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different form for the Gamma limit, and study the Gamma limit under
the addition of boundary data.
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Chapter 1

Introduction

For a bounded open set Ω ⊆ RN , we may imagine Ω as a container for a liquid whose
density is given by u : Ω → R. The potential energy of the liquid can be measured by the
integral functional u 7→

∫
Ω
W (u) dx where W : R→ [0,∞) is the energy per unit volume.

Suppose that W is a two-well potential, so that W has exactly two distinct zeroes z1, z2

with z1 < z2, which are the phases of the liquid. Then the liquid will tend to take on the two
densities z1 and z2, and in particular its density will simply take the form u = z1 ·1E+z2 ·1Ω\E
in order to minimize the potential

∫
Ω
W (u) dx.

Such rapid changes in density induce high interfacial energy between phases. To account
for this, the Van der Waals-Cahn-Hilliard theory of phase transitions [11] [12] [14] [22] models
the potential energy via an integral functional of the form

Jε(u) :=

∫
Ω

[
W (u) + ε2‖∇u‖2

]
dx, u ∈ W 1,2(Ω). (1.1)

The problem of interest is to minimize Jε(u) subject to a mass constraint
∫

Ω
u dx = m. A

minimizing function uε represents a stable density distribution that the liquid would likely
conform to energetically.

What sort of stable density distribution is approached as ε → 0+? Specifically, suppose
that we have a sequence εn → 0+ such that the sequence of minimizers uεn converges to a
function u in some reasonable sense. What properties must be satisfied by u?

Using Gamma convergence (described in Section 2.5), Modica [17] and Sternberg [21]
independently proved that such a u satisfies u ∈ {z1, z2} almost everywhere, and minimizes
the perimeter in Ω of u−1(z1). In particular, they prove that for each sequence of positive
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reals εn with εn → 0+, we have that

Γ- lim
n→∞

(Jεn/εn)(u) =

2

∫ z2

z1

√
W (x) dxPerΩ(u−1(z1)), u ∈ BV (Ω; {z1, z2})

+∞, otherwise

under L1(Ω) convergence, where PerΩ(E) denotes the perimeter of a set E ⊆ Ω, defined as

PerΩ(E) := sup

{∫
E

divϕ : ϕ ∈ C∞0 (RN), |ϕ| ≤ 1

}
.

See also [1], [2], [3], [10], [13], [19].

Owen, Rubinstein and Sternberg [20] studied the family of functionals Jε under boundary
conditions instead of a mass constraint. They prove that if Ω has C2 boundary, hε ∈ Lp(∂Ω)∩
L∞(∂Ω) is the trace of a function in W 1,2(Ω) for each ε > 0, hε → h ∈ L1(∂Ω) ∩ L∞(∂Ω) in
L1(∂Ω) as ε→ 0,

∫
∂Ω

∣∣∂hε
∂σ

∣∣ is bounded in ε and
∥∥∂hε
∂σ

∥∥
L∞(∂Ω)

≤ Cε−1/4 for a constant C > 0,
where σ is a surface parameter on ∂Ω, and Kε : L1(Ω)→ R is defined as

Kε :=

{∫
Ω

[ε−1W (u) + ε‖∇u‖2] dx, u ∈ W 1,2(Ω) and Tru = hε

+∞, otherwise
, (1.2)

where R := [−∞,∞], then

Γ- lim
n→∞

Kεn(u)

=

{∫
Ω
|∇χ(u)|+

∫
∂Ω
|χ(h(x))− χ(Tr(u)(x))| dHN−1(x), u ∈ BV (Ω; {z1, z2})

+∞, otherwise
,

where

χ(t) := 2

∫ t

z1

√
W (z) dz

and εn → 0+. See also [18].

Fonseca and Mantegazza [9] consider a second-order derivative. To be precise, they define

Hε(u) :=

∫
Ω

[
ε−1W (u) + ε3‖∇2u‖2

]
dx (1.3)

and proved that for every sequence of positive reals εn → 0+, we have

Γ- lim
n→∞

Hεn(u) =

{
cPerΩ(u−1(z1)), u ∈ BV (Ω, {z1, z2})
+∞, otherwise

under L1(Ω) convergence, where

c := min

{∫
R

[
W (u) + |u′′|2

]
dt : u ∈ W 2,2

loc (R), lim
t→−∞

u(t) = z1, lim
t→∞

u(t) = z2

}
. (1.4)
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For a treatment of more general functionals, see [5], [6], and [7].

Fonseca and Mantegazza’s proofs appeal to rather sophisticated constructions and tools
such as Young measures. In this paper, we consider a 1-dimensional instance of the problem
solved by Fonseca and Mantegazza, which will allow for alternative and more elementary
methodologies.

Our goal will ultimately be to combine the efforts of Owen, Rubinstein, and Sternberg
with those of Fonseca and Mantegazza by considering the addition of boundary conditions as
in (1.2) to the second-order problem as in (1.3), which will be possible due to our alternative
methodologies.

Define

Φ(u) :=

(∫ 1

0

(u(y)2 − 1)2 dy

)3/4(∫ 1

0

|u′′(y)|2 dy
)1/4

(1.5)

for all u ∈ W 2,2(0, 1). Define the families

J := {u ∈ W 2,2(0, 1) : u(0+) = −1, u(1−) = 1, u′(0+) = u′(1−) = 0} (1.6)

and
J1(t) := {u ∈ W 2,2(0, 1) : u(0+) = −1, u(1−) = t, u′(0+) = 0} (1.7)

for each t ∈ R. Let
α :=

2

33/4
inf
u∈J

Φ(u) (1.8)

and
β(t) :=

4

33/4
inf

u∈J1(t)
Φ(u) (1.9)

for all t ∈ R. Our main result is the following theorem.

Theorem 1.1 Let Ω = (a, b). Let a0, b0 ∈ R, and for each ε > 0, let aε, bε ∈ R be such that
aε → a0 and bε → b0 as ε→ 0+. For each ε > 0 define a functional Gε(u) : L2(Ω)→ R via

Gε(u) :=

{∫
Ω

[ε−1(u2 − 1)2 + ε3|u′′|2] dx, u ∈ W 2,2(Ω), u(a+) = aε, u(b−) = bε

+∞, otherwise
.

Let εn → 0+ be a sequence of positive reals. Then, under strong L2(Ω) convergence, we have
that

Γ- lim
n→∞

Gεn(u)

=

{
α essVarΩ u+ β(−a0 sgnu(a+)) + β(−b0 sgnu(b−)), u ∈ BPV(Ω; {−1, 1})
+∞, otherwise

.
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Here, essVar denotes essential variation and BPV (Ω) denotes the space of functions with
bounded pointwise variation, both of which are described in Section 2.2. The addition of
boundary conditions is of particular interest here because they can ensure at least one phase
transition by preventing the existence of trivial minimizers.

The Gamma convergence result with respect to the metric in L2(Ω) is justified by the
following compactness result.

Theorem 1.2 (Compactness for Second Order Problem) Let Ω := (a, b). For each
ε > 0, define the functional Fε : L2(Ω)→ R via

Fε(u) :=

{∫
Ω

[ε−1(u2 − 1)2 + ε3|u′′|2] dx, u ∈ W 2,2(Ω)

+∞, otherwise
. (1.10)

Let {εn}n be a sequence of positive reals with εn → 0+. If un ∈ L2(Ω) are such that
supn∈N Fεn(un) <∞, then there exists a subsequence {unk}k for which unk → u in L2(Ω) for
some u ∈ BPV (Ω; {−1, 1}).

Proofs of this result are given in [6] and [9]. We will provide yet another proof.

The structure of this thesis is as follows. In Section 2, we review Lp spaces, pointwise
variation, and results in Sobolev spaces. We then define Gamma convergence and motivate
its study.

In Section 3, we prove Theorem 1.2, and then give a more elementary proof for Fonseca
and Mantegazza’s results in the one-dimensional case. Specifically, let Ω := (a, b) and define
the integral functional Fε : L2(Ω)→ R as in (1.10). Let {εn}n be a sequence of positive reals
with εn → 0+. We first prove that if {un}n ⊂ L2(Ω) is a sequence with supn∈N Fεn(un) <
∞, then we can find a subsequence {unk}k such that unk → u in L2(Ω) for some u ∈
BPV (Ω; {−1, 1}). Then, we prove that

Γ- lim
n→+∞

Fεn(u) =

{
α essVarΩ u, u ∈ BPV (Ω; {−1, 1})
+∞, otherwise

under L2(Ω) convergence, where α is defined as in (1.8).

Lastly, in Section 4 we build off of the work done in Section 3 to prove our main result.

The current work, and a slicing methodology, will be used to extend to the N -dimensional
case.



Chapter 2

Preliminaries

2.1 Lp spaces

We denote the Lebesgue measure on R by L1.

For 1 ≤ p ≤ ∞, Lp(E) denotes the Lebesgue space for p-th powers, i.e. the space of
measurable functions u : E → R for which

∫
E
|u|p dx < ∞. ‖u‖Lp(E) :=

(∫
E
|u|p dx

)1/p is
the norm on this space, and for a sequence {un}n ⊂ Lp(E) we say that un → u in Lp(E) if
‖un−u‖Lp(E) → 0. We may refer to this as strong Lp(E) convergence in order to distinguish
it from a related convergence called weak Lp(E) convergence, which we will later define.

One useful property of Lp(E) convergence is that if un → u in Lp(E), then there exists
a subsequence unk such that unk → u almost everywhere.

We will require a generalization of the Lebesgue Dominated Convergence Theorem, based
on equi integrability.

Definition 2.1 (Equi-Integrability on R) Let E ⊆ R be measurable with L1(E) < ∞,
and let un ∈ L1(E) be a sequence. Then {un}n is equi-integrable if

lim
M→+∞

sup
n∈N

∫
{|un|≥M}

|un| dx = 0.

The convergence theorem we need is as follows.

Theorem 2.2 (Vitali’s Convergence Theorem on R) Let 1 ≤ p < ∞. Let E ⊆ R be
measurable with L1(E) < ∞, and let {un}n ⊂ Lp(E). Then, for u ∈ Lp(E), we have that
un → u in Lp(E) if and only if the following two conditions holds:

7
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1. un → u in measure,

2. {|un|p}n is equi-integrable.

We will also make use of an important integral inequality. For 1 ≤ p <∞ and functions
f1, f2, · · · , fn ∈ Lp(E) for some measurable E, recall that

n∑
i=1

(∫
E

|fi|p dx
)1/p

≥

(∫
E

∣∣∣∣∣
n∑
i=1

fi

∣∣∣∣∣
p

dx

)1/p

.

This follows from the standard Minkowski’s inequality. There exists a continuous analogue
of this inequality in the sense that, in a way, we may replace the sums with integrals.

Theorem 2.3 (Minkowski’s Inequality for Integrals on R) Let 1 ≤ p <∞. Let E,F ⊆
R be measurable and let f ∈ Lp(E × F ). Then:∫

F

(∫
E

|f(x, y)|p dx
)1/p

dy ≥
(∫

E

(∫
F

|f(x, y)| dy
)p

dx

)1/p

.

2.2 Pointwise Variation and Essential Variation

For a function u : I → R, where I is an interval of R, we may define the pointwise
variation of u as

Var
I
u := sup

{
n∑
i=1

|u(xi)− u(xi−1)| : xi ∈ I, x0 < x1 < . . . < xn

}
.

