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Remarks

These notes are an abbreviated take on what was done in recitation.

Notational conventions:

• The naturals start at 1.

• Increasing sequences need not be “strictly” increasing.

• The sequence a1, a2, . . . is denoted as {an}n. If the starting index must be clarified, I
may write {an}∞n=1.

• sup
x∈E

f(x) is the same as sup{f(x) : x ∈ E}.

• sup
x

f(x) is the same as sup{f(x) : x} where x is taken over the set over which f(x) is

defined. For example sup
n

an = sup{an : n ∈ N}.

• lim
n

an is a shorthand for lim
n→∞

an. Ditto for lim sup
n

an.

• log is the natural log.

• ∥f∥∞ is the supremum of |f | over the domain of f .

• E is usually a set. U and V are usually open sets. K is usually a compact set. C is
usually a closed set.

• LN
o is the Lebesgue outer measure on RN .

• LN is the Lebesgue measure on RN . For example, L2 is “area”, and L1 is “length”.

• For a function f , we write µf for the Lebesgue-Stieltjes measure associated with f .
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1 Sup, Inf, and Friends!

Welcome to real analysis! Real analysis is the study of real numbers. It’s important
because we actually don’t understand real numbers very well. They are very unintuitive
creatures! For example, many a middle schooler may think that

0.9 < 1.

But by now you probably know better! A good understanding of the real numbers is crucial
for doing calculus correctly.

1.1 Exercises with sup

You should think of the “sup” as a “max”. Of course, the sup isn’t always obtained. For
example, the supremum of the interval [0, 1) is 1, but 1 isn’t in the set. Thus I like to think
of sup as “the max, even if there isn’t a max”.

To work with sup, you need to be using the raw definition: It is the least upper bound.

Example 1.1: For non-empty sets S, T ⊆ R, define

S + T := {x+ y : x ∈ S, y ∈ T}.

How do sup(S+T ) and supS+supT compare? Assume that S and T are bounded
from above.

If we think of “sup” as “max” here, it’s intuitive that they are equal. Let’s try to prove
it.

Proof. To prove an equality, we want to show ≤ and ≥.

Proof of ≤: How to upper bound sup(S + T )? Let’s just start with an element z of S + T .
Then z = x+ y for x ∈ S and y ∈ T . But

x ≤ supS y ≤ supT

so z ≤ supS + supT .

This is true for all z ∈ S+T , so supS+supT is an upper bound on S+T . So it must be at
least the least such upper bound, which is sup(S+T ). Therefore sup(S+T ) ≤ supS+supT .

Proof of ≥: Now we need to upper bound supS + supT . Well, let’s start with an x ∈ S
and a y ∈ T . I know that x+ y is in S + T , so

x+ y ≤ sup(S + T ).

7
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But now how to get sups on the left side? Here is the trick: If we move the y over, then

x ≤ sup(S + T )− y.

For a fixed y, this is true for all x ∈ S. So sup(S + T ) − y is an upper bound on S, and
moreover needs to be at least the least such upper bound. So

supS ≤ sup(S + T )− y.

Now move the y to the other side!

y ≤ sup(S + T )− supS

This holds for all y ∈ T , so sup(S + T )− supS is an upper bound on T , and is greater than
or equal to the least such upper bound. We conclude that

supT ≤ sup(S + T )− supS

which is what we wanted. □

Remarks:

• In general, if you know that x ≤ M for all x ∈ S, you can “take the sup on the left”
to get supS ≤ M . We did this three times in the above proof.

• Similarly, if x ≥ m for all x ∈ S, we can “take the inf on the left” to get inf S ≥ m.

• Another way to do this is to make use the following characterization of sup: M = supS
iff (1) M is an upper bound on S, and (2) for all ε > 0, the intersection (M −ε,M ]∩S
is non-empty. (This means that there are elements of S that are arbitrarily close to M ,
which intuitively should mean that M is the least upper bound. As an exercise you
can try to prove that this characterization of supremum is equivalent to the definition
of supremum.)

Let’s try another example.

Example 1.2: Let an and bn be two sequences, both bounded from above. How
do supn(an + bn) and supn an + supn bn compare?

This might look like the same problem, but actually no: We only get≤. A counterexample
which shows why supn(an + bn) = supn an + supn bn may not necessarily hold is given by
an = (−1)n and bn = −(−1)n.

Let’s prove that supn(an + bn) ≤ supn an + supn bn.

Proof. Let’s start with some an + bn. Then

an ≤ sup
k

ak

8
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and
bn ≤ sup

k
bk

so
an + bn ≤ sup

k
ak + sup

k
bk.

This means that supk ak + supk bk is an upper bound on an + bn, so by “taking the sup” on
the left we conclude that

sup
n
(an + bn) ≤ sup

k
ak + sup

k
bk

as needed. □

Remark: Notice how I wrote an ≤ supk ak instead of an ≤ supn an. Using different letters
helps a lot to prevent confusion.

1.2 The Intuition of Limsup

You should think of limsup an as:

• the “best upper bound on the asymptotic behavior of an as N → ∞”

• the “upper bound on an near n = ∞”

• the best upper bound on the tail of an

Whereas lim is about the exact asymptotic, lim sup is only an upper bound on the
asymptotic (when the limit doesn’t exist), whereas lim inf is only a lower bound.

Limsup and liminf are really useful when we want to discuss the asymptotic behavior of
a function or sequence, but the limit doesn’t actually exist!

You can think of f(x) = sinx as a prototypical example for limsup and liminf. limx→∞ sin x
does not exist. But “in the limit it’s between −1 and 1”, in other words,

−1 ≤ lim inf
x→∞

sin x ≤ lim sup
x→∞

sin x ≤ 1.

In fact lim infx→∞ sin x = −1 and lim supx→∞ sin x = 1, and these are “obtained” because
sin x = −1 infinitely often for large x and sin x = 1 infinitely often for large x.

9
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1.2.1 Definitions

A priori the limsup is defined as

lim sup
n→∞

an = inf
n
sup
k>n

ak.

However, you should know that it is equivalent to write

lim
n→∞

sup
k>n

ak

because {supk>n ak}n is monotone decreasing in n! This monotonicity is important to keep
in mind.

Limsup can be defined in other contexts where I think it’s easier to think about. For
example, for functions,

lim sup
x→∞

f(x) = lim
N→∞

sup
x>N

f(x),

and
lim sup
x→x0

f(x) = lim
δ→0+

sup
0<|x−x0|<δ

f(x).

See the following Desmos visualizations:

• https://www.desmos.com/calculator/tiwrgpoa0x

• https://www.desmos.com/calculator/va3cdionyv

These visualizations should really help show you what limsup is intuitively.

1.2.2 Examples of why limsup is useful

Let’s try to prove the squeeze rule!

Example 1.3: Suppose that g1(x) ≤ f(x) ≤ g2(x), and both lim
x→x0

g1(x) and

lim
x→x0

g2(x) exist and are equal to L. Prove that lim
x→x0

f(x) = L.

Proof. [WRONG PROOF] Just take g1(x) ≤ f(x) ≤ g2(x) and take the limit of all three
parts, to get L ≤ lim

x→x0

f(x) ≤ L, so lim
x→x0

f(x) = L. Tada? □

This is very very very very very very very very wrong because I don’t actually
know that lim

x→x0

f(x) exists in the first place! So this is very bad and horrible and terrible.

10
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...

But I do know that lim sup
x→x0

f(x) and lim inf
x→x0

f(x) exist. Because they always exist.

Proof. [Actual Proof] Taking limsup on both sides of the right inequality and liminf on
both side of the left inequality, we get the following for free:

lim inf
x→x0

g1(x) ≤ lim inf
x→x0

f(x) ≤ lim sup
x→x0

f(x) ≤ lim sup
x→x0

g2(x)

Ok but, lim
x→x0

g1(x) exists, so lim inf
x→x0

g1(x) = lim
x→x0

g1(x) = L... and similarly, we know that

lim sup
x→x0

g2(x) = lim
x→x0

g2(x) = L. So actually this is just saying that:

L ≤ lim inf
x→x0

f(x) ≤ lim sup
x→x0

f(x) ≤ L

So the liminf and limsup of f were equal, and in fact both are equal to L, so the limit exists
and is L. Yay! □

Motto of the above proof: “The asymptotics of f are bounded from above by L and
bounded from below by L, so the limit exists.”

Here’s another application. The ratio test says that if

lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1

then
∑∞

n=1 an converges. At first this seems quite intimidating if you’re still getting used to
limsup. But intuitively this statement is actually quite simple! In English, all it’s saying
is this: “If a series eventually goes down faster than a geometric series, then it
converges!” The “eventually” part is the “lim”, and the “faster” is the “sup”.

In Layman’s terms, a series which (eventually) converges faster than a geometric series
must be convergent. That’s all! The limsup formalizes this statement.

1.3 A limsup exercise

Example 1.4: Let an and bn be sequences. Show that

lim sup
n

(an + bn) ≤ lim sup
n

an + lim sup
n

bn

provided that both sides exist and are finite.

Proof. Since the limsup is the lim of a sup, let’s start by working with the “inner-most
operation”, which is sup. Can we compare these two quantities?

sup
k>n

(ak + bk), sup
k>n

ak + sup
k>n

bk

11
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It turns out we can! We proved that the correct relationship is ≤ in the first section. So

sup
k>n

(ak + bk) ≤ sup
k>n

ak + sup
k>n

bk

for all n. Now we want to “send n → ∞ on each side”. This is safe because all the limits
exist. (More precisely, we want to appeal to the fact that if xn → K and yn → L and
xn ≤ yn for all n, then K ≤ L. If this wasn’t done in lecture, try to prove it!) So

lim
n→∞

sup
k>n

(ak + bk) ≤ lim
n→∞

(
sup
k>n

ak + sup
k>n

bk

)
≤ lim

n→∞
sup
k>n

ak + lim
n→∞

sup
k>n

bk.

That’s exactly what we wanted to prove!

□

1.4 Rigorous Write-up for the Quiz

Not done in recitation but I thought I should include this so you have a good sense of
what is expected.

Theorem 1.1 (1D Cantor Intersection)

Let {[an, bn]}n be a sequence of closed intervals such that [an+1, bn+1] ⊆ [an, bn] for all
n ≥ 1. Then the intersection

∞⋂
n=1

[an, bn]

is non-empty. Moreover, if limn→∞ bn − an = 0, then the intersection has a single
element.

Proof. Since [an+1, bn+1] ⊆ [an, bn] for all n ≥ 1, we have that

an ≤ an+1 ≤ bn+1 ≤ bn

for all n ≥ 1. In particular, an ≤ bn ≤ b1 for all n, which entails that b1 is an upper bound
on {an : n ∈ N}. Thus the supremum M := supn an exists.

We claim that M ∈ ⋂∞
n=1[an, bn], which will prove that the intersection is non-empty. It

suffices to prove that for all n, an ≤ M ≤ bn.

