a −
∫ b

a

fx(x)gx(x) dx

= fx(b)g(b)− fx(a)g(a)−
(∫ b

a

fx(x)gx(x) dx

)
= fx(b)g(b)− fx(a)g(a)−

(
f(x)gx(x) |bx=a −

∫ b

a

f(x)gxx(x) dx

)
= fx(b)g(b)− fx(a)g(a)− f(b)gx(b) + f(a)gx(a) +

∫ b

a

f(x)gxx(x) dx

Yikes, this isn’t quite the equality
∫
fxxg =

∫
fgxx that we wanted. There’s a bunch of trash

left over from the boundary terms! Boooooo.

This brings me to my key point, which might seem like annoying nit-picking but it’s
essential and, in my opinion, it’s the only way to tell when separation of variables
actually works!

CRUCIAL POINT: −∆ can only be symmetric if the boundary terms become 0. In
other words, we need the integration by parts formula

∫
fxxg =

∫
fgxx to be true without

the trash boundary terms.

This entire theory FAILS if this doesn’t happen.
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8.5 When the theory will work: Examples

The boundary terms can vanish if the vector space V of functions that we’re looking at
is nice enough. V is mainly going to be determined by the PDE that we’re looking at. Here
are a few examples and non-examples.

Example 1: Consider this heat equation with forcing on [0, 1] and Dirichlet boundary
conditions, 

ut − uxx = 0

u(x, 0) = ϕ(x) := ee
sin x

+ 999

u(0, t) = 0

u(1, t) = 0

.

(note: dont worry about the ut derivative, that problem will solve itself. separation of
variables just focuses on killing the spatial uxx derivative.)

The boundary conditions here (they’re just the last two conditions) give us the vector
space V that we need to consider: It’s the vector space of functions that vanish at 0 and 1.
This is great for integration by parts!

Indeed, for all f, g with f(0) = f(1) = 0 and g(0) = g(1) = 0, we can get
∫ 1

0
f ′′g dx =∫ 1

0
fg′′ dx, with no garbage boundary terms. (you should check that i’m not lying to you.)

Conclusion: Separation of variables will work for this PDE.

Example 2: Consider this wave equation with forcing on [42, 9001] and von Neumann
boundary conditions, 

utt − uxx = 0

u(x, 0) = ϕ(x) := 7777777 + log x

ut(x, 0) = ψ(x) := log(7777777) + x

ux(42, t) = 0

ux(9001, t) = 0

.

Here the boundary conditions are ux(42, t) = 0 and ux(9001, t) = 0, and they’re called
“von Neumann” because of the x-derivative.

So this time, our vector space V consists of functions f whose derivative vanishes at the
boundary. That is, f ′(42) = 0 and f ′(9001) = 0. It turns out that this is also good for

integration by parts, and we will still get
∫ 1

0
f ′′g dx =

∫ 1

0
fg′′ dx with no garbage boundary

terms, for all f and g in this vector space. (you definitely should check that i’m not lying to
you here!)
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Conclusion: Separation of variables will work for this PDE.

Example 3: Consider this heat equation on all of space,{
ut − uxx = 0

u(x, 0) = ϕ(x) := sinx
.

We already know that this can be solved. But can we solve it differently using separation
of variables? That depends on the boundary conditions.

...wait a second, there are no boundary conditions since this is the heat equation on the
whole real line. With no assurance that the functions we’re considering will vanish at ±∞
in any way, we’re screwed.

Conclusion: Separation of variables will not work for this PDE.

Example 4: Consider this heat equation on [0, 1] with periodic boundary conditions,
ut − uxx = 0

u(x, 0) = ϕ(x) := x

u(0, t) = u(1, t)

ux(0, t) = ux(1, t)

.

It turns out that periodicity, i.e. the condition that f and f ′ are the same at the endpoints
of [0, 1], is great for integration by parts. So −∂xx will be symmetric on a space of such
functions. (you should check that i’m not lying to you.)

Conclusion: Separation of variables will work!

Example 5: Consider the wave equation on [0, 1] with Dirichlet boundary conditions,

utt − uxx = 0

u(x, 0) = ϕ(x) := x

ut(x, 0) = ψ(x) := x2

u(0, t) = 100

u(1, t) = 200

.

Uh-oh, the boundary conditions are no longer zero boundary conditions! So integration
by parts on

∫ 1

0
f ′′g will give us garbage boundary terms. Yuck!

Initial conclusion: Separation of variables will not work...

61



Thomas Lam Recitation 8 Mar. 21st 2025

...but in this case we can actually fix the issue! We just need to transform the PDE so
that the boundary conditions become 0. I won’t elaborate too much for now on how you
figure this out, but just as an example, here you substitute v(x, t) := u(x, t) − 100(1 + x).
Then v will satisfy the PDE

vtt − vxx = 0

v(x, 0) = ϕ1(x) := x− 100(1 + x)

vt(x, 0) = ψ1(x) := x2

v(0, t) = 0

v(1, t) = 0

,

and now we’re golden.

Conclusion: Separation of variables DOES work, but only after some fidgeting.