If VarI u < ∞ then we write u ∈ BPV (I). A useful property is that if u is absolutely
continuous, then VarI u =

∫
I
|u′| dx

A family of functions having uniformly bounded pointwise variation is a powerful prop-
erty.

Theorem 2.4 (Helly’s Selection Theorem) Let I be an interval of R and let F ⊆ BPV (I)
be an infinite family of functions u : I → R such that supu∈F VarI u ≤ C for a constant
C > 0. Assume moreover that there exists x0 ∈ I such that the set {u(x0) : u ∈ F}
is bounded. Then there exists a sequence {un}n ∈ F that converges pointwise to some
u ∈ BPV (I).
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This is given as Theorem 2.44 in [16], where a proof can be found.

In the case that such a pointwise convergence is obtained, we can moreover obtain a
bound on VarI u.

Theorem 2.5 If un, u ∈ BPV (I) and un → u pointwise, then

lim inf
n→∞

Var
I
un ≥ Var

I
u.

See Proposition 2.47 in [16] for a proof.

Now suppose, say, u ∈ Lp(I). Then there is no sense in speaking of VarI u because
the values of u are not well-defined pointwise. The workaround is to define the essential
pointwise variation of u.

Definition 2.6 (Essential Pointwise Variation) Let I be an interval and u ∈ L1
loc(I).

Then the essential pointwise variation of u over I is given by

essVar
I

u := inf
{

Var
I
ũ : ũ is a representative of u

}
.

A nice property is that the infimum in the definition for essVarI is obtained, i.e., there
is always a representative ũ for u such that essVarI u = VarI ũ. This follows from Theorem
2.4 and Theorem 2.5.

For u ∈ Lp(I), we write u ∈ BPV (I) if u has a representative ũ with ũ ∈ BPV (I). By
the property from above, we see that u ∈ BPV (I) if and only if essVarI u <∞.

2.3 Sobolev Spaces

We begin by defining weak differentiation.

Definition 2.7 (Weak Derivative) Let Ω ⊆ R be an open set and 1 ≤ p ≤ ∞. For
u ∈ Lp(Ω), we say that u admits a weak derivative of order k ∈ N if there exists v ∈ Lp(Ω)
satisfying ∫

Ω

uϕ(k) dx = (−1)k
∫

Ω

vϕ dx

for all ϕ ∈ C∞c (Ω).
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It is not too difficult to verify that the weak derivative is unique up to almost-everywhere
equivalence. If u has a differentiable representative, we call its derivative (in the traditional
sense) the strong derivative, so as to distinguish the two notions of derivative.

The weak derivative is also notated in the same way as the strong derivative. For example,
if Ω := (−1, 1) and we take u(x) = |x|, then u admits a weak derivative given by u′(x) =
sgn(x).

Sobolev spaces consist of Lp functions that admit weak derivatives.

Definition 2.8 (Sobolev Space) Let Ω ⊆ R be open, 1 ≤ p ≤ ∞, and k ∈ N. Then the
Sobolev space W k,p(Ω) is the normed space of all u ∈ Lp(Ω) that admit weak derivatives
up to order k, such that u(l) ∈ Lp(Ω) for all 1 ≤ l ≤ k. We may endow W k,p(Ω) with the
following norm:

‖u‖Wk,p(Ω) := ‖u‖Lp(Ω) +
k∑
l=1

‖u(l)‖Lp(Ω).

This definition may be unwieldy for showing that a function belongs to a Sobolev space,
so we often work with the following equivalent condition.

Theorem 2.9 (ACL Condition for k = 1 on R) Let Ω ⊆ R be an open set and 1 ≤ p <
∞. Then u ∈ W 1,p(Ω) if and only if u is absolutely continuous and u, u′ ∈ Lp(Ω). Moreover,
if u ∈ W 1,p(Ω) then the strong and weak derivatives of u agree.

Absolute continuity of Lp functions is discussed in the sense that there exists an absolutely
continuous representative, and similarly for differentiability. A proof of this condition may
be found in [16].

An analogue of this condition exists for k = 2.

Theorem 2.10 (ACL Condition for k = 2 on R) Let Ω ⊆ R be an open set and 1 ≤
p < ∞. Then u ∈ W 2,p(Ω) if and only if u ∈ C1(Ω), u′ is absolutely continuous, and
u, u′, u′′ ∈ Lp(Ω). Moreover, if u ∈ W 2,p(Ω) then the first and second-order strong derivatives
of u agree with their weak analogues.

A proof of this may be found in [15]. One particular corollary of this condition is that
if u ∈ W 1,1(I) then u has an absolutely continuous representative ũ and we can show that
essVarI u =

∫
I
|ũ′| dx.

Various algebraic properties satisfied by strong derivatives have analogues for weak deriva-
tives. For instance, we have the following chain rule.
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Theorem 2.11 (Chain Rule) Let Ω ⊆ R be an open, bounded interval and let 1 ≤ p ≤ ∞.
Suppose f : R → R is Lipschitz and u ∈ W 1,p(Ω). Then f(u) ∈ W 1,p(Ω) and d

dx
f(u) =

f ′(ũ)u′, where ũ is the absolutely continuous representative of u, and we take f ′(ũ(x))u′(x)
to be 0 whenever u′(x) = 0.

This is a consequence of the chain rule for absolutely continuous functions (See Theorem
3.24 in [16]).

It is useful to obtain a bound for
∫ b
a
|u′|2 dx in terms of

∫ b
a
|u|2 dx and

∫ b
a
|u′′|2 dx for

u ∈ W 2,p(a, b). The following two results are special cases of Lemma 7.38 and Theorem 7.37
in [16].

Lemma 2.12 Let I := (a, b). Suppose u ∈ W 2,2(I) such that u′ has at least one zero in
[a, b]. Then there exists a universal constant c > 0 such that∫ b

a

|u′|2 dx ≤ c

(∫ b

a

u2 dx

)1/2(∫ b

a

|u′′|2 dx
)1/2

.

Theorem 2.13 For an open interval I and u ∈ W 2,2(I), there exists a universal constant
c > 0 such that (∫

I

|u′|2 dx
)1/2

≤ cl−1

(∫
I

u2 dx

)1/2

+ cl

(∫
I

|u′′|2 dx
)1/2

for every l with 0 < l < L1(I).

We note that by applying the inequality a+b
2
≤
√

a2+b2

2
for a, b ∈ R to the above theorem,

we may obtain the inequality∫
I

|u′|2 dx ≤ c′l−2

∫
I

u2 dx+ c′l2
∫
I

|u′′|2 dx

under the same conditions but for a different universal constant c′ > 0.

Lastly, Sobolev spaces admit useful embedding results.

Theorem 2.14 (Morrey’s Embedding on R) Let Ω ⊆ R be an open set. Then we have
the continuous inclusion W 1,p(Ω) ↪→ C0,1− 1

p (Ω). That is, W 1,p(Ω) ⊆ C0,1− 1
p (Ω) and there

exists a constant C > 0 such that

‖u‖
C

0,1− 1
p (Ω)
≤ C‖u‖W 1,p(Ω).

A statement and proof for larger dimensions may be found in [16]. When over R as
above, a simpler proof consists of applying Hölder’s Inequality.
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2.4 Weak Convergence

Definition 2.15 (Weak Convergence in Lp) Let 1 ≤ p <∞. Let E ⊆ R be measurable,
and let un ∈ Lp(E) for all n ∈ N. For u ∈ Lp(E), we say that {un}n converges weakly to u
in Lp(E) if

lim
n→∞

∫
E

unv dx =

∫
E

uv dx

for all v ∈ Lp′(E), where p′ ∈ [1,∞] is such that 1
p

+ 1
p′

= 1, and we write un ⇀ u in Lp(E).

Definition 2.16 (Weak Convergence in W k,p) For Ω ⊆ R open, k ∈ N, 1 ≤ p < ∞,
and un, u ∈ W k,p(Ω), we say that {un}n converges weakly in W k,p(Ω) if u(l)

n ⇀ u(l) in Lp(Ω)
for every 0 ≤ l ≤ k, and we write un ⇀ u in W k,p(Ω).

It can be shown that weak limits are unique up to almost-everywhere equivalence. More-
over, Hölder’s inequality implies that strong convergence in Lp(E) implies weak convergence
in Lp(E), and consequently strong convergence in W k,p(Ω) implies weak convergence in
W k,p(Ω).

Proofs of the theorems that follow may be found in [8].

Weak convergence enables us to consider a notion of weak compactness.

Theorem 2.17 (Weak Compactness in W k,p) Let Ω ⊆ R be open, k ∈ N, 1 < p < ∞,
and suppose that un ∈ W k,p(Ω) is such that {un}n is uniformly bounded on W k,p(Ω), that is,
supn∈N ‖un‖Wk,p(Ω) < ∞. Then there exist a subsequence {unl}l and u ∈ W k,p(Ω) such that
unl ⇀ u in W k,p(Ω).

Lastly, weak convergence is useful for obtaining a weak form of semi-continuity for certain
functions. A particular result we shall use is the following.

Theorem 2.18 Let 1 ≤ p < ∞ and let Ω ⊆ RN be open and bounded. Suppose that
f : R→ R is convex. Then the integral functional F : Lp(Ω)→ R defined by

F (u) :=

∫
Ω

f(u) dx

is sequentially lower semi-continuous with respect to weak Lploc(Ω) convergence. That is, we
have

F (u) ≤ lim inf
n→∞

F (un)

whenever un, u ∈ Lp(Ω) such that un ⇀ u in Lploc(Ω).

For a proof, see Theorem 5.14 in [8].
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2.5 Gamma Limits

The Gamma limit is a notion of function convergence that is of interest because it pre-
serves minima.

Definition 2.19 For a metric space (X, d) and a sequence {fn}n, fn : X → R, we say that
{fn}n Gamma converges to a function f : X → R if for all x0 ∈ X:

1. lim infn→∞ fn(xn) ≥ f(x0) for all sequences xn with xn
d→ x0, and

2. lim supn→∞ fn(xn) ≤ f(x0) for some sequence xn with xn
d→ x0,

and we write f = Γ- limn→∞ fn.

The two inequality conditions are referred to as the liminf inequality and limsup inequality
respectively.

The following properties are proven in Chapter 1 of [4].

• The Gamma limit, if it exists, is unique pointwise. Moreover, it is given precisely by(
Γ- lim

n→∞
fn

)
(x) = inf

{
lim inf
n→∞

fn(xn) : xn
d→ x
}
.

• It is not necessarily true that the Gamma limit coincides with the pointwise limit, if
both exist.

• If f = Γ- lim fn exists and xn is a minimizer for fn, then every accumulation point of
the sequence {xn}n is a minimizer for f .

As an example, let us define Ω := (0, 1) and consider the functional Fε : W 1,2(Ω) → R
defined by

Fε(u) :=

{∫ 1

0
[(u2 − 1)2 + ε2|u′|2] dx,

∫
Ω
u dx = 0

+∞, otherwise

for ε > 0. Although it is quite non-trivial, it can be shown that Fε has a minimizer.

The ε2|u′|2 term is a complication. Can it be removed without much change to the
minimizers? As before, let {εn}n be a sequence with εn → 0+. We can show that

Γ- lim
n→∞

Fεn(u) =

∫ 1

0

(u2 − 1)2 dx
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under W 1,2(Ω) convergence. Now let us attempt to repeat the previous logic. If we take un
to be a minimizer of Fεn , then any subsequence of un converging in W 1,2(Ω) must converge
to a minimizer of

∫ 1

0
(u2 − 1)2 dx. However, we can show that

inf

{∫ 1

0

(u2 − 1)2 dx :

∫
Ω

u dx = 0 and u ∈ W 2,1(Ω)

}
= 0,

hence a minimizer umin would have to take the form umin = 1 · 1E + (−1) · 1Ω\E for some E
with L1(E) = 1

2
, which cannot be consistent with the requirement that u ∈ W 2,1(Ω). Hence,

there is no such minimizer!