Fix n. Since M = supk ak, M is an upper bound on {ak : k ∈ N}, so M ≥ an.

12
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On the other hand, ak ≤ bn for all k (if k ≤ n then ak ≤ an ≤ bn, and if k > n then
ak ≤ bk ≤ bn), so bn is an upper bound on {ak : k ∈ N}. So bn is ≥ the least such upper
bound (the supremum), which is M . That is, bn ≥ M . This proves the claim.

Now assume that limn→∞ bn−an = 0. To prove that
⋂∞

n=1[an, bn] has exactly one element,
it is sufficient to show that if x, y ∈ ⋂∞

n=1[an, bn], then x = y.

Take such an x and y, and assume without loss of generality that x ≤ y. Note that
an ≤ x for all n, and y ≤ bn for all n. So

|x− y| = y − x ≤ bn − an

for all n. Sending n → ∞, and using the hypothesis that bn − an → 0, we conclude by the
squeeze theorem (or by fixing ε > 0 or by using lim inf, etc.) that |x − y| = 0. That is,
x = y. □

13
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2 Series and Stuff

2.1 Comparing series and integrals

Draw a picture! (I’m too tired to reproduce a diagram in these notes, sorry! The key
idea is that the series is basically a Riemann sum so draw that and the area under the curve
to compare them.)

Example 2.1: Consider the series sn =
∑n

k=1
1
k2
. Get a decent lower and upper

bound on sn. In particular can we show that sn ≤ 2?

Solution. By drawing a picture, we can reason that∫ k+1

k

1

x2
dx ≤ 1

k2
≤

∫ k

k−1

1

x2
dx

for all k. Now let’s sum this starting from k = 2 (we’re skipping k = 1 because otherwise
the integral on the right side explodes). This gives

1 +

∫ n+1

2

1

x2
dx ≤ sn ≤ 1 +

∫ n

1

1

x2
dx.

Evaluating the integrals,

1.5− 1

n+ 1
≤ sn ≤ 2− 1

n
.

That seems like a decent bound! ■

2.2 Estimate for the Factorial

We can use the integral technique to obtain some pretty nice bounds for n!. First we
need to turn this into a sum, so we’ll instead estimate its log:

log(n!) =
n∑

k=1

log k

Now log is increasing and so for each k we have the estimates∫ k

k−1

log x dx ≤ log k ≤
∫ k+1

k

log x dx.

We want to sum from k = 1 to k = n, but the k = 1 term makes the left bound problematic.
Instead we sum from k = 2, which is just as good because the k = 1 term is log 1 = 0.∫ n

1

log x dx ≤
n∑

k=2

log k ≤
∫ n+1

2

log x dx

14
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Evaluating the integrals,

n log n− n+ 1 ≤ log(n!) ≤ (n+ 1) log(n+ 1)− 2 log 2− n+ 1.

Exponentiating, we end up with

nne−n+1 ≤ n! ≤ 1

4
(n+ 1)n+1e−n+1.

This suggests that n! grows roughly like nne−n. It turns out that the correct asymptotic

is n! ∼ Cnn+
1
2 e−n where the constant C is

√
2π. So, we got pretty close with a relatively

elementary method!

2.3 A few exercises with series tests

Example 2.2: Find all x ∈ R for which

∞∑
n=1

nxn

n2 + x2n

converges.

Solution. We claim that it converges for all x ̸= 1.

If |x| > 1, we have that

∞∑
n=1

n|x|n
n2 + x2n

≤
∞∑
n=1

n|x|n
x2n

=
∞∑
n=1

n

|x|n

which converges by the ratio test, so by comparison, the series converges absolutely, and
thus converges.

If |x| < 1, we instead write

∞∑
n=1

n|x|n
n2 + x2n

≤
∞∑
n=1

n|x|n
n2

=
∞∑
n=1

|x|n
n

≤
∞∑
n=1

|x|n < ∞.

If x = −1, the series converges by the alternating series test.

If x = 1, then the series is
∞∑
n=1

n

n2 + 1
.

15
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This is comparable to 1/n in the limit so this should diverge by limit comparison. Alterna-
tively one can write something like

∞∑
n=1

n

n2 + 1
≥

∞∑
n=1

n

n2 + n2
=

1

2

∞∑
n=1

1

n
= +∞.

■

Example 2.3: Does
∞∑
n=1

sin(1/n2) converge?

Solution. Yes, by using sin x ≤ x (for x > 0) and comparison. ■

Example 2.4: Does
∞∑
n=1

1

n log(n)2
converge?

Solution. Yes by the integral test. If we want to be a bit more precise, we can write, for
n > 1000,

1

n log(n)2
≤

∫ n

n−1

1

x log(x)2
dx.

So
∞∑

n=10000

1

n log(n)2
≤

∫ ∞

9999

1

x log(x)2
dx.

By doing calculus (u-sub with u = log(x)), the integral converges, hence so does the sum. ■
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3 The Analysis Hierarchy

The bulk of (undergraduate) analysis lives in the following hierarchy of spaces.

Inner product

spaces ⟨·, ·⟩

Normed spaces ∥ · ∥

Metric spaces d

Topological spaces τ

3.1 Inner Product Spaces

These are the most specialized spaces, and are quite uncommon. Some very nice things
happen in inner product spaces, but I don’t think we’ll dive very deeply into it. You saw a
bunch of it in a class called linear algebra.

Definition 3.1 (Inner Product Space)

An inner product space is a vector space X equipped with an inner product ⟨·, ·⟩
satisfying a bunch of properties, such as ⟨tx, y⟩ = t⟨x, y⟩ for all x, y ∈ X and t ∈ R.
(there are more conditions of course but whatever you can look it up.)

Intuitively you can think of an inner product space as “a space with a notion of angles”.
The inner product ⟨x, y⟩ measures how much x and y “agree”.

Examples:

• Euclidean space (a.k.a. RN) equipped with the standard inner product, ⟨x, y⟩ := x·y =∑
j xjyj.
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• The sequence space l2, consisting of all sequence of real numbers {xn}n such that∑
n |xn|2 < ∞, equipped with the inner product ⟨{xn}n, {yn}n⟩l2 :=

∑
n xnyn. Some

work needs to be done to show that this is valid.

• The space L2(R) of all square-integrable “functions” f : R → R, equipped with the
inner product

⟨f, g⟩L2 :=

∫
R
f(x)g(x) dx.

(This is a lie, hence the quotes.)

3.2 Normed Spaces

Normed spaces are much more common. A lot of analysis happens here.

Definition 3.2 (Normed Space)

A normed space is a vector space X equipped with a norm ∥ · ∥ satisfying the
following conditions:

• ∥x∥ ≥ 0 always, with ∥x∥ = 0 if and only if x = 0. (also its always finite.)

• You can take out scalars: ∥tx∥ = |t| · ∥x∥ for all t ∈ R and x ∈ X.

• Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥

Simply stated: A normed space is a space that has a notion of size.

Every inner product space is a normed space. This is because any inner product ⟨·, ·⟩
induces a norm, given by

∥x∥ :=
√
⟨x, x⟩.

Compare this with the identity ∥x∥ =
√
x · x in Euclidean space.

Examples

• On R, the absolute value | · | is a norm.

• On RN , the usual norm is ∥x∥ :=
√∑

j x
2
j . Of course, this is just given by the usual

inner product as
√
x · x.

• For p ≥ 1, there is the Lp space, Lp(R), of all “functions” f : R → R satisfying∫
R
|f(x)|p dx < ∞,

18
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and the norm is given by ∥f∥p :=
(∫

R |f(x)|p dx
)1/p

.

Questions: (1) Why do we need to raise to the 1/p power? (2) Why is this a lie as
written?

• There are other norms on RN . These are not the ones induced by the usual inner
product, but they are still norms and can be useful.

– The taxicab norm, ∥x∥1 :=
∑

j |xj|.
– The l∞ norm, ∥x∥∞ := maxj |xj|.

– In general, for 1 ≤ p < ∞, we have the p-norm, ∥x∥p :=
(∑

j |xj|p
)1/p

. The case

p = 2 is the standard Euclidean norm.

3.3 Metric Spaces

Metric spaces are very common! They arise whenever there is some notion of “distance”.

Definition 3.3 (Metric Space)

Ametric space is a setX equipped with ametric d satisfying the following conditions:

• 0 ≤ d(x, y) < ∞, with d(x, y) = 0 if and only if x = y

• Symmetry: d(x, y) = d(y, x)

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Note that the underlying set X no longer needs to have a vector space structure for it to
qualify as a metric space. You just need “distance”.

Every normed space is a metric space. If you have a norm ∥ · ∥, then the “distance”
between x and y is given by ∥x − y∥. You can verify that this satisfies the properties of a
metric, so d(x, y) := ∥x− y∥ is a metric for any norm ∥ · ∥.

Examples:

• X = the tiles of a Civilization 6 board, d(x, y) = number of moves it takes to go from
x to y.

• X = Warren Weaver Hall, d(x, y) = time it takes to walk from x to y.

• RN is a metric space induced by the standard norm (or really, any of its norms).

• X = the set of all English words, d(x, y) = the number of single-letter edits you need
to turn x into y.
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3.3.1 Balls and Open Sets

We play with metric spaces a lot, so we’ve got a bunch of constructs in them that we
study (which, of course, also exist in normed spaces). The first is the ball,

B(x, r) := {y : d(x, y) < r}.
Balls are important because we think of them as “neighborhoods” which surround a point
x. They’re also just a very convenient notation in general.

With balls, we obtain open sets: Sets U ⊆ X such that for every x ∈ U there is a small
r > 0 such that B(x, r) ⊆ U . In layman’s terms, opens sets are the sets with “wiggle room”
everywhere. This intuition is why we like them: It allows us to make small changes in any
direction when we’re inside it.

We also get closed sets, which are defined to be the complements of open sets. (Closed
does NOT mean “not open”!)

Then we get compact sets, which are defined as those sets for which every open cover has
a finite subcover. In RN , these happen to be the closed and bounded sets, and therefore we
can think of them as sets which are restrictive, and prevent too much “change”. An instance
of this is the extreme value theorem: Any continuous function on a closed and bounded
interval must have a max and min. The closed and bounded interval here is a compact set,
and we see that it is preventing the continuous function on it from “exploding”. More on
compact sets in future recitations.

The most important types of sets are the open sets and the compact sets, for the reasons
described.

3.3.2 Properties of open sets

• The union of open sets is always open (no matter how many open sets are used!).

• The finite intersection of open sets is open.

• {} is open.

• The whole space is open.

3.3.3 The Shit Metric

I define the shit metric space as follows: It is (R2, dshit), where

dshit(x, y) :=

{
1, x ̸= y

0, x = y
.
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Verify that this is a metric!

The actual name for this is the discrete metric, but whatever. This is an important
“extreme” case to keep in mind, as it can serve as a convenient counterexample to test
any conjectures you have about metric spaces. We’ll talk more about that in future weeks,
probably.