(note: in all these situations i’ve ignored the initial conditions ϕ and ψ. do the boundary
values for the ϕ and ψ need to satisfy the boundary conditions we set forth? it turns out that
they do not, for reasons that i won’t discuss.)

(more footnotes) 2 3

8.6 Completing the analogy bridge from linear algebra to PDE

Let’s review the whole analogy we’ve been building up so far:

• Just as a matrix A is a linear operator, so is −∆.

• An eigenvector of A is v such that Av = λv. An eigenvector of −∆ is a function v such
that −∆v = λv. In both cases λ is the associated eigenvalue.

• The identity ⟨Ax, y⟩ = ⟨x,Ay⟩ characterizesA being symmetric. The identity
∫
(−∆f)g =∫

f(−∆g) characterizes −∆ being symmetric. In 1D this is the identity
∫
f ′′g =

∫
fg′′.

• An incomplete list of boundary conditions that will ensure that −∆ is symmetric:

– Zero Dirichlet boundary conditions

– Zero von Neumann boundary conditions

– Periodic boundary conditions

2I’ve told SO many lies. −∆ isn’t even a valid operator because the only realistic space that you can
consider it an endomorphism on is like C∞, since otherwise the loss of regularity screws things up, like
−∆ : C2 → C2 is just not true because the codomain will contain things that aren’t C2.

3The previous footnote is itself a lie because we’re actually working in a Sobolev space and all derivatives
are weak derivatives.
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To complete the analogy, I will now translate the “separation of variables in linear alge-
bra” protocol into what it actually looks like in PDE. Looking back, this protocol for linear
algebra was:

1. Diagonalize A using a basis of orthonormal eigenvectors v1, . . . , vn.

2. Write knowns and unknowns in terms of this basis.

3. Plug that into the equation we’re solving.

4. Compare coefficients.

5. Win.

For PDE’s separation of variables, this looks like the following.

1. Diagonalize−∆ using a basis of orthonormal eigenvectors (...eigenfunctions) v1(x), v2(x), v3(x), . . ..
(this time there are infinitely many.) They are guaranteed to exist if we’ve ensured
that −∆ is symmetric. 4

2. Write the unknown function we’re solving for, u, with respect to this basis. That is,
we write

u = a1v1 + a2v2 + . . .

and we must solve for the {ai}’s. If there is a time, variable, then the coefficients
may depend on time.

u(x, t) = a1(t)v1(x) + a2(t)v2(x) + . . .

Analogously we need to write any other known functions in terms of this basis as well,
such as the initial conditions and the forcing terms.

By the way, we call this a Fourier series! And the product ai(t)vi(x) is the separation
of variables, separating time and space. 5

3. Plug all that into the PDE, as well as the PDE’s initial condtions if there are any.
Since we expanded in terms of nice functions {vi(x)}i, −∆ will act nicely on them and
simplify a ton.

4. Compare coefficients. If the coefficients depend on time then this will unfortunately
result in some differential equations that you must solve.

4This is a lie. Rigorously speaking we actually need to diagonalize the inverse Laplacian. Then, the
reason why this theory works is because −∆−1 is a compact operator. The extremely advanced reader should
read Evans as a reference.

5A lot of authors start with this assumption of separation, and then add a bunch of such solutions to
obtain the final answer. I don’t like this because it doesn’t give much insight as to when this methodology
actually works.
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5. We win!

That’s it! It’s honestly not that much more complicated than the linear algebra version,
at least conceptually. The computations, however, might be kinda annoying.

8.7 Example 1

Example 8.1: Solve the forced heat equation on [0, 3] with Dirichlet boundary
conditions, 

ut − uxx = xt

u(x, 0) = ϕ(x) := 1

u(0, t) = 0

u(3, t) = 0

Solution. Step 0: Make sure separation of variables actually works

The boundary conditions are 0, so we are safe to proceed.

Step 1: Find the orthonormal basis

We seek the eigenfunctions of the −∂xx operator over the space of functions that vanish
on the boundary of [0, 3]. So we to find the functions v(x) and associated eigenvalues λ that
satisfy the following ODE: 

−v′′(x) = λv(x)

v(0) = 0

v(3) = 0

You might have learned to solve this by finding the roots of the polynomial x2 + λ. I’m
a grad student so I’m going to find the solution by guessing: By experience, I know all
solutions to −v′′(x) = λv(x) are going to look like the following form:

v(x) = A cos(
√
λx) +B sin(

√
λx)

Now we solve for A, B, and λ. Plugging in x = 0 gives

0 = A+ 0

so A = 0. So v(x) = B sin(
√
λx). Plugging in x = 3 now gives

0 = B sin(3
√
λ).

Eigenvectors can’t be zero, so B ̸= 0. Other than that, B can be anything, so this equation

is actually a constraint on λ. Indeed, sin(3
√
λ) = 0 iff 3

√
λ = nπ iff λ =

n2π2

9
for a positive
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integer n. (...and why do i ignore the case n = 0? why do i ignore n < 0?) So

v(x) = B sin
(nπ

3
x
)
.