Our failure to deduce anything meaningful from this Gamma convergence result is a
consequence of missing a compactness result that guarantees the existence of converging
subsequences of {un}n. Fortunately, without computing the exact minimizers, we can still
recover a reasonable Gamma limit result by weakening the convergence. Specifically, we may
sacrifice the strong W 1,2(Ω) convergence for weak convergence in L4(Ω) . The advantage
of this weakening is that if we take un to be a minimizer of Fεn , then we can use weak
compactness to prove that there is a subsequence {unk}k and some u ∈ L4(Ω) for which
unk ⇀ u in L4(Ω), which is precisely the sort of compactness result we seek. Under weak
L4(Ω) convergence, the Gamma limit changes to

Γ- lim
n→∞

Fεn(u) =

∫ 1

0

f ∗∗(u) dx,

where f ∗∗(z) :=

{
(z2 − 1)2, |z| > 1

0, |z| ≤ 1
denotes the convex envelope of f(z) := (z2 − 1)2. Due

to the existence of a compactness result, we are guaranteed the existence of a subsequence
{unk}k converging weakly in L2(Ω) to a minimizer of

∫
Ω
f ∗∗(u) dx, and indeed there are many

minimizers of this functional.

This demonstrates the importance of choosing the correct metric of convergence for the
Gamma limit. If the convergence is too strong, there may be no compactness result. On the
other hand, the weaker the convergence, the weaker the result we end up proving.



Chapter 3

The Second-Order Singularly-Perturbed
Problem

Our first goal is to prove Theorem 1.2. As a steppingstone, we first prove a similar
compactness result in the context of a first order singularly-perturbed problem, which is of
interest in itself (see [17], [19], [21] for a different proof).

Theorem 3.1 (Compactness for First Order Problem) Let Ω := (a, b) be a non-empty
open interval, and let {εn}n be a sequence of positive reals with εn → 0+.

(i) If we have a sequence {un}n ⊂ W 1,2(Ω) with

C := sup
n∈N

∫
Ω

[
ε−1
n (u2

n − 1)2 + εn|u′n|2
]
dx <∞,

then there exists a subsequence {unk}k for which unk → u in L2(Ω) for some u ∈
BPV (Ω; {−1, 1}).

(ii) Moreover, such a u must satisfy essVarΩ u ≤ 3
4
C.

Proof. Since
∫

Ω
(u2

n−1)2 dx ≤ Cεn → 0, we see that u2
n−1→ 0 in L2(Ω). So, by extraction

of a subsequence, we may assume that u2
n − 1→ 0 almost everywhere. In particular, we get

that |un| → 1 almost everywhere.

Applying the AM-GM inequality inside the integral gives

C ≥
∫

Ω

[
ε−1
n (u2

n − 1)2 + εn|u′n|2
]
dx ≥

∫
Ω

2|u2
n − 1| · |u′n| dx =

∫
Ω

|U ′n| dx

15
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for all n, where Un := 2un − 2
3
u3
n. Taking Ũn to be the absolutely continuous representative

of Un, we deduce that VarΩ Ũn ≤ C for all n. Moreover, since |un| → 1 almost everywhere,
we have that |Un| → 2 − 2

3
= 4

3
almost everywhere by continuity of z 7→ 2z − 2

3
z3, and so,

in particular, there is some x ∈ Ω for which Ũn(x) converges. From this, we may now apply
Helly’s Selection Theorem (Theorem 2.4) to find a subsequence Ũnk that converges pointwise
to some Ũ ∈ BPV (Ω), and C ≥ lim infn→∞VarΩ Ũn ≥ Var Ũ by Theorem 2.5.

It follows that {Unk}k converges to some U almost everywhere that has representative
Ũ , with U = ±4

3
almost everywhere, and moreover essVarΩ U ≤ Var Ũ ≤ C <∞. Hence, by

taking u := 3
4
U , we have that

essVar
Ω

u ≤ 3

4
C <∞, (3.1)

and particularly u has a representative ũ ∈ BPV (Ω; {−1, 1}).

To see that unk → u almost everywhere, recall that |unk | → 1 almost everywhere. Taking
representatives ũnk , we have that almost every x0 ∈ Ω satisfies |ũnk(x0)| → 1, 2ũnk − 2

3
ũ3
nk

=

Ũnk for all k, Ũnk(x0)→ Ũ(x0), and Ũ(x0) = 4
3
ũ(x0).

For every such x0 we have that 2ũnk(x0) − 2
3
unk(x0)3 → 4

3
ũ(x0). If ũ(x0) = 1, then

2ũnk(x0) − 2
3
ũnk(x0)3 − 4

3
→ 0, and by factoring we obtain (ũnk(x0) − 1)2(ũnk(x0) + 2) →

0. But |ũnk(x0)| → 1, so lim infk→∞ |ũnk(x0) + 2| ≥ 1, and hence it must follow that
(ũnk(x0) − 1)2 → 0, i.e., ũnk(x0) → 1 = ũ(x0). By a symmetrical argument we see that if
ũ(x0) = −1 then ũnk(x0)→ −1 = ũ(x0). This shows that unk → u almost everywhere.

Lastly, to obtain L2(Ω) convergence, we may use the fact that essVarΩ Unk ≤ C and that
{Unk}k converges almost everywhere, to deduce that {Unk}k is uniformly bounded by some
constant C ′. Then the inverse image of [−C,C] under z 7→ 2z− 2

3
z3 is compact by continuity,

thus |Unk | = |2unk − 2
3
u3
nk
| ≤ C ′ implies that |unk | ≤ C ′′ for some constant C ′′. In particular,

we see that {unk}k is uniformly bounded, so we may apply dominated convergence to obtain
the desired L2(Ω) convergence. This proves item (i), and the bound claimed in item (ii) was
acquired in (3.1). �

Next, we will prove an essential interpolation inequality.

Theorem 3.2 Let Ω := (a, b) be an interval in R, and for each 0 < ε < b−a
2

let Ωε :=
(a+ ε, b− ε). Then there is a universal constant C > 0 such that∫

Ωε

ε|u′|2 dx ≤ C

∫
Ω

[
ε−1(u2 − 1)2 + ε3|u′′|2

]
dx

for all u ∈ W 2,2(Ω) and 0 < ε < b−a
2
.

We first prove a small lemma.
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Lemma 3.3 Let Ω be an open interval in R and u ∈ W 2,2(Ω). Then the set Z := {x ∈ Ω :
u(x) = 0, u′(x) 6= 0} is countable.

Proof. Let x0 ∈ Z. It suffices to show that x0 is an isolated point of Z. We may assume
without loss of generality that u′(x0) > 0.

Since u ∈ W 2,2(Ω) we know that u′ is continuous (See Theorem 2.10). Thus, there
exists δ > 0 such that u′(x) > 0 for all x ∈ (x0 − δ, x0 + δ). We conclude that there is no
x ∈ (x0 − δ, x0 + δ) for which u(x) = 0 (so that in particular, x 6∈ Z), otherwise we obtain a
contradiction from Rolle’s Theorem. �

Although it is not worth stating as a lemma, we will be using the inequality (|z| − 1)2 ≤
(z2 − 1)2 quite liberally, which follows from factoring (z2 − 1)2 and taking cases on the sign
of z.

We may now prove Theorem 3.2.

Proof. We first claim that ∫
{u=0}

|u′|2 dx = 0, (3.2)

or equivalently, ∫
{y:u(y)=0,u′(y)6=0}

|u′|2 dx = 0.

By Lemma 3.3, the domain over which we integrate here is countable, so the integral is
indeed 0.

It follows that
∫

Ω
|u′|2 dx =

∫
u−1((−∞,−0)∪(0,+∞))

|u′|2 dx, so it remains to examine the set
u−1((−∞,−0)∪(0,+∞)). This set is open by continuity, so it is the at-most countable union
of disjoint open intervals. Let those intervals that do not have either a or b as an endpoint
be enumerated as {(ai, bi)}i∈I for a countable, possibly empty index set I. Let the union of
these intervals be V , so V is where u 6= 0 except possibly near the endpoints of (a, b).

Then for all i ∈ I we have that u(ai) = u(bi) by a continuity argument. Thus by Rolle’s
Theorem there is ci ∈ (ai, bi) for which u′(ci) = 0. Moreover, u 6= 0 over (ai, bi), thus
v := |u| − 1 is differentiable over (ai, bi). If we assume, without loss of generality, that u > 0
in (ai, bi), then v = u− 1, so v ∈ W 2,2(ai, bi), with v′ = u′ and v′′ = u′′. By Lemma 2.12, it
follows that ∫ bi

ai

|u′|2 dx ≤ c1

(∫ bi

ai

(|u| − 1)2 dx

)1/2(∫ bi

ai

|u′′|2 dx
)1/2

≤ c1

(∫ bi

ai

(u2 − 1)2 dx

)1/2(∫ bi

ai

|u′′|2 dx
)1/2
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for a constant c1 > 0. Multiplying by ε gives∫ bi

ai

ε|u′|2 dx ≤ c1

(∫ bi

ai

ε−1(u2 − 1)2 dx

)1/2(∫ bi

ai

ε3|u′′|2 dx
)1/2

,

then applying the AM-GM inequality gives∫ bi

ai

ε|u′|2 dx ≤ c1

2

∫ bi

ai

[
ε−1(u2 − 1)2 + ε3|u′′|2

]
dx.

Summing this inequality over all i ∈ I, we conclude that∫
V

ε|u′|2 dx ≤ c1

2

∫
V

[
ε−1(u2 − 1)2 + ε3|u′′|2

]
dx. (3.3)

We are almost done. Let S := inf{x ∈ Ω : u(x) = 0} and T := sup{x ∈ Ω : u(x) = 0}.
If {x ∈ Ω : u(x) = 0} is empty then we take S = a, and similarly for T . The intervals
(a, S) and (T, b), if distinct and non-empty, are the two intervals that we omitted from
{x ∈ Ω : u(x) 6= 0} to obtain V , so that V ∪ (a, S)∪ (T, b) = {x ∈ Ω : u(x) 6= 0}. It remains
to handle these two intervals.