Verify the following:

• Bshit((0, 0), 0.75) = {(0, 0)}

• Bshit((0, 0), 1.2) = R2

• Every set is open.

• Every set is closed.

• Every set is bounded.

• The only compact sets are finite sets.

3.4 Topologies

Now what if there is no notion of distance? There is an even weaker structure called a
topology : Instead of a distance, we specify what the open sets are.

Definition 3.4 (Topological space)

A topological space is a set X equipped with a topology, τ , which is a collection of sets
(the “open sets”) satisfying the properties listed in the Properties of open sets section.

It’s quite abstract and it’s normal to find it hard to imagine what kind of structure a
topology could bring to the table. Here are some intuitions:

• Topologies specify the “neighborhoods”, which therefore give some loose notion of
which points are “close” to each other.

• A topology can be thought of as specifying a notion of convergence. For example, the
topology on R “generated” by the intervals of the form (a, b] corresponds to “conver-
gence from below”, and in some sense formalizes the concept of the left-sided limit
lim
x→a−

f(x).

And of course, every metric space is a topological space.
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4 Limits and Stuff

4.1 Be suspicious!

If your proof isn’t relying on the definitions and/or theorems, that’s probably a bad sign!

Problem 1: Let A and B be compact subsets of Rn. Show that A + B := {a + b : a ∈
A, b ∈ B} is compact.

Fake Proof: Since A and B are bounded, A+B is also bounded. Since A and B are closed,
A+B is also closed. So by Heine-Borel, A+B is compact. □

Problem 2: Let f : R → R be differentiable. Suppose that f ′(a) > 0 for some a ∈ R, and
f ′(b) < 0 for some b ∈ R. Then there exists c ∈ R such that f ′(c) = 0.

Fake Proof: f is differentiable everywhere, so its derivative f ′ is continuous. So by the
Intermediate Value Theorem, f ′ has a zero. □

Problem 3: Consider the normed vector space Cb(R) of all bounded continuous functions
on the real line, equipped with the sup norm. Then the function F : Cb(R) → R defined by

F (f) := f(5)

is continuous.

Fake Proof: Note that for any f, g ∈ Cb(R), we have F (f + g) = F (f)+F (g). Moreover, for
any t ∈ R and f ∈ Cb(R), we have that F (tf) = tF (f). Therefore, F : Cb(R) → R is linear.
So F is continuous. □

4.2 Limits and Continuity

Example 4.1:
lim
x→5

x2

Solution. We claim that the limit is 25.

Fix ε > 0. And we’ll pick δ = (TBD). Now, if |x−5| < δ, we shall show that |x2−25| < ε.

Well, we can write

|x2 − 25| = |(x− 5)(x+ 5)| < δ · |x+ 5|.

That δ will be pretty small so we just need the |x+5| to be pretty small. It should be about
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10, right? Indeed,

|x+ 5| = |x− 5 + 10| ≤ |x− 5|+ |10| < δ + 10.

So provided δ ≤ 7 , we have that |x+ 5| < 17. Now,

|x2 − 25| < δ · |x+ 5| < 7δ,

which is ≤ ε provided that δ ≤ ε/7 . Ok, so since we chose δ = min(7, ε/7) , both of those

hold and so we’re good. ■

Example 4.2:
lim
x→42

1Q(x)

Solution. We claim that the limit does not exist.

Suppose the limit were L. Take ε = 1/4 or something. We want to show that for any
δ > 0, there is some x with 0 < |x− 9001| < δ such that |1Q(x)− L| ≥ ε.

To wit, take any δ > 0. There are two cases.

• If L ≥ 1/2, we use density of irrationals to pick x ∈ (9001, 9001 + δ) irrational. This
gives 1Q(x) = 0 so |1Q(x)− L| ≥ 1/2 ≥ ε.

• If L < 1/2, use density of rationals instead.

So the limit does not exist. ■

Example 4.3: Do Problem 3, but correctly.

Solution. We recall F : Cb(R) → R with F (f) := f(5). Fix f0 ∈ Cb(R). We show that F
is continuous at f0.

Fix ε > 0. Then, for all f ∈ Cb(R) with ∥f − f0∥∞ < δ, where δ shall be chosen later,
we will show that |F (f)− F (f0)| < ε.

Well, we want to show that |f(5)− f0(5)| < ε. But

δ > ∥f − f0∥∞ = sup
x∈R

|f(x)− f0(x)| ≥ |f(5)− f0(5)|.

So we may take δ = ε. ■

Example 4.4: Is Cb(R) complete?
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4.3 Exercises with Metric Spaces

Example 4.5: Let (X, d) be a metric space, and C ⊆ K ⊆ X with C closed and
K compact. Prove that C is compact.

This can be done using either sequences or open covers.

Example 4.6: Let (X, d) be a metric space, and E ⊆ X. Define the boundary of
E as follows:

∂E := {x ∈ X : B(x, r) ∩ E ̸= ∅ and B(x, r) ∩ Ec ̸= ∅ ∀r > 0}

Show that ∂E is closed.

If x ̸∈ ∂E then there is r > 0 so that either B(x, r)∩E = ∅ or B(x, r)∩Ec = ∅. Without
loss of generality let’s suppose the former happened. Then B(x, r) ⊆ Ec. We claim B(x, r) ⊆
(∂E)c. Indeed, take any y ∈ B(x, r). Then B(y,min(d(x, y), r − d(x, y))) ⊆ B(x, r) ⊆ Ec

(or alternatively B(x, r) is open so there’s gotta be some r′ so that B(y, r′) ⊆ B(x, r)), so
B(y,min(d(x, y), r − d(x, y))) ∩ E = ∅, so by definition of ∂E, y ̸∈ ∂E.
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5 Uniform stuff

5.1 Relative Topology

Example 5.1: Let (X, d) be a metric space, and E ⊆ X. Show that, for F ⊆ E,
the following two conditions are equivalent:

1. There exists an open set U ⊆ X such that F = E ∩ U .

2. For every x ∈ F there exists r > 0 such that B(x, r) ∩ E ⊆ F .

(If either holds, we say that F is relatively open in E, or just “open in E”.
Morally speaking, we are interpreting E as its own metric space, whose topology is
inherited from that of X by taking all the open sets in X and intersecting them with
E to form a new “restricted” topology. Think about both the conditions (1) and (2)
and see which one you find more intuitive.)

Solution. (1 =⇒ 2) easy

(2 =⇒ 1) for each x ∈ F find rx so that B(x, rx)∩E ⊆ F . Now take U =
⋃

x∈F B(x, rx).
This is open and you can show that F = E ∩ U . ■

The relative topology is important because it’s how you restrict a topology to a subset.

For example, we know that for U ⊆ Rn open, we have f : U → R continuous iff f−1(V )
open for all V ⊆ R open. However, this is not true if the domain is not open. Take, for
example, E = [0,∞) and f : E → R defined by

f(x) = x2 sin x.

Then f−1(R) = [0,∞) but [0,∞) is not open.

However, [0,∞) is relatively open (with respect to itself). This leads to a better, more
general characterization of continuity:

f : E → R is continuous iff f−1(V ) is open in the relative topology of E, for every V ⊆ R
open.
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5.2 Uniform convergence: In the field

Example 5.2: Prove that

f(x) :=
∞∑
n=1

sin(nx)

n2 + |x|

is a continuous function.

Motto: To show that fn → f uniformly, find an upper bound

|fn(x)− f(x)| ≤ Mn

which does not depend on x. And such that Mn → 0.

The methods used for this generalize.

Theorem 5.1 (Weierstrass-M test)

Let fn : E → R, and suppose
∑∞

n=1 supE |fn| < ∞. Then
∑∞

n=1 fn converges uniformly.

Have a slightly trickier example.

Example 5.3: Prove that

f(x) :=
∞∑
n=1

x10

n2 + x2

is continuous.

Key idea: suffices to show uniform convergence on compact sets.

5.3 Exploring Continuity and Completeness

Lemma 5.1

Uniformly continuous functions send Cauchy sequences to Cauchy sequences.

Proof. Let the uniformly continuous function be f : X → Y , where (X, dX) and (Y, dY )
are metric spaces. Let {xn}n ∈ X be Cauchy. We will show that {f(xn)}n ∈ Y is Cauchy.

Fix ε > 0. Then there exists δ > 0 such that dY (f(x), f(Y )) < ε for all dX(x, y) < δ.
Since {xn}n Cauchy, there exists Nδ such that dX(xm, xn) < δ for all m,n ≥ Nδ. Now for all
m,n ≥ Nδ,

dY (f(xm), f(xn)) < ε
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due to dX(xm, xn) < δ and uniform continuity. □

Theorem 5.2

Let (X, dX) and (Y, dY ) be metric spaces, with Y complete. Let E ⊆ X. Let f :
X → Y be a uniformly continuous function. Then there exists a unique continuous
extension of f to E.

Proof. I could only sketch this out in recitation, but here is the full proof.

It’s not hard to see that it’s unique, provided that it exists. So we just need to construct
the extension and prove that it works. For each x ∈ E, we define

f̃(x) := lim
n→∞

f(xn),

where xn ∈ E is a sequence for which xn → x.

First we show that this is well-defined, because there are two problems with the definition:
(1) the limit may not exist, (2) we need to ensure that the definition of f̃(x) does not depend
on the choice of the sequence.

(1) Let x0 ∈ E, and pick xn → x0. {xn}n converges so it is Cauchy. By the lemma,
{f(xn)}n is also Cauchy. But Y is complete, so it converges, hence the limit exists.

(2) Let x0 ∈ E, and pick xn → x0. If x′
n ∈ E is another sequence for which x′

n → x0,
then we want to show limn f(xn) = limn f(x

′
n). By the argument from (1), both limits exist.

Let’s say the limits are L and L′, both elements of Y . Fix ε > 0. Then we have that
dY (f(x, y)) < ε for all x, y ∈ E for which dX(x, y) < δ. For all n large enough, we have
dX(xn, x) < δ/2 and dX(yn, x) < δ/2. Now dX(xn, yn) < δ, so

dY (f(xn), f(yn)) < ε.

Hence
dY (L,L

′) ≤ dY (L, f(xn)) + dY (f(xn), f(x
′
n)) + dY (f(x

′
n), L

′)

< ε+ dY (L, f(xn)) + dY (f(x
′
n), L

′),

and sending n → ∞ gives dY (L,L
′) ≤ ε. But ε was arbitrary so L = L′.

We’ve proven that f̃ is well-defined. Remains to show two things: (1) f̃ is actually an
extension of f (i.e. they agree on E), and (2) f̃ is continuous.

(1) Easy.

(2) It is equivalent to show that f̃ is sequentially continuous. Take x0 ∈ E and let
xn → x0, xn ∈ E. We’ll show that f̃(xn) → f̃(x0). Wait, but f̃(xn) = f(xn) because
xn ∈ E, so... □
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6 Things are getting kinda spicy

6.1 Baire Category Theorem

The picture drawn in recitation: Can a bunch of thin things (e.g. lines and curves) come
together to make a thick thing (e.g. the interior of a circle)?