Finally we pick B so that v has length 1, i.e.
∫ 3

0
v(x)2 dx = 1. (remember, we want an or-

thonormal basis.) Using my stupidity from the previous chapter, we know that
∫ 3

0
sin2

(
nπ
3
x
)
dx =

3/2. Therefore we pick B =
√

2
3
. This gives the eigenvector, v(x) =

√
2

3
sin
(nπ

3
x
)
.

Conclusion: The eigenvectors are vn(x) :=

√
2

3
sin
(nπ

3
x
)

for each positive integer n.

The associated eigenvalue is λn :=
n2π2

9
.

Step 2: Write everything in terms of this orthonormal basis.

Since the eigenvectors {vn}n are sine functions, it just so happens that the expansions
we write here are all going to be sine Fourier series.

We write

u(x, t) =
∞∑
n=1

an(t)vn(x)

where the unknown coefficients an(t) depend on time.

To write xt in terms of the {vn}n basis, we need to expand x as a sine Fourier series (the
t is just a constant). The intuition from the previous chapter makes that pretty easy: Since
we have an orthonormal basis, the coefficient of vn will be given by the inner product

⟨x, vn(x)⟩ =
∫ 3

0

x

√
2

3
sin
(nπ

3
x
)
dx.

I plugged this into Wolfram Alpha and got −3
√
6(−1)n

πn
. Thus

xt =
∞∑
n=1

−3
√
6(−1)nt

πn
vn(x).

Lastly there’s the initial condition ϕ(x) = 1. We do the same thing: The vn coefficient
for the series for ϕ is

⟨1, vn(x)⟩ =
∫ 3

0

1 ·
√

2

3
sin
(nπ

3
x
)
dx.
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I plugged this into Wolfram Alpha and got −
√
6((−1)n−1)

πn
. So

1 =
∞∑
n=1

−
√
6((−1)n − 1)

πn
vn(x).

Step 3: Plug everything into the PDE

Plugging into ut − uxx = xt, we get

∞∑
n=1

a′n(t)vn(x) +
∞∑
n=1

an(t)(−v′′n(x)) =
∞∑
n=1

−3
√
6(−1)nt

πn
vn(x),

and since −v′′n = λnvn (this is the whole point of separation of variables!!!) this simplifies to

∞∑
n=1

a′n(t)vn(x) +
∞∑
n=1

λnan(t)vn(x) =
∞∑
n=1

−3
√
6(−1)nt

πn
vn(x).

Merging the two series on the left gives

∞∑
n=1

[a′n(t) + λnan(t)]vn(x) =
∞∑
n=1

−3
√
6(−1)nt

πn
vn(x). (∗)

Setting this aside, we now plug into the initial condition u(x, 0) = 1. This gives

∞∑
n=1

an(0)vn(x) =
∞∑
n=1

−
√
6((−1)n − 1)

πn
vn(x). (∗∗)

Now we play with these two equations.

Step 4: Compare coefficients

In equation (∗), comparing the nth coefficients gives

a′n(t) + λnan(t) =
−3

√
6(−1)nt

πn
.

This is a differential equation for an(t)! To solve it properly we need an initial condition.
This is given by comparing the nth coefficients in equation (∗∗), which gives

an(0) =
−
√
6((−1)n − 1)

πn
.

If this looks revolting to solve, that’s because it kinda is. In your scratchwork you should

replace the ugly expressions with a variable, such as bn := −3
√
6(−1)n

πn
and cn := −

√
6((−1)n−1)

πn
.

Then we have the ODE, {
a′n(t) + λnan(t) = bnt

an(0) = cn
.
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To solve, I multiply by eλnt, giving

a′n(t)e
λnt + λnan(t)e

λnt = bnte
λnt.

The left side simplifies by the product rule,(
an(t)e

λnt
)′
= bnte

λnt,

and now we may integrate both sides from 0 to t to get

an(t)e
λnt − an(0) =

∫ t

0

bnse
λns ds =

bn(e
λnt(λnt− 1) + 1)

λ2n
.

(yeah i plugged that into lil’ Wolfy, i can’t be bothered to compute that.)

Rearranging,

an(t) = cn(t)e
−λnt +

bn
λ2n

·
(
λnt− 1 + e−λnt

)
.

Plugging in the values of bn, cn, and λn gives

an(t) =
−
√
6((−1)n − 1)

πn
e−

n2π2

9
t +

−3
√
6(−1)n

πn
· 81

n4π4
·
(
n2π2

9
t− 1 + e−

n2π2

9
t

)
.

oh god, where’s the vomit bucket, i — i gotta puke — BLEGHHHHHHHH.

Step 5: We win

That’s it, the unknowns have been solved for. Therefore,

u(x, t) =
∞∑
n=1

an(t)vn(x)

=
∞∑
n=1

[
−
√
6((−1)n − 1)

πn
e−

n2π2

9
t +

−3
√
6(−1)n

πn
· 81

n4π4
·
(
n2π2

9
t− 1 + e−

n2π2

9
t

)]
·
√

2

3
sin
(nπ

3
x
)

■

Ugh, that was disgusting! We should check our work to make sure we didn’t mess
up. So, I graphed the solution we got in Desmos: https://www.desmos.com/calculator/
k0zzmr10mf It seems to check out! That means the solution is probably correct.
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8.8 Example 2

Example 8.2: Solve the wave equation on [0, π] with von Neumann boundary
conditions, 

utt − uxx = 0

u(x, 0) = ϕ(x) := 1

ut(x, 0) = ψ(x) := cos(3x)

ux(0, t) = 0

ux(π, t) = 0

I don’t have much free time so I’ll only do some of the steps.