If S − a ≤ ε, then clearly
∫

(a,S)∩Ωε
ε|u′|2 dx = 0. If otherwise S − a > ε, then we may

apply Theorem 2.13 to |u| − 1 ∈ W 2,2(a, S) to get∫ S

a

|u′|2 dx ≤ c2ε
−2

∫ S

a

(|u| − 1)2 dx+ c1ε
2

∫ S

a

|u′′|2 dx

≤ c2ε
−2

∫ S

a

(u2 − 1)2 dx+ c1ε
2

∫ S

a

|u′′|2 dx,

for a constant c2 > 0. Multiplying by ε gives∫
(a,S)∩Ωε

ε|u′|2 dx ≤
∫ S

a

ε|u′|2 dx ≤ c2

∫ S

a

[
ε−1(u2 − 1)2 + ε3|u′′|2

]
dx. (3.4)

Thus the inequality (3.4) holds in either the cases S − a ≤ ε and S − a > ε. Applying the
same arguments above to the interval (T, b), we see that in either of the cases b−T ≤ ε and
b− T > ε we obtain the inequality∫

(T,b)∩Ωε

ε|u′|2 dx ≤ c2

∫ b

T

ε−1(u2 − 1)2 + ε3|u′′|2 dx. (3.5)

By summing (3.3), (3.4), and (3.5), we get the bound∫
{u6=0}∩Ωε

ε|u′|2 dx ≤
∫
E∪((a,S)∩Ωε)∪((T,b)∩Ωε)

ε|u′|2 dx

≤ max(c1/2, c2)

∫
E∪(a,S)∪(T,b)

[
ε−1(u2 − 1)2 + ε3|u′′|2

]
dx

= max(c1/2, c2)

∫
|u|>α

[
ε−1(u2 − 1)2 + ε3|u′′|2

]
dx. (3.6)
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Finally, once we combine (3.2), and (3.6), we arrive at the inequality∫
Ωε

ε|u′|2 dx ≤ c3

∫
Ω

[
ε−1(u2 − 1)2 + ε3|u′′|2

]
dx,

where c3 := max(c1/2, c2). �

With this interpolation inequality proven, we need one more lemma before we prove
Theorem 1.2.

Lemma 3.4 Let Ω be an open interval of R and un ∈ L2(Ω) be such that limn→∞
∫

Ω
(u2

n −
1)2 dx = 0. Then {|un|2}n is equi-integrable.

Proof. Find c > 0 so small such that cz2 ≤ (z2 − 1)2 for all z large enough, say, z ≥ M0.
Now∫

Ω

|un|2 dx =

∫
{|un|<M0}

|un|2 dx+

∫
{|un|≥M0}

|un|2 dx ≤M2
0 +

∫
{|un|≥M0}

1

c
(u2

n − 1)2 dx <∞,

so |un|2 is integrable for all n.

Fix η > 0. Find Nη such that
∫

Ω
(u2

n − 1)2 dx ≤ cη for all n > Nη. By integrability of
|un|2 for n = 1, 2, · · · , Nη, we choose Mη ≥M0 so large that

∫
|un|≥Mη

|un|2 dx < η for all such
n. We deduce that for all n ≥ Nη we have∫

|un|≥Mη

|un|2 dx ≤
1

c

∫
|un|≥Mη

(u2
n − 1)2 dx ≤ η.

�

We now turn to the proof of Theorem 1.2.

Proof. Let C := supn∈N Fεn(un). We first claim that for each δ > 0 there exists a
subsequence {unk}k of {un}n such that unk → v in L2(a + δ, b − δ) for some function v ∈
BPV ((a+ δ, b− δ); {−1, 1}), with essVar(a+δ,b−δ) v ≤ C3 for a constant C3 not depending on
δ.

To see this, we note that (a + εn, b − εn) ⊆ (a + δ, b − δ) for all large enough n, so that
we may apply Theorem 3.2 to obtain the bound∫ b−δ

a+δ

εn|u′n|2 dx ≤
∫ b−εn

a+εn

εn|u′n|2 dx ≤ C ′
∫

Ω

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2

]
dx ≤ CC ′

for all large enough n and for a universal constant C ′. It follows that∫ b−δ

a+δ

ε−1
n (u2

n − 1)2 + εn|u′n|2 dx ≤ C + CC ′
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for all such n, and so by item (i) of Theorem 3.1 applied to the interval (a+ δ, b− δ), we may
find a subsequence {unk}k with unk → v in L2(a + δ, b − δ) for some v ∈ BPV ((a + δ, b −
δ); {−1, 1}), and moreover by item (ii) of Theorem 3.1 we must have that essVar(a+δ,b−δ) v ≤
3
4
(C + CC ′). Hence the claim is proven with C3 := 3

4
(C + CC ′).

We finish with a diagonalization argument. Let Ωm := (a+ δm, b− δm) for a sequence
δm → 0+. For each m we define a subsequence {um,n}m of {un}n recursively as follows:

• u1,n := un for all n.

• For m ≥ 2, we take {um,n}n to be a subsequence of {um−1,n}n that converges in L2(Ωm)
to some vm : Ωm → {−1, 1} with essVarΩm vm ≤ C3, which exists by the claim.

Let wn := un,n. We claim that for some u ∈ L2(Ω; {−1, 1}) we have that wn → u in
L2(Ωm) for every m, so that, in particular, we have wn → u in L2

loc(Ω).

To see this, considerm1,m2 withm2 > m1, so that {um2,n}n is a subsequence of {um1,n}n.
Then we write um2,k := um1,nk for some sequence nk, and so

‖vm2 − vm1‖L2(Ωm1 ) ≤ ‖vm2 − um2,k‖L2(Ωm1 ) + ‖um1,nk − vm1‖L2(Ωm1 ).

Sending k → +∞ we deduce that vm2 = vm1 almost everywhere over Ωm1 , so in general vm2

is an extension of vm1 for all m2 and m1 with m2 > m1. Take u to be the maximal such
extension, defined over all of Ω. Then for any m, we have that

‖wn − u‖L2(Ωm) = ‖un,n − vm‖L2(Ωm)
n→+∞−−−−→ 0

because {un,n}∞n=m is a subsequence of {um,n}n, which converges to vm in L2(Ωm).

This proves the claim. In particular, we see that wn → u in measure. Moreover the
family {|wn|2}n is equi-integrable by Lemma 3.4. Thus by Vitali’s Convergence Theorem,
we get that in fact, wn → u in L2(Ω).

Lastly, to see that u ∈ BPV (Ω), note that

essVar
Ω

u = lim
m→∞

essVar
Ωm

u = lim
m→∞

essVar
Ωm

vm ≤ C3,

and this concludes the proof. �

We now find the Gamma limit under L2(Ω) convergence.

Theorem 3.5 Let Ω := (a, b) be an open interval of R. For each ε > 0, define a functional
Fε : L2(Ω)→ R as in (1.10). Let {εn}n be a sequence of positive reals with εn → 0+. For all
u ∈ L2(Ω), we have

Γ- lim
n→+∞

Fεn(u) =

{
α essVarΩ u, u ∈ BPV (Ω; {−1, 1})
+∞, otherwise
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under L2(Ω) convergence, where α is defined as in (1.8).

We begin with a useful interpolation result.

Lemma 3.6 Let T > 0 and A,m ∈ R with m 6= 0. Then there exists f : [0, T ] → R
satisfying the following properties:

(i) f ∈ C∞([0, T ]),

(ii) f(0) = A, f ′(0) = m, f(T ) = 0, and f ′(T ) = 0,

(iii)
∫ T

0
|f (k)(x)|2 dx ≤ Ck(A

2 +m2T 2)T 1−2k for a constant Ck depending only on k,

(iv) sup[0,T ] |f | ≤ |A|+ 1
2
|m||T |.

Proof. Define g : R→ R as

g(x) :=

{
mx+ A, −T/2 < x < T/2

0, otherwise
.

Let ϕ ∈ C∞c ((−1, 1)) be a non-negative and symmetric mollifier, so that ϕ(x) = ϕ(−x) for
all x ∈ (−1, 1). For each ε > 0 we define ϕε(x) := 1

ε
ϕ
(
x
ε

)
and the mollification

gε(x) :=

∫ x+ε

x−ε
g(y)ϕε(x− y) dy.

If ε < T/2 then we recover the properties gε(0) = A, g′ε(0) = m, gε(T ) = 0, and g′ε(T ) = 0,
because by symmetry of ϕε we have that gε(x) = mx + A for x near 0 and gε(x) = 0 for
x near T . Note that for each k, we have that |g(y)ϕ

(k)
ε (x − y)| ≤ ε−k‖ϕ(k)‖∞|g(y)| for all

x, y ∈ R. As g is integrable, we may use dominated convergence to obtain

g(k)
ε (x) =

dk

dxk

∫ x+ε

x−ε
g(y)ϕε(x− y) dy =

dk

dxk

∫
R
g(y)ϕε(x− y) dy

=

∫
R
g(y)ϕ(k)

ε (x− y) dy =

∫ x+ε

x−ε
g(y)ϕ(k)

ε (x− y) dy.
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Now we integrate in x and apply Minkowski’s inequality for integrals (Theorem 2.3) to get∫ T

0

g(k)
ε (x)2 dx =

∫ T

0

(∫ x+ε

x−ε
g(y)ϕ(k)

ε (x− y) dy

)2

dx

≤

(∫ T+ε

−ε

(∫
(y−ε,y+ε)∩[0,T ]

|g(y)|2|ϕ(k)
ε (x− y)|2 dx

)1/2

dy

)2

≤

(∫ T+ε

−ε
|g(y)|

(∫ y+ε

y−ε
|ϕ(k)
ε (x− y)|2 dx

)1/2

dy

)2

=

(∫ T+ε

−ε
|g(y)| dy

)2 ∫ ε

−ε
|ϕ(k)
ε (z)|2 dz.

The first integral is bounded as∫ T+ε

−ε
|g(y)| dy ≤

∫ T+ε

−ε
(|m||y|+ |A|) dy =

|m|
2

(
(T + ε)2 + ε2

)
+ (T + 2ε)|A|.

As for the second integral, we write ϕ(k)
ε (x) = dk

dxk
1
ε
ϕ
(
x
ε

)
= 1

εk+1ϕ
(k)
(
x
ε

)
, so that∫ ε

−ε
|ϕ(k)
ε (z)|2 dz =

∫ ε

−ε

1

ε2k+2
|ϕ(k)(z/ε)|2 dz =

1

ε2k+1

∫ 1

−1

|ϕ(k)(z)|2 dz.

Altogether, we get that

∫ T

0

g(k)
ε (x)2 dx ≤

(
|m|
2

((T + ε)2 + ε2) + (T + 2ε)|A|
)2

ε2k+1
‖ϕ(k)‖2

L2(R).

Choosing ε := T/4, and applying the inequality (a+ b)2 ≤ 2a2 + 2b2, we see that∫ T

0

g
(k)
T/4(x)2 dx ≤ |m|

2T 4 + |A|2T 2

T 2k+1
Ck = Ck(|A|2 + |m|2T 2)T 1−2k

for a constant Ck depending only on k.

Finally, since |g(x)| ≤ |m||x|+ |A| ≤ |m| |T |
2

+ |A| for all x, we must have

|gT/4(x)| ≤
∫ x+ε

x−ε
|g(y)|ϕε(x− y) dy ≤

(
|m| |T |

2
+ |A|

)∫ x+ε

x−ε
ϕε(x− y) dy = |m| |T |

2
+ |A|

for all x, so that in particular sup[0,T ] |gT/4(x)| ≤ |m| |T |
2

+ |A|. We conclude that f := gT/4
satisfies the required properties. �

Now we prove the Theorem 3.5.
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Proof. First, if u ∈ L2(Ω; {−1, 1}) \ BPV (Ω; {−1, 1}), we claim that for any sequence
{un}n with un → u in L2(Ω), we have lim infn→∞ Fεn(un) = +∞. If not, then supn∈N Fεn(un) <
∞ and so by Theorem 1.2 a subsequence {unk}k converges to some v ∈ BPV (Ω; {−1, 1}) in
L2(Ω). But since u = v, we have u ∈ BPV (Ω; {−1, 1}), contradiction. Hence we need only
consider the case u ∈ BPV (Ω; {−1, 1}).