• Thin things = closed sets with no interior

• Thick thing = something with an interior

Theorem 6.1 (Baire Category Theorem)

In a complete metric space, the union of countable many thin things can never be
thick.

That is, if (X, d) complete, Cn ⊆ X closed with empty interior, then
⋂∞

n=1Cn has empty
interior.

That’s literally it lol. I don’t have very many good applications of this so that’s that.
The useful applications show up in functional analysis.

6.2 Ascoli-Arzela

Here is a simple instance of Ascoli-Arzela.

Theorem 6.2 (Ascoli-Arzela)

Let fn : [a, b] → R be a (continuous) sequence of functions which is

1. uniformly bounded (i.e. there is a constant C > 0 such that |fn(x)| ≤ C for all
x and n), and

2. uniformly equi-continuous (i.e. for all ε > 0 there exists δ > 0 such that |fn(x)−
fn(y)| < ε for all n, x, y for which |x− y| < δ).

Then there exists a subsequence fnk
which converges uniformly!

A quick example: Let Lip(f) be the best Lipschitz constant for f , i.e.

Lip(f) := sup
x,y

|f(x)− f(y)|
|x− y| .
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(Think of this as the “steepest slope on the graph”.)

(Equivalently, Lip(f) = inf{L > 0 : |f(x) − f(y)| ≤ L|x − y| for all x, y}. I leave it as
an exercise to show that this is indeed equivalent!)

Suppose fn is a sequence of functions on [1, 10] such that Lip(fn) ≤ 17. Which just
means that

|fn(x)− fn(y)| ≤ 17|x− y|
for all x, y, n. Then {fn}n is an example of a uniformly equi-continuous family of functions.
(For any ε > 0 I can take δ = ε/17 and this works for all x, y, and n.)

If we further assume something like, fn(0) = 0 for all n, then

|fn(x)| = |fn(x)− fn(0)| ≤ 17|x− 0| ≤ 170,

which means that fn is uniformly bounded (by 170)! Therefore, Ascoli-Arzela applies and
we get a subsequence fnk

which converges uniformly.

6.3 Application of Ascoli-Arzela

Ascoli-Arzela is extremely important because it gives a notion of compactness for spaces
of continuous functions. By “compactness”, we philosophically mean “the technique of taking
convergent subsequences”.

Compactness / subsequences is incredibly useful for studying minimization problems.

Example 6.1: Use sequences to prove the extreme value theorem: If f : K → R
continuous and K is a compact metric space, then f has a maximum.

Proof. Let
M := sup

x∈K
f(x).

We want to show that the value of M is obtained. That is, we need to find x such that
f(x) = M .

First we show that M < ∞ (not the important part here so I’m glossing over it). Then,
this means that there exists a sequence xn such that f(xn) → M (i.e. we can approach the
sup).

We don’t know much about the sequence xn. But we can apply compactness! This gives
a subsequence xnk

which converges to some x ∈ [a, b].

By continuity,
f(nk) → f(x).
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But f(nk) → M so f(x) = M . So x obtains the maximum! □

In infinitely many dimensions, like in spaces of continuous functions, compactness is
harder to come by, which makes it harder to take subsequences. Ascoli-Arzela is what allows
us to take subsequences and make these kinds of arguments work! Here is an example.

Example 6.2 (Flappy Bird): Let g, h : [0, 100] → R be functions with g ≤ h,
where we think of g being the “lower pipes” and h being the “upper pipes”.
A bird starts at (0, 0) and wants to end at (100, 0) while dodging the pipes. That
is, we are considering continuous functions f : [0, 100] → R such that:

• The bird starts at (0, 0), i.e. f(0) = 0

• The bird ends at (100, 0), i.e. f(100) = 0

• The bird never hits the pipes, i.e. g(x) ≤ f(x) ≤ h(x) for all x ∈ [0, 100].

Prove that if this is possible to do, then there is an f satisfying these conditions for
which Lip(f) is minimal.
(motivation: we don’t want the bird to have to fly too steeply up or down, it’ll exhaust
it for sure!)

Proof. Let A be the set of “legal paths” through the pipes, i.e. A = the set of all con-
tinuous f : [0, 100] → R satisfying those three conditions points. The “theoretical minimum
steepness”, then, is

m := inf
f∈A

Lip(f).

The goal is to show that this infimum is actually a minimum. That is: Find an f ∈ A such
that Lip(f) = m.

Alright, let’s start by trying to get close to m.

• Since we’re given that the Flappy bird level is possible, it follows that A is non-empty.

• Moreover, {Lip(f) : f ∈ A} is bounded from below by 0.

• By Week 1 stuff: Non-empty sets bounded from below have an infimum, so m exists
and is finite.

• We can always get close to such an infimum: There exists fn ∈ A such that

Lip(fn) → m.

Great! We now have a sequence of Flappy bird paths {fn}n whose “steepnesses” approach
m. How can we procure a function whose “steepness” is exactly m...?

Wait hold on, here’s an idea:
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• Since Lip(fn) → m, we know that Lip(fn) is a bounded sequence! Let’s say it’s bounded
by L.

• From before, we know that a sequence of functions with the same Lipschitz constant
is uniformly equi-continuous!

• Moreover, since fn is L-Lipschitz,

|fn(x)| = |fn(x)− fn(0)| ≤ L|x− 0| ≤ 100L,

so {fn}n is uniformly bounded!

Therefore we can apply Ascoli-Arzela to find a subsequence fnk
which converges uniformly

to some f : [0, 100] → R.

Is this limit, f , a valid Flappy bird path?

• Since fnk
→ f uniformly, this convergence is also true pointwise. So, fnk

(0) → f(0)
and fnk

(100) → f(100). This tells us that f(0) = 0 and f(100) = 0.

• Does f dodge the pipes? We know that

g(x) ≤ fnk
(x) ≤ h(x)

for all x and k. By pointwise convergence, we can send k → ∞ to find that

g(x) ≤ f(x) ≤ h(x)

for all x, which means that f dodges the pipes as well.

• Uniform convergence preserves continuity, so f is continuous.

So f is indeed a valid Flappy birth path (i.e. f ∈ A).

Finally, does f actually achieve the theoretical minimum steepness? Well, we know that

|fnk
(x)− fnk

(y)| ≤ Lip(fnk
)|x− y|

because that’s what Lip means. What happens when we send k → ∞?

By pointwise convergence, the left side just converges to |f(x) − f(y)|. As for the right
side: By how I chose {fn}n at the start, I know that Lip(fnk

) → m! Thus,

|f(x)− f(y)| ≤ m|x− y|.

So m is at least the steepness of f , Lip(f). But m is the infimum of all possible steepnesses,
i.e. m ≤ Lip(f). So m = Lip(f), meaning that we’ve achieved the minimum possible
steepness. □
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7 Taylor Spam

7.1 L’Hopital sucks ngl

Example 7.1: Compute

lim
x→∞

x

3x+ sin x
.

Why is applying L’Hopital illegal here?

7.2 Setting up Taylor

Definition 7.1

Fix some function g. We say that a function f is o(g(x)), as x → x0, if:

lim
x→x0

f(x)

g(x)
= 0

Essentially, we use o(g(x)) as a “placeholder” for some function/expression that van-
ishes when divided by g(x) (and sending x → x0).

Examples (as x → 0):

• x2 is o(x) as x → 0. That’s because x2

x
→ 0 as x → 0.

• x is NOT o(x).

• sin(x) is o(1). That’s because sin(x)/1 → 0.

• sin(x) is NOT o(x). Recall that sin(x)/x → 1, not 0.

• We can write o(x5)
x2 as o(x3). This is because

o(x5)/x2

x3
=

o(x5)

x5
→ 0

by definition of o(x5).

• We can write o(o(x)) as o(x). (Why?)
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Theorem 7.1 (Taylor)

Let f : [a, b] → R be n-times differentiable. Then:

f(x) = f(x0)+f ′(x0)(x−x0)+f ′′(x0)
(x− x0)

2

2
+ . . .+f (n)(x0)

(x− x0)
n

n!
+o((x−x0)

n)

Remember, by definition of little-o, this o((x−x0)
n) thing is a placeholder for an expres-

sion that satisfies the key property lim
x→x0

o((x− x0)
n)

(x− x0)n
= 0.

Key Point: Taylor expansion around x0 is used to get an approximation to f near x = x0.
The remainder term o((x− x0)

n) tells you how good this approximation is.

Example: We have

sin x = 0 + x+ 0 · x2 − 1

6
x3 + 0 · x4 + o(x4).

This means that sin(x) is approximately x − 1
6
x3 near x = 0. This approximation is very

good : The difference goes to 0 at a rate faster than x4. For example, at x = 0.1, we could
expect that the error of this approximation may be around 0.0001.

7.3 Taylor: In the Field

The Taylor expansion

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n + o((x− a)n)

gives an order-n approximation near x = a. The more terms you write out, the better the
approximation.

Example 7.2:

lim
x→0

sin(x)− x

x3

Solution. Write sin x = x− x3/6 + o(x4). This is an EQUALITY. I can replace sinx with
this “approximation” and you can’t stop me.

lim
x→0

sin x− x

x3
= lim

x→0

x3/6 + o(x4)

x3
= lim

x→0

1

6
+

o(x4)

x3

But o(x4)
x3 → 0 because x → 0 and o(x4)

x4 → 0 so their product o(x4)
x4 goes to 0 too. So the limit

is 1/6 . ■
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Example 7.3:

lim
x→0

(
sin x

x

)1/x

Solution. Write sinx = x+ o(x2) (that’s all we need). Then:

lim
x→0

(
sin x

x

)1/x

= exp

(
lim
x→0

log(sin(x)/x)

x

)

= exp

(
lim
x→0

log((x+ o(x2)/x)

x

)
Using o(x2)/x = o(x):

= exp

(
lim
x→0

log(1 + o(x))

x

)
Write log(1 + y) = y + o(y). Taking y = o(x):

= exp

(
lim
x→0

o(x) + o(o(x))

x

)
But as we remarked a while back, o(o(x)) = o(x). Moreover clearly we have o(x) + o(x) =
o(x). Thus this is:

= exp

(
lim
x→0

o(x)

x

)
Apply definition of little-o:

= exp(0) = 1

■

Example 7.4:
lim
x→∞

√
x+ 1−√

x

Solution. It is true that √
1 + x = 1 +

1

2
x+ o(x).

However it is nonsense to apply Taylor expansion immediately. This is because Taylor
expansion at x = 0 is used to approximate the function near x = 0. Whereas, the limit here
is concerned with x = +∞.

Instead we write the limit as

lim
x→0+

√
1

x
+ 1−

√
1

x
.