Solution. Step 0: Make sure separation of variables actually works

Zero von-Neumann boundary conditions is one of the criteria that makes sure everything
works, so we may proceed.

Step 1: Find the orthonormal basis

So we want −v′′(x) = λv(x) and for v to satisfy the boundary conditions given in the
PDE, which are v′(0) = 0 and v′(π) = 0.

All solutions to −v′′ = λv take the form

v(x) = A cos(
√
λx) +B sin(

√
λx).

Differentiating gives

v′(x) = −A
√
λ sin(

√
λx) +B

√
λ cos(

√
λx).

Plugging in x = 0 gives
0 = B

√
λ,

so either B = 0 or λ = 0. Quickly checking if λ = 0 is actually an eigenvalue, we find that

this corresponds to the eigenvector v(x) = 1, or when scaled, v0(x) := 1/
√
π . (we didn’t

get this solution last time because the 0 function is not an eigenvector.)

If otherwise λ ̸= 0 then we can conclude B = 0. So

v′(x) = −A
√
λ sin(

√
λx),

and plugging in x = π we find that sin(
√
λπ) = 0. This happens exactly when

√
λ is an

integer, so λ = n2 for n a positive integer n.
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This eigenvalue corresponds to the eigenvector v(x) = A cos(nx). It remains to choose A
so that v(x) has length 1. We choose A =

√
2/π. Thus our eigenvectors are

v0(x) :=
1√
π
, vn(x) :=

√
2

π
cos(nx)

for positive integers n, and the corresponding eigenvalues are

λ0 := 0, λn := n2 .

Step 2: Write everything in terms of this orthonormal basis

For this problem I intentionally chose ϕ and ψ to be super easy to expand in this series
(which, by the way, will be Fourier cosine series !). There’s also no forcing term, so that’s
one less thing you have to expand in this series.

Step 3: Plug everything into the PDE

It’s gonna be the same deal as in the first example. But remember that we have two
initial conditions, one with the ϕ and one with the ψ. You have to plug into both of these
as well, otherwise you don’t have enough info to do the next step.

Step 4: Compare coefficients

Here you will get a second-order ODE for the unknown coefficients an(t). Fortunately
the lack of a forcing term means it’s not too complicated, so the general solution should be
guessable.

If you’re rusty on second-order ODE, brush up by Googling around, I’m sure it’s covered
quite well by many a mathtuber.

Step 5: Win

It’s not so bad! ■
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8.9 Example 3

Example 8.3: Solve the heat equation on [0, π] with periodic boundary conditions,

ut − uxx = 0

u(x, 0) = ϕ(x) := sin x

ut(x, 0) = ψ(x) := cos(3x)

u(0, t) = u(π, t)

ux(0, t) = ux(π, t)

Solution. Step 0: Make sure separation of variables actually works

I mentioned before that periodic boundary conditions is an example of a condition that
makes −∂xx symmetric, so we are safe to proceed.

Step 1: Find the orthonormal basis

So we want −v′′(x) = λv(x) and for v to satisfy the boundary conditions given in the
PDE, which are v(0) = v(π) and v′(0) = v′(π).

All solutions to −v′′ = λv take the form

v(x) = A cos(
√
λx) +B sin(

√
λx).

Plugging in x = 0 and x = π gives

A = A cos(
√
λπ) +B sin(

√
λπ). (∗)

Well, that’s not enough information, so now let’s find v′(x). Differentiating gives

v′(x) = −A
√
λ sin(

√
λx) +B

√
λ cos(

√
λx).

Plugging in x = 0 and x = π now gives

B
√
λ = −A

√
λ sin(

√
λπ) +B

√
λ cos(

√
λπ).

λ = 0 will give an eigenvector (check that it’s nonzero!), so this is an eigenvalue. Now assume
λ ̸= 0. Then, we can divide to get

B = −A sin(
√
λπ) +B cos(

√
λπ). (∗∗)

The equations (∗) and (∗∗) form a system of equations in the unknowns sin(
√
λπ) and

cos(
√
λπ). If you solve this you will find that sin(

√
λπ) = 0 and cos(

√
λπ) = 1. This is

satisfies exactly when
√
λ is an even integer, so λn := 4n2 for positive integers n.
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Small issue: What are A and B? There is literally no more information so we can’t solve
for them. That’s actually fine: This means that the eigenvalue λn = 4n2 has a multiplicity
of 2, meaning that now it corresponds to two eigenvectors. One is sin(2nπ) and the other
is cos(2nπ). (sadly we technically have to check that these are orthogonal since this isn’t
guaranteed by anything we’ve discussed... but i mean, they look orthogonal enough, so...)
Thus our orthonormal basis (before scaling) will consist of these functions, and the constant
function 1.