Step 1. If u 6∈ L2(Ω; {−1, 1}) then for some δ > 0 the set E := {x ∈ Ω : ||u(x)| − 1| ≥ δ}
has positive measure. We may now use Minkowski’s inequality to write∫

E

ε−1
n (u2

n − 1)2 dx ≥
∫
E

ε−1
n (|un| − 1)2 dx

≥ ε−1
n

((∫
E

(|u| − 1)2 dx

)1/2

−
(∫

E

∣∣|u| − |un|∣∣2 dx)1/2
)2

≥ ε−1
n

(
δL1(E)1/2 −

(∫
E

|u− un|2 dx
)1/2

)2

.

It is clear that Fεn(un) → +∞ because ‖u − un‖L2(E) → 0 and ε−1
n → +∞. Hence

Γ- limn→∞ Fεn(u) = +∞.

Step 2. We now consider the case u ∈ BPV (Ω; {−1, 1}).

Suppose u jumps between −1 and 1 (or vice versa) at the J points x1, x2, · · · , xJ ∈ Ω.
Find δ1, · · · , δJ > 0 so small that the intervals (ai, bi) are disjoint, where (ai, bi) := (xi −
δi, xi + δi).

Let un → u in L2(Ω). Define L := lim inf
n→∞

Fεn(un). For the liminf inequality, we need to
prove that L ≥ α essVaru.

By extraction of a subsequence, assume that L = lim
n→∞

Fεn(un). Fix an arbitrary η ∈
(0, 1), and find Nη so large that

L+ η ≥ Fεn(un)

for all n ≥ Nη.

Fix some xi with u jumping from −1 to 1 at xi.

The key claim that we shall prove in this step is that, for all n large enough, we may
modify un in (ai, bi) by “anchoring" it to −1 at ai and to 1 at bi with a derivative of 0 at both
points, without spending more than Cη potential energy for a constant C not depending on
η. To be precise„ there exists vn,i : [ai, bi]→ R such that:

• vn,i ∈ W 2,2(ai, bi),

• vn,i(ai) = −1, vn,i(bi) = 1,
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• v′n,i(ai) = v′n,i(bi) = 0,

•
∫ bi

ai

[
ε−1
n (v2

n,i − 1)2 + ε3
n|v′′n,i|2

]
dx ≤

∫ bi

ai

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2

]
dx+ Cη.

To do this, we consider only n ≥ Nη, and it suffices to modify un in (xi, bi) by affixing to
1 in the manner described. First, observe that since un → u in L2(Ω), we have that un → 1
in L2(xi, bi), so ‖un − 1‖L2(xi,bi) → 0 as n→ +∞. Putting this aside, note that we also have∫ bi
xi

|un−1|2
‖un−1‖2

L2(xi,bi)

dx = 1. Combining this with Fεn(un) ≤ L+ η, it follows that

∫ bi

xi

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2 +

|un − 1|2

‖un − 1‖2
L2(xi,bi)

]
dx ≤ L+ η + 1.

Now let Kn := dε−1
n e and subdivide the interval (xi, bi) into Kn same-length intervals

(yj−1, yj) so that
xi = y0 < y1 < · · · < yKn = bi.

By a “pigeonhole principle-like argument", there exists 1 ≤ j ≤ Kn such that∫ yj

yj−1

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2 +

|un − 1|2

‖un − 1‖2
L2(xi,bi)

]
dx ≤ L+ η + 1

Kn

≤ εn(L+ η + 1). (3.7)

A particular consequence is the bound
∫ yj
yj−1

[ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2] dx ≤ L+η+1

Kn
≤ εn(L +

η + 1), which implies by Theorem 3.2 (applied with the intervals in the inclusion (2
3
yj−1 +

1
3
yj,

1
3
yj−1 + 2

3
yj) b (yj−1, yj)) that∫ 1

3
yj−1+ 2

3
yj

2
3
yj−1+ 1

3
yj

εn|u′n|2 dx ≤ c

∫ yj

yj−1

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2

]
dx ≤ εnc(L+ η + 1)

for all sufficiently large n, for a universal constant c. Combining this with (3.7), we obtain∫ 1
3
yj−1+ 2

3
yj

2
3
yj−1+ 1

3
yj

[
εn|u′n|2 +

|un − 1|2

‖un − 1‖2
L2(xi,bi)

]
dx ≤ εn(c+ 1)(L+ η + 1).

Let H := εn|u′n|2 + |un−1|2
‖un−1‖2

L2(xi,bi)

. If there does not exist x ∈ (2
3
yj−1 + 1

3
yj,

1
3
yj−1 + 2

3
yj) for

which H(x) ≤ 6Knεn(c+1)(L+η+1)
bi−xi , then

εn(c+ 1)(L+ η + 1) ≥
∫ 1

3
yj−1+ 2

3
yj

2
3
yj−1+ 1

3
yj

H dx ≥
(

6Knεn(c+ 1)(L+ η + 1)

bi − xi

)(
yj − yj−1

3

)

=

(
6Knεn(c+ 1)(L+ η + 1)

bi − xi

)(
bi − xi
3Kn

)
= 2εn(c+ 1)(L+ η + 1),
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which is a contradiction. We conclude that for all large enough n, there exists x0 ∈ (2
3
yj−1 +

1
3
yj,

1
3
yj−1 + 2

3
yj), depending on n, such that H(x0) ≤ (C1/2)Knεn ≤ (C1/2)

(
εn+1
εn

)
εn =

(C1/2)(εn + 1) ≤ C1 for a constant C1 that does not depend on n. In particular, we now
know that such an x0 satisfies

1. ε2
n|u′n(x0)|2 ≤ εnC1 and

2. |un(x0)− 1| ≤ C
1/2
1 ‖un − 1‖L2(xi,bi).

These properties, combined with the fact that un → 1 in L2(xi, bi), imply that, for all
large enough n, we have ε2

n|u′n(x0)|2 + |un(x0)− 1|2 ≤ η.

Let A := un(x0)− 1, m := u′n(x0), and T := yj − x0. Using these constants, we may find
a smooth f : [0, T ] → R as described in Lemma 3.6. We are now ready to define vn,i over
(xi, bi) as

vn,i(x) :=


un(x), xi < x ≤ x0

f(x− x0) + 1, x0 < x ≤ yj

1, yj < x < bi

.

By virtue of f being a smooth connector, we must have vn,i ∈ W 2,2(xi, bi). Moreover, by
property (iii) in Lemma 3.6, we have the bounds∫ bi

xi

(vn,i − 1)2 dx =

∫ yj

x0

|f(x− x0)|2 dx ≤ C0(A2 +m2T 2)T (3.8)

and ∫ bi

xi

|v′′n,i|2 dx =

∫ yj

x0

|f ′′(x− x0)|2 dx ≤ C2(A2 +m2T 2)T−3 (3.9)

for universal constants C0, C2 > 0.

Since (3.8) is not quite a bound on the integral of (v2
n,i − 1)2, we will need to prove the

inequality ∫ bi

xi

(v2
n,i − 1)2 dx ≤ C ′

∫ bi

xi

(vn,i − 1)2 dx (3.10)

for all n large enough, for some constant C ′ > 0. Indeed, observe that for all x ∈ (xi, bi), we
have by property (iv) of Lemma 3.6 that

|vn,i(x) + 1| ≤ 2 + |vn,i − 1| ≤ 2 + sup
[0,T ]

|f | ≤ 2 + |A|+ 1

2
|m| · |T |.

Now, T ≤ εn, and from ε2
n|u′n(x0)|2+|un(x0)−1|2 ≤ η ≤ 1 we have that |A| = |un(x0)−1| ≤ 1

and |m||T | = |u′n(x0)|(yj − x0) ≤ εn|u′n(x0)| ≤ 1. We hence obtain |vn,i(x) + 1| ≤ 4 for all
x ∈ (xi, bi), and so taking C ′ = 42 we get∫ bi

xi

(v2
n,i − 1)2 dx =

∫ bi

xi

(vn,i − 1)2(vn,i + 1)2 dx ≤ C ′
∫ bi

xi

(vn,i − 1)2,
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as we wanted.

We now add (3.8) to (3.9) and apply (3.10) to obtain∫ bi

x0

[
ε−1
n (v2

n,i − 1)2 + ε3
n|v′′n,i|2

]
dx

≤ max(C0, C2) max(1, C ′)

[
T

εn
(A2 +m2T 2) +

ε3
n

T 3
(A2 +m2T 2)

]
= C3(A2 +m2T 2)

(
T

εn
+
ε3
n

T 3

)
for some constant C3 > 0.

Since 2
3
yj−1 + 1

3
yj < x0 <

1
3
yj−1 + 2

3
yj, we have that (bi − xi)εn ≥ bi−xi

Kn
= yj − yj−1 >

yj − x0 = T > yj − (1
3
yj−1 + 2

3
yj) = 1

3
(yj − yj−1) = bi−xi

3Kn
≥ bi−xi

3
· εn

1+εn
. We use this to write∫ bi

x0

[
ε−1
n (v2

n,i − 1)2 + ε3
n|v′′n,i|2

]
dx

≤ C3((un(x0)− 1)2 + |u′n(x0)|2T 2)

(
T

εn
+
ε3
n

T 3

)
≤ C3((un(x0)− 1)2 + |u′n(x0)|2(bi − xi)2ε2

n)

(
(bi − xi)εn

εn
+ ε3

n

27(1 + εn)3

(bi − xi)3ε3
n

)
≤ C3((un(x0)− 1)2 + |u′n(x0)|2(bi − xi)2ε2

n)

(
bi − xi +

27 · 8
(bi − xi)3

)
≤ C4((un(x0)− 1)2 + |u′n(x0)|2ε2

n) ≤ C4η,

Where C4 > 0 is a constant with no dependence on n, and we have applied our choice of x0.
Finally, it follows that∫ bi

xi

[
ε−1
n (v2

n,i − 1)2 + ε3
n|v′′n,i|2

]
dx

=

∫ x0

xi

[
ε−1
n (v2

n,i − 1)2 + ε3
n|v′′n,i|2

]
dx+

∫ bi

x0

[
ε−1
n (v2

n,i − 1)2 + ε3
n|v′′n,i|2

]
dx

=

∫ x0

xi

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2

]
dx+

∫ bi

x0

[
ε−1
n (v2

n,i − 1)2 + ε3
n|v′′n,i|2

]
dx

=

∫ x0

xi

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2

]
dx+ C4η

≤
∫ bi

xi

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2

]
dx+ C4η.

Arguing similarly for the interval (ai, xi), we obtain∫ bi

ai

[
ε−1
n (v2

n,i − 1)2 + ε3
n|v′′n,i|2

]
dx ≤

∫ bi

ai

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2

]
dx+ 2C4η. (3.11)
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Thus the key claim has been proven.

Step 3. We now complete the liminf argument. We recall the definitions of the family J
and the constant α from (1.6) and (1.8) respectively.

Let us first write

L+ η ≥ Fεn(un) ≥
J∑
i=1

∫ bi

ai

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2

]
dx

for all large enough n. We apply the key claim (3.11) to every interval (ai, bi) to get

L+ η ≥ −2C4Jη +
J∑
i=1

∫ bi

ai

[
ε−1
n (vn,i(x)2 − 1)2 + ε3

n|v′′n,i(x)|2
]
dx.