34



Thomas Lam Recitation 7 Oct. 31st 2025

Now we are in position to apply Taylor. Rewriting,

= lim
x→0+

√
1 + x− 1√

x
.

Applying Taylor,

= lim
x→0+

1 + 1
2
x+ o(x)− 1√

x
= lim

x→0+

1

2

√
x+

o(x)√
x
.

We have o(x)/
√
x → 0 (because we can write it as o(x)/x · √x) so the limit evaluates to 0.

■

The method here also shows that the exponent α for which limx→∞ xα(
√
x+ 1 − √

x)
exists and is non-zero, is α = 0.5.

Taylor is also useful for determining the convergence of some sums and integrals, and
ascertaining differentiability of certain contrived functions, but I will not discuss this here.

7.4 More applications of uniform convergence

Uniform convergence preserves some regularity. Some sample facts:

• If fn continuous and fn → f uniformly, then f continuous.

• If fn → f pointwise and f ′
n → g uniformly, then f is differentiable and f ′ = g. In

other words,

lim
n→∞

d

dx
fn(x) =

d

dx
lim
n→∞

fn(x).

• If fn continuous and
∑∞

n=1 fn converges uniformly, then
∑∞

n=1 fn is continuous.

• (Weierstrass M -test) If
∑∞

n=1 ∥fn∥∞ < ∞ then
∑∞

n=1 fn converges uniformly.

• If fn differentiable,
∑∞

n=1 fn converges, and
∑∞

n=1 f
′
n converges uniformly, then

∑∞
n=1 fn

is differentiable. In other words,

d

dx

∞∑
n=1

fn =
∞∑
n=1

d

dx
f(x).
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Example 7.5: Let

f(x) :=
∞∑
n=1

sin(nx)

n3 + x2
.

• Does the sum converge pointwise? Does it converge uniformly?

• Is f continuous?

• Is f differentiable?

Proof.

• For a fixed x we have
∞∑
n=1

∣∣∣∣ sin(nx)n3 + x2

∣∣∣∣ ≤ ∞∑
n=1

1

n3
< ∞

so we have absolute convergence of the series. Since x was arbitrary we deduce point-
wise convergence.

• Actually,
∞∑
n=1

∥∥∥∥ sin(nx)n3 + x2

∥∥∥∥
∞

≤
∞∑
n=1

1

n3
< ∞

so we have uniform convergence by the M -test.

• f is continuous because the sum converges uniformly, and the partial sums are all
continuous.

• We claim that f is differentiable. By the theorem about differentiability under uniform
convergence, it suffices to prove that

∞∑
n=1

d

dx

sin(nx)

n3 + x2

converges uniformly. Evaluating the derivative, this is

∞∑
n=1

n cos(nx)

n3 + x2
− 2x sin(nx)

(n3 + x2)2
.

To show this converges uniformly, we apply the M -test.

∞∑
n=1

∥∥∥∥n cos(nx)

n3 + x2
− 2x sin(nx)

(n3 + x2)2

∥∥∥∥
∞

≤
∞∑
n=1

∥∥∥∥n cos(nx)

n3 + x2

∥∥∥∥
∞
+

∥∥∥∥2x sin(nx)(n3 + x2)2

∥∥∥∥
∞

≤
∞∑
n=1

1

n2
+

∞∑
n=1

∥∥∥∥2x sin(nx)(n3 + x2)2

∥∥∥∥
∞

So just need to show that
∑∞

n=1

∥∥∥2x sin(nx)
(n3+x2)2

∥∥∥
∞

< ∞.
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• This is true but it is not that easy to show. Instead let’s cheat by instead showing that
the original series is differentiable over [−M,M ], where M is fixed (but arbitrarily
large). Then we just need the uniform convergence over [−M,M ]. This makes the
proof easier:

∞∑
n=1

∥∥∥∥2x sin(nx)(n3 + x2)2

∥∥∥∥
∞

≤
∞∑
n=1

2M

n6
< ∞

So we have uniform convergence, hence by the theorem f is differentiable on [−M,M ].
But M can be as large as we want, so f is differentiable on R.

□
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8 Uhoh

8.1 Midterm Problems

8.1.1 Bounding sums

You can’t do this:
∞∑
n=1

(−1)nxn ≤
∞∑
n=1

(−1)n|x|n

Similarly you can’t do this:
∞∑
n=1

(−1)n
1

n2
≤

∞∑
n=1

(−1)n
1

n

A good rule of thumb is to shove in an absolute value into the summand before you write
inequalities.

8.1.2 Theorem does not apply, therefore the conclusion of the theorem is false?

For example, let’s say fn continuous but
∑

fn does not converge uniformly. This does
NOT mean that

∑
fn is not continuous!

(See: Question 4b on the exam, where people said that lack of uniform convergence
implies f not differentiable...)

8.1.3 Local uniform convergence does not imply uniform convergence

If fn → f uniformly on each [a, b] ⊆ (0, 1), this does not imply that fn → f uniformly
on (0, 1).

If you know that fn is continuous on (0, 1) and want to show that f is continuous (0, 1),
it would be sufficient to have that fn → f uniformly on (0, 1). But this may not be the case.
At times, we may only be able to show that fn → f uniformly on [δ, 1 − δ] for each δ > 0.
Although we can’t conclude that fn → f uniformly on (0, 1), we actually can argue that f
is continuous.

This is because, as fn → f uniformly on [δ, 1 − δ] for each δ > 0, it follows that f is
continuous on [δ, 1− δ] for each δ > 0. This means that f is continuous on (0, 1) since δ can
be made arbitrarily small.
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8.1.4 More exercises

Example 8.1: Let

f(x) =
∞∑
n=1

√
ne−nx.

• Show that the series converges uniformly over x ∈ [a,∞) for any a > 0.

• Is f differentiable on (0,∞)? If so, write the series for the derivative f ′.

Solution. We apply the M -test. Fix a > 0. Then

∞∑
n=1

sup
x∈[a,∞)

∣∣√ne−nx
∣∣ = ∞∑

n=1

√
ne−na.

This is < ∞ because, by the ratio test,

lim sup
n→∞

√
n+ 1e−n+1a

√
ne−na

= lim sup
n→∞

√
n+ 1

n
e−a = e−a < 1.

So the M -test applies and, therefore, we have uniform convergence of the series over [a,∞).

f is differentiable on (0,∞). To show this, it suffices to prove that f is differentiable on
[a,∞) for every a > 0. By a theorem, this will be true if we prove that

•
∞∑
n=1

√
ne−nx converges uniformly on [a,∞), and

•
∞∑
n=1

d

dx

√
ne−nx converges uniformly on [a,∞).

We have already shown the first bullet point. For the second, we compute

∞∑
n=1

d

dx

√
ne−nx =

∞∑
n=1

−n
√
ne−x.

To show this converges uniformly on [a,∞), we apply the M -test. ■

Example 8.2: Does
∑∞

n=2(−1)n xn

logn
converge uniformly on x ∈ (0, 1]?

Solution. As a first attempt, we may try the M -test. We have

sup
x∈(0,1]

∣∣∣∣(−1)n
xn

log n

∣∣∣∣ = 1

log n
,
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and
∑∞

n=2
1

logn
= +∞, so the M -test fails.

This does not mean that the answer is “no”! M -test succeeding implies uniform
convergence, but this doesn’t mean that M -test failing implies no uniform convergence.

It turns out that we do have uniform convergence. To show this, we must do it “by
hand”, i.e. we must show that

sup
x∈(0,1]

∣∣∣∣∣
N∑

n=2

(−1)n
xn

log n

∣∣∣∣∣ → 0

as N → ∞.

There’s a theorem that applies here.

Theorem 8.1 (Alternating Series with Error Bound)

Let an → 0, an ≥ 0 be decreasing. Then

• (Alternating Series Test)
∑∞

n=1(−1)nan converges.

• (Error Bound) Let S =
∑∞

n=1(−1)nan. Then∣∣∣∣∣S −
N∑

n=1

(−1)nan

∣∣∣∣∣ ≤ aN+1.

Applying this we find that ∣∣∣∣∣
N∑

n=2

(−1)n
xn

log n

∣∣∣∣∣ ≤ xN+1

log(N + 1)
,

hence

sup
x∈(0,1]

∣∣∣∣∣
N∑

n=2

(−1)n
xn

log n

∣∣∣∣∣ ≤ 1

log(N + 1)

which clearly → 0 as N → ∞. ■

8.2 Exercises with Taylor

Example 8.3: Find all p, q ∈ R for which∫ ∞

0

(x− sin x)q

xp
dx

exists and is finite.
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Solution. Let δ > 0 be a small number which we’ll choose later. It suffices to get that both

I :=

∫ ∞

100

(x− sin x)q

xp
dx

and

II :=

∫ δ

0

(x− sin x)q

xp
dx

exist. Note that
∫ 100

δ
(x−sinx)q

xp dx exists and is finite (why?) so we don’t need to worry about
it.

For I, we note that for all x > 100, the integrand is positive, and

x

2
≤ x− sin x ≤ 2x

for all such x. Hence

(1/2)q
∫ ∞

100

xp−q dx ≤
∫ ∞

100

(x− sin x)q

xp
dx ≤ 2q

∫ ∞

100

xq−p dx.

From this we see that
∫∞
100

(x−sinx)q

xp dx converges iff
∫∞
100

xq−p dx converges, which is when
q − p < −1.

For II, we have

sin x = x− x3

6
+ o(x4).

So

x− sin x =
x3

6
+ o(x4)

and hence, for all x small enough (say, 0 < x < δ ≪ 1; here we choose δ), we have

0.01x3 ≤ x3

6
− 0.1x4 ≤ x− sin x ≤ x3

6
+ 0.1x4 ≤ 0.3x3.

So

0.01q
∫ δ

0

x3+q−p dx ≤
∫ δ

0

(x− sin x)q

xp
dx ≤ 0.3q

∫ δ

0

x3+q−p dx.

Since the integrand is ≥ 0 (why is this important?), we deduce that the integral II converges

iff
∫ δ

0
x3+q−p dx converges, which occurs exactly when 3 + q − p > −1.

To summarize, our two conditions are q+1 < p and 4+ q > p. Thus the original integral
converges iff q + 1 < p < q + 4. ■
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9 Domination

9.1 The limit theorems

Theorem 9.1 (Monotone Convergence)

Let I be any interval, let fn : I → R be non-negative, increasing in n, and Riemann
integrable. Let the pointwise limit be f and suppose moreover that f is Riemann
integrable. Then

lim
n→∞

∫
I

fn dx =

∫
I

f dx.

Theorem 9.2 (Dominated Convergence)

Let I be any interval, let fn : I → R be Riemann integrable, and converge pointwise
to some f : I → R which is also Riemann integrable. If there exists a Riemann-
integrable function g : I → R for which

|fn(x)| ≤ |g(x)|

for all n and x, then

lim
n→∞

∫
I

fn dx =

∫
I

f dx.