Step 2: Write everything in terms of this orthonormal basis

Same as usual, this time we’re now doing a sine-cosine Fourier series ! See the previous
chapter. Your unknowns are now going to be a bunch of functions an(t) and a bunch of
functions bn(t).

Step 3: Plug everything into the PDE

Same as usual.

Step 4: Compare coefficients

Same as usual.

Step 5: Win

It’s really not so bad! ■

In your homework you will encounter different boundary conditions than the ones I’ve
discussed here. They won’t correspond perfectly to any of the Fourier series we’ve covered in
this notes, but it’s still “a” Fourier series, and it’s guaranteed to work because the boundary
conditions should ensure that −∂xx is symmetric (you should verify this!), causing all the
theory to work down the line. Just follow the protocol.
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9 More Fourier examples and convergence

9.1 An Example

Let’s try to find the sine Fourier series of the function f(x) = x over (−π, π).

If you don’t like the fact that the interval isn’t of the form (0, L), you can just shift
everything over by π.

Ok, so for sine series I need to find all the sines that vanish at the endpoints. Since the
interval starts at −π my sines should look like sin(k(x+ π)).

The first frequency that vanishes at the endpoints is going to be the first k for which
sin(k(π + π)) = 0, and that’s k = 1/2. Now all the other frequencies will be just that but
with an n tacked in front:

sin
(n
2
(x+ π)

)
Now I scale this so that vn has length 1.

vn(x) =
1√
π
sin
(n
2
(x+ π)

)
So our Fourier series takes the form

f(x) =
∞∑
n=1

anvn(x).

The coefficient an is given by the inner product ⟨f, vn⟩, which is

an =

∫ π

−π

f(x)vn(x) dx =

∫ π

−π

x · 1√
π
sin
(n
2
(x+ π)

)
.

After integrating by parts once, we end up with

an =
2
√
π

n
· (−1− cos(nπ)) .

Thus our Fourier series is

x =
∞∑
n=1

2

n
(−1− cos(nπ)) sin

(n
2
(x+ π)

)
.

We also found the cosine series after that.
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9.2 Plugging stuff in?

Food for thought: If we were to plug something into the equation we just got, like x = 1,
to get

1
?
=

∞∑
n=1

2

n
(−1− cos(nπ)) sin

(n
2
(1 + π)

)
,

can we say that this new equality is true?

You might think, duh it has to be. But it’s not that simple. In the Fourier series we got,
which is

x =
∞∑
n=1

2

n
(−1− cos(nπ)) sin

(n
2
(x+ π)

)
,

you should think of the equals sign here as being only “mostly” true, and potentially dis-
honest. That’s because we think of the infinite sum here as summing a bunch of functions,
with the infinite sum converging to another function in some sense that isn’t necessarily a
pointwise convergence.

In short, the infinite sum is weird and so the “equality” we get from Fourier series might
not be a “true equality” at every value of x.

That’s why we care about various modes of convergence for Fourier series, in particular
pointwise convergence, uniform convergence, and L2 convergence. (people also care about Lp

convergence and some weirder ones but that’s out of the scope of this class.

Here, is we want to know whether we can plug in x = 1 to get a true equality of numbers,
we need to know if the Fourier sine series converges pointwise. So we must use one of the
convergence criteria discussed in class.

For example, we know that if the function f we’re Fourier’ing is differentiable at a point
x = a, then the Fourier series of f evaluated at x = a will converge to f(a).

That’s a condition for convergence at a single point. More globally speaking: If f is a
differentiable function, then its Fourier series will converge pointwise to f .

In our case, the f is f(x) = x over (−π, π). This is definitely differentiable at x = 1, so
the equality

1 =
∞∑
n=1

2

n
(−1− cos(nπ)) sin

(n
2
(1 + π)

)
will be true. In fact, since x is differentiable everywhere in (−π, π), we have that

x =
∞∑
n=1

2

n
(−1− cos(nπ)) sin

(n
2
(x+ π)

)
will be a true equation for every value of x we plug in that’s (strictly) between −π and π.
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10 More separation of variables...?

We pretty much just reviewed the separation of variables protocol as described in the
previous sections.

One thing I’d like to review, though, is how one solves a second-order ODE such as

f ′′(x)− 3f ′(x) + 2f(x) = 10,

which may come up in solving problems. First, you let D be the “differentiation operator”,
so that the above can be written as

(D2 − 3D + 2)f = 10,

and now you “factor” the “D polynomial” to get

(D − 2)(D − 1)f = 10

(which is hand-wavy and weird, but can be made entirely rigorous!).

Now we can let g = (D − 1)f , i.e. g(x) = f ′(x)− f(x), and now this gives

(D − 2)g = 10

i.e. g′(x)− 2g(x) = 10.

So we’ve turned the 2nd-order ODE into two 1st-order ODEs which are both very solvable.
First we solve the one in terms of g.

g′(x)− 2g(x) = 10

g′(X)e−2x − 2g(x)e−2x = 10e−2x

d

dx

(
g(x)e−2x

)
= 10e−2x

g(x)e−2x − g(0) =

∫ x

0

10e−2t dt = 1− 5e−2x

g(x) = C1e
2x − 5

Here I let C1 = g(0) + 1.