Consider the change of variables y := x−ai
bi−ai . Defining wn,i : [0, 1] → R via wn,i(y) =

vn,i ((bi − ai)y + ai), we have that w′′n,i(y) = (bi − ai)2v′′n,i ((bi − ai)y + ai), so that we get

L+ η ≥ −2C4Jη +
J∑
i=1

(bi − ai)
∫ 1

0

[
ε−1
n (wn,i(y)2 − 1)2 +

ε3
n

(bi − ai)4
|w′′n,i(y)|2

]
dy

= −2C4Jη +
J∑
i=1

bi − ai
εn

∫ 1

0

(wn,i(y)2 − 1)2 dy +
ε3
n

(bi − ai)3

∫ 1

0

|w′′n,i(y)|2 dy,

and by applying the weighted AM-GM inequality we may go down again to obtain

L+ η ≥ −2C4Jη +
J∑
i=1

4

33/4

(∫ 1

0

(wn,i(y)2 − 1)2 dy

)3/4(∫ 1

0

|w′′n,i(y)|2 dy
)1/4

= −2C4Jη +
J∑
i=1

4

33/4
Φ(wn,i),

where Φ is defined in (1.5). Finally, as wn,i ∈ J for all i, we have that 4
33/4

Φ(wn,i) ≥
4

33/4
infw∈J Φ(w) = 2α, thus

L+ η ≥ −2C4Jη +
J∑
i=1

2α

= −2C4Jη + 2Jα = −2C4Jη + α essVar
Ω

u.

Hence L+η ≥ −2C4Jη+α essVarΩ u. As η was arbitrary, we conclude that L ≥ α essVarΩ u,
as needed. This proves the liminf inequality for u ∈ BPV (Ω; {−1, 1}).

Step 4. It remains to prove the limsup inequality for u ∈ BPV (Ω; {−1, 1}). This entails
finding a sequence {un}n ⊂ W 2,2(Ω) for which un → u in L2(Ω) and lim supn→∞ Fεn(un) ≤
αVarΩ u.
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First, recall the definition of Φ as in (1.5) and the family J as in (1.6). Define the
subfamily

J (n) :=

{
h ∈J :

∫ 1

0
|h′′|2 dx∫ 1

0
(h2 − 1)2 dx

≤ 1

εn

}
.

Since εn → 0+, it is clear that
⋃∞
n=1 J (n) = J . Setting

Sn :=
{

Φ(h) : h ∈J (n)
}
,

S := {Φ(h) : h ∈J } ,
we have

⋃∞
n=1 Sn = S, and it can be shown that limn→∞ inf Sn = inf S. We note also that

α, as defined in (1.8), may be written as α = 2
33/4

inf S.

For all n, find hn ∈J (n) for which

inf Sn ≤ Φ(hn) ≤ 1

n
+ inf Sn. (3.12)

As in Step 2, suppose u “jumps" at the points x1, x2, · · · , xJ ∈ Ω, and find pairwise disjoint
intervals (ai, bi) ⊆ Ω with xi ∈ (ai, bi). Fix xi such that u jumps from −1 to 1 at xi. Let
ζn be a sequence of positive reals with ζn → 0+ that we shall choose later. We define un in
(ai, bi) as

un(x) :=


−1, ai < x < xi − ζn/2
hn

(
x−xi+ζn/2

ζn

)
, xi − ζn/2 ≤ x ≤ xi + ζn/2

1, xi + ζn/2 < x < bi

.

We define un similarly over all other intervals (aj, bj), and in Ω \
⋃J
j=1(aj, bj) we let un

agree with u. Since hn(0+) = −1, hn(1−) = 1, and h′n(0+) = h′n(1−) = 0, we have that
un ∈ W 2,2(Ω). Moreover, un → u almost everywhere as a consequence of ζn → 0+, and
{|un|}n is equi-integrable, so by Vitali’s Convergence Theorem we have un → u in L2(Ω). It
remains to verify the limsup inequality. We have

Fεn(un) =
J∑
i=1

∫ bi

ai

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2

]
dx

=
J∑
i=1

∫ bi

ai

ε−1
n

(
hn

(
x− xi + ζn/2

ζn

)2

− 1

)2

+
ε3
n

ζ4
n

∣∣∣∣h′′n(x− xi + ζn/2

ζn

)∣∣∣∣2
 dx,

and after changing variables we get

Fεn(un) =
J∑
i=1

ζn

∫ 1

0

[
ε−1
n

(
hn (y)2 − 1

)2
+
ε3
n

ζ4
n

|h′′n (y)|2
]
dy

=
J∑
i=1

ζn
εn

∫ 1

0

(
hn (y)2 − 1

)2
dy +

ε3
n

ζ3
n

∫ 1

0

|h′′n (y)|2 dy. (3.13)
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We now choose ζn so that we obtain the equality case in the AM-GM inequality. Specifically,
we choose

ζn := εn

 3

∫ 1

0

|h′′n (y)|2 dy∫ 1

0

(
hn (y)2 − 1

)2
dy


1/4

.

Showing that this choice is valid for all sufficiently large n amounts to proving that ζn → 0+.
Indeed, since hn ∈J (n), we have that

ζn ≤ εn

(
3

εn

)1/4

= 31/4ε3/4
n → 0+.

With the choice of ζn justified, we now continue the argument in (3.13) by using the choice
of ζn and (3.12) to write

Fεn(un) =
J∑
i=1

4

33/4

(∫ 1

0

(h2
n − 1)2 dy

)3/4(∫ 1

0

|h′′n|2 dy
)1/4

≤ 4J

33/4

(
1

n
+ inf Sn

)
.

Taking the limsup, we obtain

lim sup
n→∞

Fεn(un) ≤ lim sup
n→∞

4J

33/4

(
1

n
+ inf Sn

)
=

2 VarΩ u

33/4
(inf S) = αVar

Ω
u.

This completes the proof. �
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Chapter 4

Boundary Conditions

The Gamma limit will change upon restricting to the boundary conditions u(a+) = aε
and u(b−) = bε for aε → −1 and bε → 1 as ε→ 0+. A portion of the work needed to account
for the boundary conditions has already been done in the proof of Theorem 3.5. Intuitively,
every jump in the interior of (a, b) induces a factor of α, whereas a jump at the boundary
induces a factor of β(t) depending on the height of the jump. Recall that β(t) is defined
as in the statement of Theorem 1.1, and we will again reference the family J1(t) and the
functional Φ, defined in (1.7) and (1.5) respectively.

We first introduce a new family of functions J2(t), defined as

J2(t) :=
{
u ∈ W 2,2

loc (−∞, 0) : u(0) = t and u(x) = −1 for all x ≤ −L for some L > 0
}
(4.1)

for a parameter t ∈ R. We associate with each u ∈J2(t) the constant Lu, where −Lu is the
first time that u reaches −1 and remains at this value indefinitely. That is,

Lu := inf {L > 0 : u(x) = −1 for all x ≤ −L} . (4.2)

We also define a new functional Ψ : W 2,2
loc (−∞, 0)→ R via

Ψ(u) :=

∫ 0

−∞

[
(u2 − 1)2 + |u′′|2

]
dx.

Lemma 4.1
β(t) =

4

33/4
inf

u∈J1(t)
Φ(u) = inf

v∈J2(t)
Ψ(v).

Proof. We first note that if t = −1 then both J1(t) and J2(t) contain the constant
function −1, thus infu∈J1(t) Φ(u) = 0 and infu∈J2(t) Ψ(u) = 0. Now assume that t 6= −1.

31
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Consider u ∈ J1(t). Take L > 0 depending only on u (that we shall choose later), and
define v ∈J2(t) via

v(x) :=

{
−1, x ≤ −L
u(x/L+ 1), −L < x < 0

.

With the change of variables y := x/L+ 1, we have

Ψ(v) =

∫ 0

−L

[
(v(x)2 − 1)2 + |v′′(x)|2

]
dx

=

∫ 0

−L

[
(u(x/L+ 1)2 − 1)2 +

1

L4
|u′′(x/L+ 1)|2

]
dx

=

∫ 1

0

[
L(u(y)2 − 1)2 +

1

L3
|u′′(y)|2

]
dy. (4.3)

By examination of the equality case of the AM-GM inequality, this is precisely 4
33/4

Φ(u) for

a proper choice of L. Specifically, one may take L :=
(

3
∫ 1
0 |u
′′|2 dx∫ 1

0 (u2−1)2 dx

)1/4

, which is well-defined

from the assumption that t 6= −1. This gives 4
33/4

Φ(u) = Ψ(v) ≥ infw∈J ′
∞(t) Ψ(w), and

taking the infimum gives infu∈J1(t) Φ(u) ≥ infw∈J ′
∞(t) Ψ(w).

On the other hand, if v ∈ J2(t), then from taking u(x) := v (Lv(x− 1)), where Lv is
defined in (4.2), we get from using the same computations done in (4.3) and applying the
AM-GM inequality that

Ψ(v) =

∫ 1

0

[
Lv(u(y)2 − 1)2 +

1

L3
v

|u′′(y)|2
]
dy

≥ 4

33/4

(∫ 1

0

(u(y)2 − 1)2 dy

)3/4(∫ 1

0

|u′′(y)|2 dy
)1/4

=
4

33/4
Φ(u),

so that Ψ(v) ≥ 4
33/4

infu∈J1(t) Φ(u). Thus infv∈J2(t) Ψ(v) ≥ 4
33/4

infu∈J1(t) Φ(u), finishing the
proof. �

We will now prove several crucial results concerning the family J2(t) and the functional
Ψ. The first is a compactness result.

Lemma 4.2 Let Ω ⊆ R be a bounded open set and let un ∈ W 2,2(Ω) be such that

M := sup
n∈N

∫
Ω

[
(u2

n − 1)2 + |u′′n|2
]
dx <∞.

Then there exist a subsequence {unk}k and u ∈ W 2,2(Ω) such that
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1. unk ⇀ u in W 2,2(Ω),

2. unk → u uniformly, and

3. u′nk → u′ uniformly.

Proof. Find A > 0 large enough so that z2 ≤ (z2 − 1)2 for all |z| ≥ A. Then∫
Ω

u2
n dx ≤

∫
{|un|<A}

u2
n dx+

∫
{|un|≥A}

u2
n dx ≤ A2L1(Ω) + A

∫
Ω

(u2
n − 1)2 ≤ A2L1(Ω) + AM,

so {un}n is uniformly bounded in L2(Ω). Since {u′′n}n is uniformly bounded in L2(Ω) as
well, we may apply Theorem 2.13 with some l < L1(Ω) to deduce that {u′n}n is uniformly
bounded in L2(Ω). Hence {un}n is uniformly bounded in W 2,2(Ω).

By Theorem 2.17, there exist a subsequence {unk}k and u ∈ W 2,2(Ω) such that unk ⇀ u
in W 2,2(Ω). Moreover, since {unk}k and {u′nk}k are both bounded in W 1,2(Ω), we have by
Morrey’s Embedding (Theorem 2.14) that both {unk}k and {u′nk}k are bounded in C0,1/2(Ω).
In particular, both sequences are uniformly bounded and uniformly equicontinuous, so by
the Ascoli-Arzela Theorem we may extract a further subsequence {unkj }j such that unkj → u

uniformly and u′nkj → u′ uniformly.

�

Next, we show that we may “force" a bound on Lu for functions u ∈J2(t) (see (4.1) and
(4.2)).

Lemma 4.3 Let M, η > 0. Then there exists a constant LM,η > 0, depending only on M
and η, such that for every t ∈ R and u ∈J2(t) with Ψ(u) ≤M <∞, there exists v ∈J2(t)
such that Ψ(v) ≤ Ψ(u) +O(η) and v(x) = −1 for all x ≤ −LM,η, that is, Lv ≤ LM,η.