Notes:

• The bounded convergence theorem and uniform convergence theorem are both directly
implied by dominated convergence. So monotone convergence and dominated conver-
gence are technically the only two limit theorems you need to know (for now).

• In both theorems there is this annoying additional caveat that we must assume that
the limit f is Riemann integrable. Ideally we’d like to not check for this. Unfor-
tunately, for the Riemann integral we must check for this (why?).

This is one (minor) reason as to why the Lebesgue integral is better: If you replace
“Riemann” with “Lebesgue” in both of the monotone convergence and dominated
convergence theorems, then you no longer need to assume this!

If I forget to check for integrability of the limit, this is why.

Quick note about notation: I’ll be using the partial derivative notation ∂
∂x

at times. It
means the same thing as d

dx
. You’re treating all other variables as constant and differentiating

in x. We tend to write ∂
∂x

when there are multiple variables. For example d
dx
f(x, y) is a bit

strange but ∂
∂x
f(x, y) is the gold standard for notation. It’s nothing scary I promise.
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9.2 Examples

Example 9.1: Compute the limit

lim
n→∞

∫ 2

0

(2x− x2)n dx.

Solution. Let fn(x) = (2x− x2)n dx. We recognize that 0 < 2x− x2 < 1 for all x ∈ (0, 1),
thus

lim
n→∞

fn(x) = 0

for all x ∈ (0, 2). Thus fn → f pointwise, where f ≡ 0. We now must show that the
functions {fn}n are dominated by some integrable function g. Indeed, we can just take
g(x) = 1, which is integrable over (0, 2). So we may swap the limit and integral to get

lim
n→∞

∫ 2

0

(2x− x2)n dx =

∫ 2

0

lim
n→∞

(2x− x2)n dx =

∫ 2

0

0 dx = 0.

■

Example 9.2: Compute the limit

lim
t→0

∫ ∞

−∞

cos(xt)

1 + x2
dx.

Note that, although the convergence theorems are stated for sequences of functions and
limits of the form limn→∞, they work equally well for functions parametrized by a continuous
variable, such as in the above example, provided that it’s done properly. We will stick to
sequences for the time being for safety, but it should not be too hard to show the following:

Theorem 9.3 (Dominated convergence for continuous variable)

Let f(x, t) : I × T → R be a function of two variables, with I and T both intervals of
R. Let t0 ∈ T . Suppose that the integral

∫
I
f(x, t) dx exists for all t ∈ T , and that the

pointwise limit limt→t0 f(x, t) exists and is integrable. Then, if there exists δ > 0 and
a function g which is integrable over I with

|f(x, t)| ≤ g(x)

for all x and for all t with |t− t0| < δ, then

lim
t→t0

∫
I

f(x, t) dt =

∫
I

lim
t→t0

f(x, t) dt.

This theorem, which seems to be unstated in typical sources, is quite natural to me.
However when written out it may be a bit wordy, so let’s generally stick with sequences for
the time being.
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9.3 Regularity of functions defined by an integral

Example 9.3: Let

f(x) =

∫ 1

0

sin(x2 + y2) dy.

Is f continuous? Is it differentiable?

Solution. We claim f is differentiable. But as a warm-up let’s show that f is continuous.
Fix x0 ∈ R and we shall show continuity at x0 by showing that if xn → x0, then

lim
n→∞

f(xn) = f(x0).

In other words, we want to show that

lim
n→∞

∫ 1

0

sin(x2
n + y2) dy =

∫ 1

0

sin(x2
0 + y2) dy.

This means that we want to justify an interchange of integrals!

If we let hn(t) = sin(x2
n+y2), we have that hn is dominated by 1, which is integrable over

[0, 1]. Moreover hn converges pointwise. So we may conclude by dominated convergence.

How about differentiability? This is a bit trickier, since now we want to interchange an
integral with a derivative. That is, we want to argue that d

dx

∫ 1

0
sin(x2 + y2) dy exists, with

d

dx

∫ 1

0

sin(x2 + y2) dy =

∫ 1

0

∂

∂x
sin(x2 + y2) dy.

However, note that derivatives are limits, so what we’re really trying to show is that, for
every x0 ∈ R, we have

lim
x→x0

∫ 1

0
sin(x2 + y2) dy −

∫ 1

0
sin(x2

0 + y2) dy

x− x0

?
=

∫ 1

0

lim
x→x0

sin(x2 + y2)− sin(x2
0 + y2)

x− x0

dy,

or

lim
x→x0

∫ 1

0

sin(x2 + y2)− sin(x2
0 + y2)

x− x0

dy
?
=

∫ 1

0

lim
x→x0

sin(x2 + y2)− sin(x2
0 + y2)

x− x0

dy.

So, we just need to verify an interchange of limits! To justify this one, we note by the MVT
that for any x ̸= x0 there is some ξx in between x and x0 such that

sin(x2 + y2)− sin(x2
0 + y2)

x− x0

= 2ξx cos(ξ
2
x + t2).

Thus for all x ∈ (x0 − 1, x0 + 1) we have the uniform bound∣∣∣∣sin(x2 + y2)− sin(x2
0 + y2)

x− x0

∣∣∣∣ ≤ 2(|x0|+ 1),
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which allows us to use dominated convergence to win. ■

The methods we used here generalize. Try to prove the following theorem by yourself.

Theorem 9.4

Let f(x, t) : I × T → R be a function of two variables, with I and T both intervals.
Suppose that there exists a function g(t) : T → R which dominates ∂xf , i.e.∣∣∣∣∂f∂x (x, t)

∣∣∣∣ ≤ g(t)

for all x ∈ I and t ∈ T . Then

d

dx

∫
T

f(x, t) dt =

∫
T

∂f

∂x
(x, t) dt

for all x. (Here the left side should be interpreted as the derivative of y 7→
∫
T
f(y, t) dt,

evaluated at y = x.)

Example 9.4 (Not done in recitation): The Gamma function Γ(z) is defined
by the integral

Γ(z) :=

∫ ∞

0

tz−1e−t dt

for z > 0. Prove that Γ is continuous.

Proof. Fix z0 > 0 and we will show that Γ is continuous at z0. It suffices to show that if
we take a sequence zn → z0, then

lim
n→∞

∫ ∞

0

tz−1e−t dt =

∫ ∞

0

tz0−1e−t dt

which, in turn, reduces to justifying the interchange of the limit and integral above.

To do this, we shall dominate the functions fn(t) := tzn−1e−t. Because of how convergence
works, we may assume that

0 < z0 − δ < zn < z0 + δ

for all n (why?). Thanks to this, we get that

tzn−1 ≤ t(z0+δ)−1 when t > 1,

tzn−1 ≤ t(z0−δ)−1 when t < 1.

Therefore,
|fn(t)| ≤ g(t),

where

g(t) :=

{
tz0+δ−1e−t, t ≤ 1

tz0−δ−1e−t, t > 1
.
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This is integrable (why?), so dominated convergence applies! □

9.4 Weird Tricks

I don’t expect you to be able to do these, I’m presenting this technique purely for fun. :)

Example 9.5: Compute ∫ 1

0

x17 − 1

log x
dx

Solution. Let f(t) =
∫ 1

0
xt−1
log x

dx. We claim that f is differentiable and that

f ′(t)
?
=

∫ 1

0

∂

∂t

xt − 1

log x
dx.

To show this, fix t0. Then we will show that

lim
t→t0

f(t)− f(t0)

t− t0

exists, which we can write as

lim
t→t0

∫ 1

0

xt − xt0

(t− t0) log x
dx.

We now want to dominate the integrand here by some integrable g(x). To do this, note by
the MVT that

xt − xt0

t− t0
= log x · xct

for some ct in between t and t0. So∣∣∣∣xt − xt0

t− t0

∣∣∣∣ ≤ | log x| · |xct | ≤ | log x|,

and therefore, ∣∣∣∣ xt − xt0

(t− t0) log x

∣∣∣∣ ≤ 1,

which is integrable over (0, 1). So the dominated convergence applies. (technically you should
be taking a sequence tn → t0 first but whatever.)

So the claim is proven, i.e. we now have justified that

f ′(t) =

∫ 1

0

∂

∂t

xt − 1

log x
dx =

∫ 1

0

xt dx =
1

t+ 1
.
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Noting that f(0) = 0, we conclude that f satisfies the following differential equation:{
f ′(t) = 1

t+1

f(0) = 0

The solution is given by f(t) = log(1+ t). We conclude that the answer is f(17) = log(18) .

Voila. ■

You can try this one on your own.

Example 9.6: Evaluate the integral∫ ∞

−∞
e−x2

cos(2x) dx.

(Hint: consider e−x2
cos(2xt)... integration by parts... differential equation...)
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10 The Birth of Measure Theory

10.1 The Problem of Area

What does “area” mean? Intuitively we expect area to be a function which assigns
numbers to sets in a way that measures their “size”. Some properties we expect:

(a) Area(E) ≥ 0 for all sets E

(b) Area(∅) = 0

(c) (Additivity) Area(E ∪ F ) = Area(E) + Area(F ) whenever E and F are disjoint

(d) (Behavior under “limits”) If E1 ⊆ E2 ⊆ E3 ⊆ . . . , and E∞ :=
⋃∞

n=1En, then

Area(E∞) = lim
n→∞

Area(En).

Any function µ : F → [0,∞] which satisfies these rules is called a measure.

Definition 10.1 (Measure)

A measure is a function µ : F → [0,∞] such that:

• µ(∅) = 0

• µ(E ∪ F ) = µ(E) + µ(F ) whenever E and F are disjoint

• µ(E∞) = limn→∞ µ(En) whenever {En}n is an increasing sequence of sets, and
E∞ =

⋃∞
n=1 En

Here, the “domain” of µ, F , is a sigma-algebra.

What I want you to know is that “a measure is something which satisfies the rules that
area and volume should satisfy”.

A sigma algebra is basically just a set of sets which has some structure. The rules for
a sigma algebra include containing the empty set, closure under complement, and closure
under countable union. You don’t need to be that familiar with the definition until you take
advanced probability courses.
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10.2 Examples of Measures

10.2.1 “Area”

Area, in R2, is a measure (once we’ve properly defined it, which is not quite yet).

10.2.2 “Volume”, “Length”

The notions of volume and length, in R3 and R respectively, are measures (once we’ve
properly defined them).

10.2.3 Counting measure

The function µ(S) := |S| is a very stupid example of a measure, where |S| denotes the
cardinality of S.

10.2.4 Mass

The function m(E) which measures the amount of mass in a region E of space is a
measure. This is what physicists mean when they write “dm”.

10.2.5 Probability

P is a measure.

10.2.6 Measure induced by a function

Let f ≥ 0 be an integrable function on R. Then µ given by

µ(E) :=

∫
E

f(x) dx

is a measure (on an appropriate sigma algebra). This is an extremely common occurrence
for how measures pop up. You can think of the function f as a “weight”: The larger f(x)
is, the more weight it puts at x.
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10.3 How to build a measure...?