Now we solve for f
g(x) = f ′(x)− f(x)

C1e
2x − 5 = f ′(x)− f(x)

C1e
x − 5e−x = e−xf ′(x)− e−xf(x)
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C1e
x − 5e−x =

d

ddx

(
f(x)e−x

)
∫ x

0

C1e
t − 5e−t dt = f(x)e−x − f(0)

C1e
x + 5e−x + C2 = f(x)e−x

f(x) = C1e
2x + C2e

x + 5

Yay.
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11 The Fourier Transform

The way I define the Fourier transform is different. In particular I use the
definition

f̂(k) :=

∫
R
f(x)e−2πixk dx.

However, pretty much all the properties are the same, sometimes differing only by a constant
factor from the properties covered in lecture.

The Fourier transform may also be expressed as an operator. Often you see F . But I like
feeling fancy and morally superior to everyone, so I like to use F , so

F (f)(k) := f̂(k).

(a bunch of pure math people like me also like using ξ as the frequency variable instead of k,
so i’m already taking 200 psychic damage with this concession)

See question 33 of my survey (https://cims.nyu.edu/~tjl8195/survey/results.html#
q33) to see just how much disagreement there is on what the Fourier transform is. Morally,
though, they are pretty much all the same. (mine is totally better though ;) )

11.1 Properties

11.1.1 Linearity

The Fourier transform is linear, with

f̂ + g = f̂ + ĝ.

Similarly (̂af) = af̂ where a is a constant.

11.1.2 Differentiation turns into multiplication by ik

We have
f̂ ′(k) = 2πikf̂(k).

(any extra factors of 2π that you didn’t see in lecture are because we define the fourier
transform differently.)

This is a fantastic property: It is the main reason why Fourier analysis is so useful for
studying PDE. It makes derivatives go away! That’s fantastic.
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Of course, this means that even multiple derivatives will go away:

f̂ ′′(k) = (2πik)2f̂(k) = −4π2k2f̂(k)

11.1.3 Multiplication turns into convolution, and convolution turns into multi-
plication

Recall that the convolution is

(f ⋆ g)(x) =

∫
R
f(x− y)g(y) dy

(
=

∫
R
f(y)g(x− y) dy

)
.

literally everyone else uses the asterisk, i.e. f ∗g, to denote convolution. i’m in the minority
this time! see Q91 of my dumb survey.

The way Fourier transform reacts to a product is by turning it into a convolution:

f̂ g = f̂ ⋆ ĝ

Typically this is not very nice, which is why things can get a bit complicated when you want
to Fourier a product. But such difficulties are inevitable.

Conversely, sometimes you might want to do the opposite, i.e. Fourier’ing a convolution.
In this case, this is lovely: Convolution turns into products!

f̂ ⋆ g = f̂ ĝ

This situation doesn’t happen that often, but when it does, it feels amazing.

11.1.4 Transformations

Given that we know that the Fourier transform of f is f̂ , we often are interested in finding
the Fourier transform of related expressions such as f(x− a) and f(x/b). In other words, if
we “shift” time and/or “dilate” time, what does this do to the frequencies of f?

Translation Property:
̂f(x− a) = e−2πikaf̂(k).

I write it like this for visual appeal, but it’s not very mathematically proper. To be more
precise, I should write it like this: If g(x) = f(x− a), then

ĝ(k) = e−2πikaf̂(k).

(note: in lecture it might look like e−ika instead.)
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The proof of this property is to essentially plug g into the Fourier transform and use a
u-substitution to massage it into something in terms of f̂ .

ĝ(k) =

∫
R
g(x)e−2πikx dx

=

∫
R
f(x− a)e−2πikx dx

=

∫
Rf(u)e−2πik(u+a) du du (u = x− a)

= e−2πika

∫
R
f(u)e−2πiku du

= e−2πika

∫
R
f(x)e−2πikx dx (Rename u to x for visual appeal)

= e−2πikaf̂(k)

Scaling Property: If g(x) = f(x/b), where b > 0 is a constant, then

ĝ(k) = bf̂(bk).

In other words, if I dilate time by slowing it down by a factor of b, then in the frequency
world, we actually speed up by a factor of b, and moreover we blow up vertically by a factor
of b.

The proof of this property is very similar to the previous proof: Plug g into the Fourier
transform and do a u-substitution.

ĝ(k) =

∫
R
g(x)e−2πikx dx

=

∫
R
f(x/b)e−2πikx dx

=

∫
R
f(u)e−2πik(bu)·b du (u = x/b, du = 1

b
dx)

= b

∫
R
f(u)e−2πi(bk)u du

= b

∫
R
f(x)e−2πi(bk)x dx

= bf̂(bk)

11.1.5 The Inverse Fourier Transform

I define the Inverse Fourier Transform as

F−1(f)(x) =: f̌(x) =

∫
R
f(k)e2πikx dk.
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I want you to notice that this basically looks like the Fourier transform. Therefore, most of
the properties should carry over, there just might be a difference in sign. For example:

•

̂

(f + g) = f̌ + ǧ

• (̂f ′)(x) = −2πixf̌(x)

•

̂

(f ⋆ g) = f̌ ǧ and (̂fg) = f̌ ⋆ ǧ

11.2 Example 1: Cosine wave but cut off

You saw in lecture that the Fourier of a cosine or sine function is weird, entering the
mysterious territory of tempered distributions. We will try our best not to enter this territory
unless we have to, since it’s impossible to talk about it rigorously with the tools we currently
have.