Proof. Step 1. For ease, we may assume that η < 1
2
. We begin by constructing a

function v1 ∈J2(t) such that Ψ(v1) ≤ Ψ(u) + O(η) and L1(v−1
1 ((0, 2))) ≤ C for a constant

C depending only on M and η.

First, let us apply Theorem 3.2 to the interval (−Lu − 1, 0) with ε = 1 to obtain∫ −1

−Lu
|u′| dx ≤ C ′

∫ 0

−Lu−1

[
(u2 − 1)2 + |u′′|2

]
dx ≤ C ′M (4.4)

for a universal constant C ′. We may assume that C ′ > 4.

Let K := (C′+1)(M+1)
η

and C := 2K+3. Let E := u−1((0, 2)). If L1(E) ≤ 2K+3, then set
v1 := u. Otherwise, we have L1(E ∩ (−∞,−1)) > 2K + 2, and consider E1 := (−∞, y)∩E,
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F := [y, z]∩E, and E2 := (z,−1)∩E, where y, z are chosen such that L1(E1) = L1(E2) = K
and L1(F ) = L1(E)− 2K > 2.

We use the fact that u > 0 over E1, the inequality (4.4), and the inclusion E1 ⊆ (−Lu,−1)
to write

M ≥
∫ 0

−Lu−1

[
(u2 − 1)2 + |u′′|2

]
dx

≥ 1

2

∫
E1

(u2 − 1)2 dx+
1

2

∫ 0

−Lu−1

[
(u2 − 1)2 + |u′′|2

]
dx

≥ 1

2

∫
E1

(u− 1)2 dx+
1

2C ′

∫ −1

−Lu
|u′|2 dx

≥ 1

2

∫
E1

(u− 1)2 +
1

2C ′
|u′|2 dx,

so there exists x1 ∈ E1 such that 1
2
(u(x1) − 1)2 + 1

2C′
|u′(x1)|2 ≤ M

L1(E1)
= M

K
≤ η

C′
. In

particular we have (u(x1) − 1)2 ≤ 2η
C′

and |u′(x1)|2 ≤ 2η. By the assumptions on C ′ and η,
we note that |u(x1)− 1| < 1

2
and |u′(x1)| < 1.

We now apply Lemma 3.6 to u over the interval [x1, x1 + 1], with A := u(x1) − 1 and
m := u′(x1), to see that there exists ũ1 ∈ C∞([x1, x1 +1]) such that ũ1(x1) = u(x1), ũ′1(x1) =
u′(x1), ũ1(x1+1) = 1, and ũ′1(x1+1) = 0, with sup[x1,x1+1] |ũ1−1| ≤ |u(x1)−1|+ 1

2
|u′(x1)| < 1,∫ x1+1

x1

(ũ1 − 1)2 ≤ C ′′((u(x1)− 1)2 + |u′(x1)|2),

and ∫ x1+1

x1

|ũ′1|2 ≤ C ′′((u(x1)− 1)2 + |u′(x1)|2),

for a universal constant C ′′ > 0. Since |ũ1 − 1| < 1 on [x1, x1 + 1], we may write

(ũ2
1 − 1)2 = (ũ1 − 1)2(ũ1 + 1)2 ≤ (ũ1 − 1)2(2 + 1)2 = 9(ũ1 − 1)2,

so we conclude that∫ x1+1

x1

[
(ũ2

1 − 1)2 + |ũ′′|2
]
dx ≤

∫ x1+1

x1

9(ũ1 − 1)2 dx+

∫ x1+1

x1

|ũ′′|2 dx

≤ 10C ′′((u(x1)− 1)2 + |u′(x1)|2)

≤ 10C ′′
(

2η

C ′
+ 2η

)
= O(η).

Here and henceforth, we assume that η is sufficiently small so that O(η) < 1. We construct
x2 ∈ E2 and ũ2 ∈ C∞([x2 − 1, x2]) in a similar manner so that sup[x2−1,x2] |ũ2 − 1| < 1 and∫ x2
x2−1

(ũ2 − 1)2 + |ũ′′2|2 dx = O(η).
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Now define ũ as

ũ(x) :=



u(x), −∞ < x < x1

ũ1(x), x1 ≤ x ≤ x1 + 1

1, x1 + 1 < x < x2 − 1

ũ2(x), x2 − 1 ≤ x ≤ x2

u(x), x2 < x < 0

. (4.5)

Note that this is well-defined in the sense that x1 + 1 < x2 − 1 because x2 − x1 > z − y ≥
L1(F ) ≥ 2. Moreover our choices for ũ1 and ũ2 ensure that u ∈ W 2,2

loc (−∞, 0), and

Ψ(ũ) =

∫
(−∞,x1)∪(x2,0)

[
(ũ2 − 1)2 + |ũ′′|2

]
dx+

∫
[x1,x1+1]∪[x2−1,x2]

[
(ũ2 − 1)2 + |ũ′′|2

]
dx

≤
∫

(−∞,x1)∪(x2,0)

[
(u2 − 1)2 + |u′′|2

]
dx+

∫
[x1,x1+1]∪[x2−1,x2]

[
(u2 − 1)2 + |u′′|2

]
dx+O(η)

≤ Ψ(u) +O(η).

We define

v1(x) :=

{
ũ(x− x2 + x1 + 2), −∞ < x < x2 − 1

ũ(x), x2 − 1 < x < 0
.

In essence, we have “deleted" an interval in which ũ = 1. We still have v1 ∈ W 2,2
loc (−∞, 0)

and v1(0+) = u(0+) = t, with limx→−∞ v1(x) = −1, so that v1 ∈ J2(t). Furthermore,
Ψ(v1) = Ψ(ũ) ≤ Ψ(u) +O(η). Finally, we see that

L1({x < 0 : 0 < v1(x) < 2}) ≤ L1({x ∈ (−∞, x1 + 1) ∪ (x2 − 1, 0) : 0 < ũ(x) < 2})
≤ L1({x ∈ E1 ∪ E2 : 0 < u(x) < 2})

+ L1([x1, x1 + 1]) + L1([x2 − 1, x2]) + L1((−1, 0))

= 2K + 3 = C,

which was our goal.

Step 2. Now we can construct v with Lv ≤ LM,η, where we take LM,η := C + M + K + 3.
Define the set G := {−LM,η + 1 < x < −1 : −2 < v1(x) ≤ 0}, and observe that

C +M +K + 1 ≤ L1((−LM,η + 1,−1))

≤ L1({−LM,η + 1 < x < −1 : 0 < v1(x) < 2})
+ L1({−LM,η + 1 < x < −1 : |v1(x)| > 2}) + L1(G).

Since L1({−LM,η + 1 < x < −1 : 0 < v1(x) < 2}) ≤ C by construction, and

M + 1 ≥ Ψ(u) + 1 ≥ Ψ(v1) ≥
∫
{|v1|>2}

[
(v2

1 − 1)2 + |v′′1 |2
]
dx ≥ L1({x < 0 : |v1| > 2}),

we deduce that L1(G) ≥ K.
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We will now bound
∫
G

(v1 + 1)2 + |v′1|2 dx. By Theorem 3.2, we have that∫
G

|v1|2 dx ≤
∫ −1

−Lη+1

|v1|2 dx ≤ C ′
∫ 0

−Lη

[
(v2

1 − 1)2 + |v′′1 |2
]
dx ≤ C ′Ψ(v1) ≤ C ′(M + 1),

and since (v1 + 1)2 ≤ (v2
1 − 1)2 over G, we evidently have that∫

G

(v1 + 1)2 dx ≤
∫
G

(v2
1 − 1)2 dx ≤ Ψ(v1) ≤ Ψ(u) +O(η) ≤M + 1.

In sum, we have that
∫
G

[(v1 + 1)2 + |v′1|2] dx ≤ (C ′+1)(M+1). Thus there exists x3 ∈ G
such that

(v1(x3) + 1)2 + |v′′1(x3)|2 ≤ (C ′ + 1)(M + 1)

L1(G)
≤ (C ′ + 1)(M + 1)

K
≤ η.

Hence, as we did before to u, we may use Lemma 3.6 to modify v1 in the interval (x3−1, x3)
and obtain a function v ∈ W 2,2

loc (−∞, 0) for which v(x) = −1 for all x < x3− 1, v(x) = v1(x)
for x3 < x < 0, and

∫ x3
x3−1

[(v2
1 − 1)2 + |v′′1 |2] dx ≤ O(η).

This function v satisfies Ψ(v) ≤ Ψ(v1) +O(η) ≤ Ψ(u) +O(η) and, since −LM,η + 1 < x3,
we have that v(x) = −1 for all x < −LM,η, where LM,η depends only onM and η, as desired.
�

Now we arrive at our first major result.

Lemma 4.4 The function β, as defined in (1.9), is continuous.

Proof. Step 1. We claim that β(t) is decreasing over t ≤ −1 and increasing over t ≥ −1.

First note that β(t) ≥ 0 for all t and β(−1) = 0. Now suppose s, t ∈ R satisfy either
−1 < s ≤ t or t ≤ s < −1. We show that β(s) ≤ β(t) by proving that for all v ∈J1(t) we
may find u ∈J1(s) for which Φ(u) ≤ Φ(v).

Indeed, since v(1−) = t and v(0+) = −1, there must exist T ∈ (0, 1) for which v(T ) = s.
Take u(x) := v(Tx). Clearly, u ∈J1(s), and we have∫ 1

0

(u2 − 1)2 dx =

∫ T

0

T−1(v2 − 1)2 dx ≤
∫ 1

0

T−1(v2 − 1)2 dx

and ∫ 1

0

|u′′|2 dx =

∫ T

0

T 3|v′′|2 dx ≤
∫ 1

0

T 3|v′′|2 dx.
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Thus

Φ(u) =

(∫ 1

0

(u2 − 1)2 dx

)3/4(∫ 1

0

|u′′|2 dx
)1/4

≤
(∫ 1

0

T−1(v2 − 1)2 dx

)3/4(∫ 1

0

T 3|v′′|2 dx
)1/4

=

(∫ 1

0

(v2 − 1)2 dx

)3/4(∫ 1

0

|v′′|2 dx
)1/4

= Φ(v),

as needed.

Step 2. Fix t0 ∈ R. We show that lim supt→t0 β(t) ≤ β(t0). It is sufficient to prove that for
any v ∈J1(t0), we may pick ut ∈J1(t) for each t ∈ R such that limt→t0 Φ(ut) = Φ(v). This
is because if we fix η > 0, then we may take v ∈J1(t0) such that β(t0) ≤ 4

33/4
Φ(v) ≤ β(t0)+η,

take ut for each t ∈ R as above, and then choose δ > 0 so small that |Φ(v)− Φ(ut)| < η for
all t with |t− t0| < δ, so that

β(t) ≤ 4

33/4
Φ(ut) ≤

4

33/4
(Φ(v) + η) ≤ β(t0) + η +

4

33/4
η,

which is enough.

For v ∈J1(t0), we take ut ∈J1(t) to be ut := 1+t
1+t0

(v + 1)− 1. Then

∫ 1

0

(u2
t − 1)2 dx =

(
1 + t

1 + t0

)4 ∫ 1

0

(v + 1)2

(
v + 1− 2

1 + t0
1 + t

)2

dx.