Let’s try to define the “Area” function now. It seems not obvious how to define it! Let’s
follow these steps.

Step 1: Simple shapes

Not sure how to find the area of a circle. But maybe I can start by defining the area of
really easy shapes.

Definition 10.2 (Measure of a rectangle)

The (elementary) measure of a rectangle R = [a, b] × [c, d] is given by (b − a)(d − c).
It is denoted as measR.
In general we can define the measure of a rectangle R = I1 × I2 × · · · × In = Rn as
|I1| · |I2| · . . . |̇In| for any intervals {Ii}ni=1, where |Ii| is the length of interval Ii.

Step 2: Cover anything else with simple shapes

How can we use this to define the area of other things? We could cover them with smaller
and smaller rectangles and sum them up!

Definition 10.3 (Lebesgue Outer Measure)

The Lebesgue Outer Measure of a set E ⊆ Rn is given by

Ln
o (E) := inf

{
∞∑
i=1

meas(Ri) : {Ri}∞i=1 is a sequence of rectangles such that
∞⋃
i=1

Ri ⊇ E

}
.

The L stands for “Lebesgue”, the n is dimension, and the subscript o stands for “outer”.
(Spoiler alert: this is not a measure, which is why it’s called an outer measure.)

Is this good definition of “area” (when n = 2) and “volume” (when n = 3)? Does it
satisfy the rules a measure needs to satisfy?

10.4 The Problem of Totality: Vitali Ruins Everything

There is one more rule that you’d expect area to satisfy.

(e) (Totality) All sets have an area.

However, LN
o does not satisfy this.
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Theorem 10.1 (Vitali ruins the day)

There exists some really ugly disjoint sets E,F ⊆ R such that L1
o(E ∪ F ) ̸= L1

o(E) +
L1

o(F ).

These two “rules” are, therefore, in contradiction:

(c) (Additivity) Area(E ∪ F ) = Area(E) + Area(F ) whenever E and F are disjoint

(e) (Totality) All sets have an area.

Which one do we give up on? Additivity is simply too important to give up, so we give
up totality.

10.5 How to build a measure (for real this time)

Step 1: Simple shapes

For a certain class of simple shapes (like rectangles), define their measure.

Step 2: Cover anything else with simple shapes

For any E, compute its outer measure by covering it with smaller and smaller simple
shapes.

This gives a way to “measure” all sets.

Step 3 (NEW!): Throw out bad sets

We toss out any sets that could break the additivity condition, leaving us with a sigma
algebra F of measureable sets, which serves as the “domain” of our measure.

I’m glossing over how exactly this works. For Lebesgue measure, F generally will contain
most sets that you can think of. More on that later.

Let’s look at a few examples.

10.5.1 Lebesgue Measure

This is the standard notion of length, area, volume, etc.

1. (Simple shapes) We can define the measure measR of any rectangle R ⊆ RN .
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2. (Coverings) We can now define the outer measure via

LN
o (E) := inf

{∑
n

measRn :
⋃
n

Rn ⊇ E

}
.

3. (Throw out bad sets) Let F be the sigma algebra of Lebesgue-measurable sets (more
on what that looks like). Then the restriction of LN

o to F is the Lebesgue measure,
LN on RN .

10.5.2 Lebesgue-Stieltjes Measure

In Calculus you may recall writing dg for a differentiable function g, and then writing∫
f dg. This is kinda nonsense unless done correctly.

When g is differentiable,
∫
f dg just means

∫
fg′ dx, which makes “sense” since g′ = dg

dx

and then we “rearrange” this to get g′ dx = dg. But when g is not differentiable, such as in
an integral like ∫

[0,3]

x2 d⌊x⌋,

then we can’t do that, so we must think of a different way to interpret this. It turns out
that for any increasing g, we can think of the differential dg as integrating with respect to a
measure. This measure is called the Lebesgue-Stieltjes measure. Here is how we build it.

Let g be increasing and right-continuous.

1. (Simple shapes) The simple shapes are intervals of the form (a, b]. Their measure shall
be

meas(a, b] := g(b)− g(a).

think of integrals as Riemann sums, and think of this as redefining what the bases of
the rectangles are. the more g increases, the larger we define the bases to be.

2. (Coverings) For any set E ⊆ R, we can define its outer measure,

µ∗
g(E) := inf

{
∞∑
n=1

meas(an, bn] :
∞⋃
n=1

(an, bn] ⊇ E

}
.

3. (Throw out bad sets) Restrict µ∗
g to a sigma-algebra called the Borel sigma-algebra,

B(R), which you can intuitively think of as all sets you can make using open sets.

This leaves us with a measure µg : B(R) → [0,∞] called the Lebesgue-Stieltjes
measure associated with g.

We will explore this measure a little more in the next section of these notes.
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10.6 Lebesgue Measurable Sets

In the construction of the Lebesgue measure, we tossed out a bunch of bad sets to end
up with F , the sigma-algebra of Lebesgue-measurable sets. What are those, precisely?

I’ll give you two ways to tell if a set E ⊆ RN is (Lebesgue) measurable. (Sometimes just
called “measurable”.)

10.6.1 Cookie Cutting Condition

E is measurable if and only if it can be used as a good cookie cutter. In other words, we
have that

LN
o (A) = LN

o (A ∩ E) + LN
o (A ∩ Ec)

for all sets A.

(See also: “Cartheodory cutting condition”)

This can be kinda hard to work with though.

10.6.2 Outer Regularity

E is measurable if and only if for all ε > 0 there exists an open U ⊇ E such that

LN
o (U \ E) < ε.

Intuitively, open sets are nice, and so a measurable set is one that’s close enough to a nice
set.

Consequences of this are:

• All open sets are measurable.

• All closed sets are measurable.

• All Borel sets are measurable (anything you can make using countably many open
sets).

That’s pretty good. Here’s an even better condition.
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10.6.3 Not Trying To Break Math

Write down a set. It’s measurable.

It’s REALLY HARD to make a set that isn’t measurable. The only way to do it is to use
the axiom of choice and non-constructively define a horrible set. So if you can even write
down the set explicitly then it has to be measurable. Generally all sets are measurable as long
as you’re not trying to break math.

There’s also a notion of a measurable function, which is a function which interacts nicely
with measurable sets and, therefore, can be reasoned with nicely. I won’t bother defining
this but it’s not that bad.

10.7 Lebesgue Integration

Once we have a measure, we can define what it means to integrate. The way we do this
is to first define the integral of simple functions. I will do this all on R and for the Lebesgue
measure L1 (i.e. “length”) so that you can imagine it better, but everything I’m about to
write works for any measure.

Definition 10.4 (Simple function)

A simple function is a function of the form

s(x) =
n∑

k=1

ck1Ek

for ck > 0 and Ek measurable.
The integral of s(x) is then ∫

R
s(x) dx :=

n∑
k=1

ckL1(Ek).

Think of simple functions as “Riemann sums”, or “a bunch of rectangles”. We take
ck > 0 because we don’t want to deal with negatives just yet.

Next, for any function f ≥ 0, we can try to approximate with simple functions. And
that’s basically how you get the Lebesgue integral.
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Definition 10.5 (Lebesgue Integral (non-negative functions)

Let f ≥ 0 (be measurable). Then∫
R
f(x) dx := sup

{∫
R
s(x) dx : s is simple, and 0 ≤ s ≤ f

}
.

When f can be both positive and negative, we split it into two parts.

Definition 10.6 (Lebesgue Integral)

Take a function f . Split it into the positive part f+ := max(0, f) ≥ 0 and the negative
part f− := max(0,−f) ≥ 0. Then the integral of f is∫

R
f dx :=

∫
R
f+ dx−

∫
R
f− dx

provided that the right side isn’t ∞−∞.
If the right side is a finite number then we say f is integrable.
The integral ∫

E

f(x) dx

simply means

∫
R
f(x) · 1E(x) dx.

(If you’re using a different measure, you should be very wary of writing
∫ b

a
. Do you

see why?)

This leads to the “Big Three” convergence theorems.

Theorem 10.2 (Monotone convergence theorem)

Let 0 ≤ fn ≤ f , such that fn ↗ f . Then

lim
n→∞

∫
R
fn(x) dx =

∫
R
f(x) dx.

Theorem 10.3 (Fatou’s Lemma)

Let fn ≥ 0. Then ∫
R
lim inf
n→∞

fn(x) dx ≤ lim inf
n→∞

∫
R
fn(x) dx.
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Theorem 10.4 (Dominated Convergence)

Let fn be a sequence of functions converging pointwise to some f , where {fn}n is
dominated by an integrable g. That is, |fn| ≤ g and g is integrable. Then

lim
n→∞

∫
R
fn(x) dx =

∫
R
f(x) dx.

I’m not expecting you to know how to prove these, but I want you to know that dominated
convergence is a real thing that exists, and is extremely useful.

10.8 Examples of integrals with respect to other measures

10.8.1 Doubled lengths

It’s not hard to see that ∫ 1

0

x2 dx =
1

3
.

Now, let µ be the measure which is twice the Lebesgue measure, so µ(E) = 2L1(E). Then
what is ∫ 1

0

x2 dµ?

Intuitively, the lengths of the bases of all “rectangles” will have doubled, so it makes sense
that the area under the curve has doubled. The answer is 2

3
.

10.8.2 Counting measure

It’s not hard to see that ∫ ∞

1

1

x2
dx = 1.

Now, let µ be the number of elements shared with N, i.e.

µ(E) := |N ∩ E|.
For example µ([2.5, 5.5]) = |{3, 4, 5}| = 3. What is∫ ∞

1

1

x2
dµ?

Before we answer this we should be more precise with what
∫∞
1

means. Is 1 included or
excluded? Let’s just say that what we meant to write was∫

[1,∞)

1

x2
dµ.
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Now, since µ({n}) = 1 for all n ∈ N, intuitively µ is putting a “mass of 1” on every natural
number, and everything else is worthless. So it turns out that∫

[1,∞)

1

x2
dµ =

∞∑
n=1

1

n2
=

π2

6
.
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11 Apparently this is the last recitation

i literally found out at the end of recitation

11.1 The Dirac Delta “Function”

Physicists say that the Dirac Delta δa(x) is a “function” for which:

• δa(x) = 0 for all x ̸= a

•
∫
R δa(x) dx = 1.

After measure theory, we know that this is BS: A function which is 0 “almost everywhere”
must integrate to 0. So what is δa?

It turns out that it’s not a function. Rather, it is a measure.

Definition 11.1 (Dirac Delta)

The Dirac Delta at a ∈ R is a measure δa defined as follows:

δa(E) :=

{
1, a ∈ E

0, a ̸∈ E

In other words, δa assigns a mass of 1 to the point x = a, and everything else is worthless.

You can check from the definition of Lebesgue integral that for any f ,∫
R
f(x) dδa = f(a).

This makes sense: Only x = a matters.