Ok, but what if we take only part of a cosine wave, such as

f(x) := cos(2π · 1
2
x) · 1[−1,1](x)?

1−1

1

−1

That is, we only take the part of this cosine wave between −1 and 1, and make it 0
everywhere else. Then, this is integrable enough to have a Fourier transform.

Let’s compute it. We have

f̂(k) =

∫
R
cos(πx)1[−1,1](x)e

−2πikx dx.

The indicator function simply changes the bounds of the integration, so this is

=

∫ 1

−1

cos(πx)e−2πikx dx.
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There are several ways to evaluate this. You can try integrating by parts twice, and you can
also try using Euler’s formula on the exponential term and reduce to playing with integrals
of products of trig functions. But then you’d have to be good at trig identities. Instead,
let’s try using Euler’s formulae in reverse! Given that

eix = cosx+ i sinx,

we can find the formulas,

cosx =
eix + e−ix

2

sinx =
eix − e−ix

2i

which are super nice when we don’t want to deal with trig functions, which is honestly like
90% of the time.

Here let’s use the cosine formula. This gives

=

∫ 1

−1

eiπx + e−iπx

2
· e−2πikx dx

=
1

2

∫ 1

−1

e(1−2k)πix dx+
1

2

∫ 1

−1

e(−1−2k)πix dx

=
1

2

(
1

(1− 2k)πi
e(1−2k)πix

∣∣∣∣1
x=−1

)
+

1

2

(
1

(−1− 2k)πi
e(−1−2k)πix

∣∣∣∣1
x=−1

)

=
e(1−2k)πi − e−(1−2k)πi

2π(1− 2k)i
+
e(−1−2k)πi − e(1+2k)πi

2π(1− 2k)i
.

Reapplying Euler’s formula again, we find that this is

sin((1− 2k)π)

(1− 2k)π
+

sin((−1− 2k)π)

(−1− 2k)π

or
sin((1− 2k)π)

(1− 2k)π
+

sin((1 + 2k)π)

(1 + 2k)π
.

Using the “sinc” function, which is just sinc(x) := sinx
x
, this is often expressed as

sinc((1− 2k)π) + sinc((1 + 2k)π).

Let’s plot what that looks like.
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Notice that the two “peaks” here are at around k = ±1
2
, meaning that the Fourier

Transform has detected that the original function f(x) looks quite a bit like a wave with
frequency 2π · 1

2
. And... that’s definitely true! So the answer we got for f̂(k) matches the

intuition for what the Fourier Transform is doing.

11.3 Example 2: Triangular Bump

Next, let’s Fourier the function f(x) :=


1 + x, −1 < x ≤ 0

1− x, 0 < x < 1

0, Otherwise

, which is nasty when

written like that so stare at this picture instead.

-2 -1 0 1 2

-1

0

1

You could just Fourier this manually and do it carefully, integrating by parts some number
of times and getting a nasty expression to work with, or you can be a bit clever and use the
following:
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Hint: It turns out that f = 1[−1/2,1/2] ⋆ 1[−1/2,1/2].

(no, i don’t expect you to come up with such magical observations)

If you didn’t come to recitation, I’ll let you figure out on your own why this is true
(there’s a very intuitive reason if you truly understand convolution). Now, since Fourier
turns convolution into multiplication,

f̂ = F (1[−1/2,1/2] ⋆ 1[−1/2,1/2]) = F (1[−1/2,1/2]) · F (1[−1/2,1/2]) = F (1[−1/2,1/2])
2.

So we just have to Fourier 1[−1/2,1/2], which is a “rectangular bump”. You did something like
this in class. So, if you trust me, you’ll just get something like

F (1[−1/2,1/2])(k) = sinc(πk).

Thus
f̂(k) = sinc2(πk) .

I’ll plot what that looks like because I already wrote the code to generate these diagrams
which I don’t want to waste, but I don’t think it’s necessarily that enlightening.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-1

0

1

I will note, though, that so far we’ve been getting pretty “lucky”: All the Fourier transforms
so far ended up being real-valued functions, which has made them pretty easy to draw. In
general they won’t be so nice. (can you figure out why these two examples both ended up
giving real-valued answers? it’s actually not luck at all...)
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11.4 Example 3: Triangular Bump but transformed a bit

Now I want to Fourier this guy, which I’ll call h(x).

-1 0 1 2 3 4 5 6 7

-1

0

1

2

3

4

5

This looks a lot like the previous example, it’s just translated and scaled. How can we
use the answer to the previous example to quickly obtain ĥ?