Taking the limit, we obtain

lim
t→t0

∫ 1

0

(u2
t − 1)2 dx = lim

t→t0

∫ 1

0

(v + 1)2

(
v + 1− 2

1 + t0
1 + t

)2

dx =

∫ 1

0

(v2 − 1)2 dx

because (v + 1)2
(
v + 1− 21+t0

1+t

)2 converges to (v2 − 1)2 pointwise as t → t0 and, since v is
bounded, we have that (v + 1)2

(
v + 1− 21+t0

1+t

)2 is uniformly bounded for all t sufficiently
near t, which is enough to apply dominated convergence.

We also have

lim
t→t0

∫ 1

0

|u′′t |2 dx = lim
t→t0

(
1 + t

1 + t0

)2 ∫ 1

0

|v′′|2 dx =

∫ 1

0

|v′′|2 dx.
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Altogether, we see that

lim
t→t0

Φ(ut) =

(
lim
t→t0

∫ 1

0

(u2
t − 1)2 dx

)3/4(
lim
t→t0

∫ 1

0

|u′′t |2 dx
)1/4

=

(∫ 1

0

(v2 − 1)2 dx

)3/4(∫ 1

0

|v′′|2 dx
)1/4

= Φ(v).

This completes the proof that β is upper semi-continuous.

Step 3. We are now ready to show that lim inft→t0 β(t) ≥ β(t0).

Letting tn → t0 be arbitrary, we just need to show that lim infn→∞ β(tn) ≥ β(t0).

By the monotone properties that we have proven about β in Step 1, we see that {β(tn) :
n ∈ N} is bounded by a constant M . Specifically, we may take

M = max

{
β

(
sup
n∈N

tn

)
, β

(
inf
n∈N

tn

)}
.

Next, by extraction of a subsequence, we assume that there exists the limit L :=
limn→∞ β(tn). Fix η > 0 and select ũn ∈J2(tn) such that β(tn) ≤ Ψ(ũn) ≤ β(tn) + 1

n
. Since

Ψ(ũn) ≤M + 1 for all n, we may use Lemma 4.3 to find un ∈J2(tn) such that un(x) = −1
for all x ≤ −LM,η, where LM,η depends only on M and η, and Ψ(un) ≤ Ψ(ũn) + O(η), so
that

β(tn) ≤ Ψ(un) ≤ β(tn) +
1

n
+O(η). (4.6)

Note that {Ψ(un)}n is uniformly bounded. In particular, supn∈N
∫ 0

−m [(u2
n − 1)2 + |u′′n|2] dx <

∞ for each m ∈ N.

Consider m = 2. By Lemma 4.2 we may extract a subsequence {u2,n}n of {un}n for
which u2,n ⇀ v2 in W 2,2(−2, 0) for some v2 ∈ W 2,2(−2, 0) and u2,n → v2 uniformly.

Inductively, for m ≥ 3 we take {um,n}n to be a subsequence of {um−1,n}n such that
um,n ⇀ vm in W 2,2(−m, 0) for some vm ∈ W 2,2(−m, 0) and such that um,n → vm uniformly.

We claim that vm extends vm−1 for all m ≥ 3. Indeed, um−1,n → vm−1 almost every-
where, and since {um,n}n is a subsequence of {um−1,n}n, we have that um,n → vm−1 almost
everywhere over (−m+ 1, 0). Since um,n → vm almost everywhere, it follows that vm−1 and
vm agree over (−m+ 1, 0) as needed.

It follows that there exists a unique u : (−∞, 0)→ R extending every vm. Now consider
{un,n}n. For each m, {un,n}n may be viewed as a subsequence of {um,n}n for n large enough,
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so un,n → vn = u almost everywhere in (−m, 0). Thus un,n → u over (−∞, 0) almost
everywhere. Similarly, we see that un,n ⇀ u in W 2,2(−m, 0) for each m ≥ 2. In particular,
un,n ⇀ u in W 2,2

loc (−∞, 0).

Since {un,n}n is a subsequence of {un}n, we let nk be such that {unk}k := {un,n}n.

To finish, we use the fact that unk → u almost everywhere in (−∞, 0) to obtain the
inequality ∫ 0

−∞
(u2 − 1)2 dx ≤ lim inf

k→∞

∫ 0

−∞
(u2

nk
− 1)2 dx

by Fatou’s Lemma. Next, we use the property that u′′nk ⇀ u′′ in L2
loc(−∞, 0) and the fact

that z 7→ z2 is convex, together with Theorem 2.18, to conclude that∫ 0

−∞
|u′′|2 dx ≤ lim inf

k→∞

∫ 0

−∞
|u′′nk |

2 dx.

Combining these two inequalities gives Ψ(u) ≤ lim infk→∞Ψ(unk).

Now, on one hand, we have from (4.6) that Ψ(unk) ≤ β(tnk) + 1
nk

+O(η), and taking the
liminf we have

L+O(η) = lim inf
k→∞

β(tnk) +O(η) ≥ lim inf
k→∞

Ψ(unk).

On the other hand, we claim that Ψ(u) ≥ β(t0). It suffices to prove that u ∈ J2(t0).
Indeed, since unk → u almost everywhere, and unk(0−) = tnk with tnk → t0, we must have
u(0−) = t0. Moreover, un(x) = −1 for all x ≤ −LM,η and for all n, so u(x) = −1 for all such
x as well. Thus u ∈J2(t0).

With Ψ(u) ≥ β(t0), we have that

L+O(η) ≥ lim inf
k→∞

Ψ(unk) ≥ Ψ(u) ≥ β(t0).

But η > 0 was arbitrary, so L ≥ β(t0), which is what we wanted to show. �

We now prove our main result, Theorem 1.1.

Proof. As in the proof of Theorem 3.5, we need only consider the case u ∈ BPV (Ω; {−1, 1}).

For the liminf inequality, let un → u in L2(Ω). We may assume that un(a+) = aεn and
un(b−) = bεn for all n.

Fix η > 0, and suppose that u(b−) = −1. Find an interval (b−δ, b) in which u = −1, and
now for all large enough n we follow Step 2 of the proof of Theorem 3.5 where we “modify"
un in (b, b− δ) so that it becomes “affixed" to −1 at b− δ. That is, we find vn : (b− δ, b)→ R
such that vn ∈ W 2,2(b− δ, b), vn(b− δ−) = −1, v′n(b− δ−) = 0, vn(b−) = un(b−) = bεn , and∫ b

b−δ

[
ε−1
n (v2

n − 1)2 + ε3
n|v′′n|2

]
dx ≤

∫ b

b−δ

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2

]
dx+ η.
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Now, as in Step 3 of the proof of Theorem 3.5, we may change variables and apply the
AM-GM inequality to eventually obtain the bound∫ b

b−δ

[
ε−1
n (v2

n − 1)2 + ε3
n|v′′n|2

]
dx ≥ 4

33/4
inf

u∈J1(bεn )
Φ(u) = 2β(bεn).

If instead u(b−) = 1, then by a symmetrical argument, we instead obtain the term 2β(−bεn).
Both of these terms may be written as 2β(− sgn(u(b−))bεn).

Using the same argument, we obtain the term 2β(− sgn(u(a+))aεn), and we recover the
term α essVarΩ u as in Steps 2 and 3 of the proof of Theorem 3.5.

We deduce that

lim inf
n→∞

Gεn(un) ≥ α essVar
Ω

u+ lim inf
n→∞

2β(− sgn(u(a+))aεn) + 2β(− sgn(u(b−))bεn),

and so we get

lim inf
n→∞

Gεn(un) ≥ α essVar
Ω

u+ 2β(− sgn(u(a+))a0) + 2β(− sgn(u(b−))b0)

by continuity of β.

For the limsup inequality, we use a construction similar to that done in Step 5 of the
proof of Theorem 3.5. We begin by strengthening the continuity result on β(t). Define the
constant

βε(t) := inf

{
Ψ(v) : v ∈J2(t), Lv ≤

1√
ε

}
,

and let t0 ∈ R with tn → t0. We claim that limn→∞ βεn(tn) = β(t0). To see this, fix η > 0
and for each n ∈ N take vn ∈J2(tn) for which β(tn) ≤ Ψ(vn) ≤ β(tn) + 1

n
. The continuity

of β ensures that {Ψ(vn)}n is bounded by a constant M > 0. By Lemma 4.3 we construct
ṽn for which Ψ(ṽn) ≤ Ψ(vn) +O(η) ≤ β(tn) + 1

n
+O(η) and Lṽn ≤ LM,η where LM,η depends

only on M and η. Particularly LM,η has no dependence on n, thus Lñn ≤ 1√
εn

for all n large
enough. For all such n we write

βεn(tn) ≤ Ψ(ṽn) ≤ β(tn) +
1

n
+O(η),

and so by taking the limsup we obtain

lim sup
n→∞

βεn(tn) ≤ β(t0) +O(η)

by continuity of β. As η > 0 was arbitrary, we get lim supn→∞ βεn(tn) ≤ β(t0). But we
clearly also have βεn(tn) ≥ β(tn), and taking the liminf finishes the proof of the claim.

We now turn to the proof of the limsup inequality. As we did for the liminf inequality,
assume the case u(b−) = −1 and find δ > 0 small enough so that u = −1 in the interval
(b− δ, b). We will define un over (b− δ, b). Take vn ∈J2(bεn) satisfying Lvn ≤ 1√

εn
such that

βεn(bεn) ≤ Ψ(vn) ≤ βεn(bεn) +
1

n
. (4.7)
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Since εnLvn ≤
√
εn → 0, we have εnLvn < δ for all n large enough. For all such n, we define

un(x) :=

{
−1, b− δ < x ≤ b− εnLvn
vn

(
x−b
εn

)
, b− εnLvn < x < b

.

This satisfies un(b − δ) = −1, u′n(b − δ) = 0, and the boundary condition un(b−) = bεn .
Moreover,∫ b

b−δ
[ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2] dx

=

∫ b

b−εnLvn

ε−1
n

(
vn

(
x− b
εn

)2

− 1

)2

+
ε3
n

ε4
n

v′′n

(
x− b
εn

)2
 dx

=

∫ 0

−Lvn

[
(v2
n − 1)2 + |v′′n|2

]
dx

= Ψ(vn) ≤ βεn(bεn) +
1

n
,

thus

lim sup
n→∞

∫ b

b−δ

[
ε−1
n (u2

n − 1)2 + ε3
n|u′′n|2

]
dx ≤ lim sup

n→∞
βεn(bεn) +

1

n
= β(b0)

by the claim. It remains to show that un → −1 in L2(b− δ, b).

Since εnLvn → 0, we have that un → −1 almost everywhere in (b − δ, b). By Vitali’s
convergence theorem, it suffices to prove that {|un|2 · 1(b−δ,b)}n is equi-integrable. Indeed, we
have ∫ b

b−δ
(u2

n − 1)2 dx = εn

∫ 0

−Lvn
(v2
n − 1)2 dx = εnΨ(vn),

and since lim supn→∞Ψ(vn) ≤ limn→∞ βεn(bεn) + 1
n
< ∞, we have that limn→∞

∫ b
b−δ(u

2
n −

1)2 dx = 0, so equi-integrability follows from Lemma 3.4.

Our construction for un over (b − δ, b) provides us with the term β(b0) for the Gamma
limit in the case that u(b−) = −1. If instead u(b−) = 1, we may negate our construction
to instead acquire the term β(−b0). The term in both cases is equal to β(b0 sgnu(b−)). A
symmetrical construction near the endpoint a yields the term β(a0 sgnu(a+)). Lastly we
may define un away from the endpoints as in Step 5 of the proof of Theorem 3.5 in order to
recover the term α essVarΩ u, completing the proof. �
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