Let’s do this in two steps: First the scaling, then the translation. First, let’s scale the
f(x) from the previous example to match the proportions of the new triangle.

We’ll call the following graph g(x).

-4 -3 -2 -1 0 1 2 3 4

-1

0

1

2

3

4

5

g(x) is just f(x) scaled horizontally by a factor of 3, and scaled vertically by a factor of
4. So we can write g in terms of f as

g(x) = 4f(x/3).
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Now
ĝ(k) = 4 · f̂(x/3),

and by the “dilation” property discussed earlier, f̂(x/3) = 3f̂(3k). (this notation is abusive
for readability.) thus

ĝ(k) = 12f̂(3k).

Now let’s get ĥ in terms of ĝ. h is just g shifted to the right by 3 units. That is, h(x) =
g(x− 3). Therefore, by the translation property discussed earlier,

ĥ(k) = e−2πik·3ĝ(k),

and plugging in ĝ in terms of f̂ gives

ĥ(k) = e−6πik · 12f̂(3k) = e−6πik · 12 sinc2(3πk) .

This time the answer is not a real-valued function so I won’t try to graph it.

11.5 Solving the Heat Equation using the Fourier Transform

Let’s solve our old friend, {
ut − uxx = 0

u(x, 0) = u0(x)

using Fourier analysis.

As a rule of thumb, your Fourier transforms in these situations are always going to be
in the spatial variable. In this case, we take the Fourier transform in the x variable. Let’s
Fourier each side of the PDE.

F (ut − uxx) = 0

F (ut)− F (uxx) = 0

First Term: The derivative on u is a time derivative, whereas the Fourier Transform is in
space, so these two guys actually don’t interact at all. So one can actually “move the time
derivative out”, to see that F (ut) is simply ût, the time derivative of û.

Second Term: This time the derivatives on u are spatial, so they will interact with the
Fourier Transform in accordance to the derivative property: Differentiation becomes multi-
plication by (a multiple of) ik.

F (uxx) = (2πik)2û = −4π2k2û.

In sum, the heat equation when converted to Fourier land is

ût + 4π2k2û = 0.
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This is just an ODE in the t variable, where we are solving for û, and as far as t is concerned,
the 4π2k2 term is just a constant. So, by your favorite method, you can find that

û = Ae−4π2k2t

for a constant A. We should be careful though — A is a constant from t’s perspective, but
it definitely can depend on k. So, written more precisely,

û(k, t) = A(k)e−4π2k2t.

We can actually figure out what A(k) is. Plugging in t = 0 gives û(k, 0) = A(k). But,
û(k, 0) = û0(k) by Fourier’ing each side of the initial condition u(x, 0) = u0(x). So A(k) =
û0(k).

û(k, t) = û0(k)e
−4π2k2t

Finally, to get u(x, t), we take the inverse Fourier Transform of both sides. Inverse Fourier,
like Fourier, turns multiplication into convolution, thus

u(x, t) =

̂(
û0(k)e

−4π2k2t
)
= ˇ̂u0 ⋆

̂(
e−4π2k2t

)
= u0 ⋆

̂(
e−4π2k2t

)
.

(any time im writing an equation that has both an x and a k, i’m kinda abusing notation.

you should think of

̂(
e−4π2k2t

)
as ǧ(x) where g(k) = e−4π2k2t. a more technically correct way

to write this in one single expression is as

̂(
e−4π2(·)2t

)
(x), which is an eyesore!)

It remains to figure out what

̂(
e−4π2k2t

)
is.

To do this, let’s take a little break and talk about Gaussians. In lecture, you found the
Fourier transform of a Gaussian, which basically looks like e−x2

, and you found (using some
sly tricks that are quite nontrivial) that it’s another Gaussian. Since my Fourier transform
is defined differently, the key result that I’m used to is slightly different: It’s that e−πx2

is
its own Fourier transform,

̂(e−πx2) = e−πk2 .

Based on this, what is ̂(ae−πbx2)? (assuming b > 0.)

Written more properly, let ϕ(x) = e−πx2
. Let ψ(x) = ae−πbx2

. Then since ψ(x) =
aϕ(x

√
b), we have by using the various scaling properties that

ψ̂(k) =
a√
b
ϕ̂(k/

√
b) =

a√
b
ϕ(k/

√
b) =

a√
b
e

−π
b

k2 .

In conclusion (written informally),

̂(ae−πbx2) =
a√
b
e

−π
b

k2 .
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In fact, all properties used here work for the inverse Fourier transform as well, so we can
also conclude that ̂(

ae−πbk2
)
=

a√
b
e

−π
b

x2

.

Now let’s go back to determining

̂(
e−4π2k2t

)
. Ah, well, we can just use the previous

equation with a = 1 and b = 4πt. Thus
̂(
e−4π2k2t

)
=

1√
4πt

e
−x2

4t .

(waiiiit a minute, this looks familiar...)

Finally finally, we have solved the heat equation,

u(x, t) =

(
u0 ⋆

1√
4πt

e
−(·)2
4t

)
(x) =

∫
R
u0(y)

1√
4πt

e
−(x−y)2

4t dy.

Holy cow, that’s the heat solution we know and love!
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