Playing with this a bit more, we can create a funny measure called the Dirac Comb,

C :=
∑
n∈Z

δn.

The measure C assigns a mass of 1 to every integer, and everything else is worthless. We
can also define this explicitly as

C(E) = |E ∩ Z|,
so C(E) counts the number of integers inside E.
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You can convince yourself that∫
R
f(x) dC =

∞∑
n=−∞

f(n).

Therefore, all sums are integrals, and thus any theorems which apply to Lebesgue integrals
can also be used to reason about sums.

11.2 Back to Lebesgue-Stieltjes

We learned about Riemann-Stieltjes but it sucks. Let’s think about Lebesgue-Stieltjes
instead. We saw in the last section how it can be defined using the 3-step recipe.

Let’s look at some explicit examples now. Let g(x) = 1[0,∞)(x). Then g is increasing and
right-continuous, so we can use it as an integrator. What is the associated Lebesgue-Stieltjes
measure, µg?

Claim: µg = δ0

Proof. (Not done in recitation) It suffices to prove that µg({0}) = 1 and µg(R \ {0}) = 0,
or alternatively, that µg({0}) = µg(R) = 1.

Those sets are all Borel, so we just need to compute the outer measures µ∗
g({0}) and

µ∗
g(R \ {0}).

First we prove µ∗
g({0}) = 1. The half-open interval (−10, 10] covers {0}, so

µ∗
g({0}) ≤ meas(−10, 10] = g(10)− g(−10) = 1− 0 = 1.

On the other hand, any covering of {0} with half-open intervals must involve some (a, b]
which contains 0, so that a < 0 ≤ b. Thus

µ∗
g({0}) = inf {. . . } ≥ meas(a, b] = meas(a, b] = g(b)− g(a) = 1− 0 = 1.

Now we prove µ∗
g(R) = 1. Since R ⊇ {0}, we have µ∗

g(R) ≥ µ∗
g({0}) = 1. For

the other inequality, we just note that
⋃

n∈Z(n, n + 1] covers R, and you can verify that∑
n∈Z meas(n, n+ 1] = meas(0, 1] = 1. □

It therefore follows that for all f ,∫
R
f(x) dµg = f(0).

When written as a Stieltjes integral, we can think of this as saying that∫
R
f(x) dg =

∫
R
f(x)g′(x) dx =

∫
R
f(x)δ0(x) dx (not rigorous)
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so that, in a sense, δ0 can be thought of as the derivative of the step function g(x). Intuitively
this does make sense! If g has a derivative, it would surely be something that’s “infinite” at
x = 0.

Similarly, if we take g(x) = ⌊x⌋, then the associated Lebesgue-Stieltjes measure µg is the
Dirac comb C =

∑
n∈Z δn! We therefore can say that the derivative of ⌊x⌋ is C, in a sense.

Example 11.1: Let f(x) = 1[0,∞)(x). Then as you agonized over during homework,
the Riemann-Stieltjes integral

∫
R f df does not exist. This is very annoying and I’ll

ask you to not stress over this technicality so that you can study literally anything
else.
Anyways, the Lebesgue-Stieltjes integral

∫
R f df certainly exists. As a Lebesgue

integral, we’re really interpreting this integral as
∫
R f dµf where µf is the Lebesgue-

Stieltjes measure associated with f . And, as we’ve shown, µf is just the Dirac delta
(at 0)! Thus ∫

R
f df =

∫
R
f δ0 = f(0) = 1 .

11.3 Bounded Variation

We can now (kinda) calculate integrals of the form
∫
f dg where g is increasing and right-

continuous. But what if g is not necessarily increasing? For example, can we make sense of
the integral ∫ 1

−1

x3 d|x|?

If we try to associate a Lebesgue-Stieltjes measure with |x| in the way we’ve been doing,
we notice a problem that comes from the decreasing part: meas(−1, 0] = |0| − | − 1| = −1,
which is really bad because measures should not spit out negative values!

This suggests that the associated Lebesgue-Stieltjes measure, µ|x|, is not quite a measure.
Rather, it is a signed measure, which satisfies some different properties but ultimately is
defined quite similarly to measures. Signed measures are a bit annoying until one takes
a course in measure theory and proves that every signed measure can be written as the
difference between two measures!

µ = µ+ − µ−

Let’s put that aside for now and try to figure out we could compute
∫
f dg for g not

increasing. It turns out that when g has bounded variation, we can make sense of this.
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Definition 11.2

The variation of g over an interval I is basically how much it goes up and down over
I. More formally,

Var
I

g = sup

{
n∑

i=1

|g(xi)− g(xi−1)| : x0 < x1 < · · · < xn, {xi}ni=0 ∈ I

}
.

For example, Var[−1,1] x
2 = 4.

If VarI g < ∞ then we say g has bounded (pointwise) variation.

It turns out that if g has bounded variation then it can be written as the difference
between two increasing functions (fun exercise!):

g = g+ − g−

For example, |x| = max(x, 0)−min(x, 0). Now to interpret
∫
f dg, we can write∫

f dg =

∫
f d(g+ − g−) =

∫
f dg+ −

∫
f dg−,

where we can now evaluate both of those integrals on the right!

The astute reader may have realized that this is the analogue of the decomposition of
signed measures. Indeed, the associated Lebesgue-Stieltjes measures decompose in this way.

Example 11.2: Let’s evaluate
∫ 1

−1
x3 d|x|. From the decomposition |x| =

max(x, 0)−min(x, 0), we have∫ 1

−1

x3 d|x| =
∫ 1

−1

x3 dmax(x, 0)−
∫ 1

−1

x3 dmin(x, 0).

We see that

max(x, 0) =

{
0, x < 0

x, x ≥ 0
,

so the associated Lebesgue-Stieltjes measure is the normal length measure on (0,∞),
and no mass is assigned to (−∞, 0). It follows that∫ 1

−1

x3 dmax(x, 0) = 0 +

∫ 1

0

x3 dx =
1

4
.

Similarly, we can find that
∫ 1

−1
x3 dmin(x, 0) =

∫ 0

−1
x3 dx = −1

4
. So∫ 1

−1

x3 d|x| = 1

4
−−1

4
=

1

2
.
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11.4 Cantor Set

There are a few more things in measure theory that I think you guys should probably
know. And they’re all bad.

Question 1: Is every set E ⊆ R with zero (Lebesgue) measure necessarily at most
countably infinite?

Unfortunately no, because of the Cantor set.

Ok, let’s prepare the second question. A lot of the examples of the Lebesgue-Stieltjes
measures on R that we’ve talked about so far are either “very nice” or “jumpy”.

By “very nice”, I mean stuff like dx2 or d|x|, in which it ended up being the case that we
could write ∫

f dg =

∫
fh dx

for some function h. (dx2 = 2x dx, d|x| = sgn x dx

By “jumpy”, I mean measures that are purely atomic, such as d1[0,∞) or d⌊x⌋.

Are all Lebesgue-Stieltjes measures a combination of these guys?

Question 2: If a measure µ has no atoms (i.e. sets {x} of positive measure), must
it be correspond to a function in the sense that dµ = f dx for some f?

Unfortuntaely no. There’s something called the Cantor function. It is continuous, so its
associated Lebesgue-Stieltjes measure has no atoms. Moreover its derivative is zero almost
everywhere. And yet, the associated Lebesgue-Stieltjes measure is quite non-trivial.

For a bit more on the Cantor set, you can see my notes for the 21-235 course at CMU
(section 4, “Cantor Ruins the Day”). I don’t expect you to be that familiar with Cantor
stuff, just wanted to give you guys a glimpse of it.
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12 Appendix

I wrote this up but I could never find a good time to talk about it lol.

12.1 All Norms on RN are equivalent

Theorem 12.1

Every norm on the vector space RN generates the same topology.

This is huge. Some sample consequences of this:

• To prove that some K ⊆ RN is compact, you can show that it is compact with respect
to the l1 norm.

• If a sequence xn ∈ RN converges with respect to the usual norm, then it converges
with respect to the taxicab norm.

• f : R2 → R is continuous at (x0, y0) ∈ R2 iff for all ε > 0 there exists δ > 0 such
that |f(x, y) − f(x0, y0)| < ε for all x, y for which |x − x0| < δ and |y − y0| < δ (i.e.
∥(x, y)− (x0, y0)∥∞ < δ).

This is a reflection of the principle that compactness, convergence, and continuity are topo-
logical properties.

Let’s prove the theorem now.

Proof. Let ∥ · ∥∞ be the l∞ norm on RN , i.e.

∥(x1, . . . , xN)∥∞ := max
1≤k≤N

|xk|,

and let ∥ · ∥♯ be another norm on RN .

CLAIM: There exists constants c, C > 0 such that

c∥x∥∞ ≤ ∥x∥♯ ≤ C∥x∥∞

for all x ∈ RN .

Before we prove this claim, let me explain why this claim proves the theorem. This is
because if U is open with respect to ∥ · ∥♯, then for every point x ∈ U , we can find a ball
B♯(x, r) ⊆ U . But by the claim, B∞(x, cr) ⊆ B♯(x, r). In particular, B∞(x, r/C) ⊆ U . So
this proves that every x ∈ U has an open ∥ · ∥∞-ball around it that’s contained in U , hence
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U is open with respect to ∥ · ∥∞. Similar reasoning shows that any set which is open with
respect to ∥ · ∥∞ must be open with respect to ∥ · ∥♯. So the topologies that these norms
induce must be the same.

Now let’s prove the claim. Observe first that

∥x =: (x1, . . . , xN)∥♯ =
∥∥∥∥∥

N∑
k=1

xkek

∥∥∥∥∥
♯

≤
N∑
k=1

|xk| · ∥ek∥♯

≤ ∥x∥∞
N∑
k=1

∥ek∥♯.

So we have ∥x∥♯ ≤ C∥x∥∞ for all x, where the constant is C =
∑N

k=1 ∥ek∥♯.

To show the other side of the inequality, observe that since ∥x∥♯ ≤ C∥x∥∞, we have that
the function f(x) := ∥x∥♯ is continuous with respect to ∥ · ∥∞ (why?). Now let S be the unit
sphere with respect to ∥ · ∥∞, i.e.

S := {x ∈ RN : ∥x∥∞ = 1}.

S is closed with respect to the usual norm (why?) and bounded, so it is compact with respect
to the usual norm. I leave it to you to show that the usual norm and ∥ · ∥∞ are equivalent
(can you show that there are constants A and B so that A∥ · ∥∞ ≤ ∥ · ∥ ≤ B∥ · ∥∞?) hence
S is compact with respect to ∥ · ∥∞.

Therefore f obtains a minimum c on S. So ∥x∥♯ ≥ c for all ∥x∥∞ = 1. By scaling, we
conclude that ∥x∥♯ ≥ c∥x∥∞ for all x ∈ RN . □

12.2 ODE existence and uniqueness

Remember this theorem?

Theorem 12.2 (Banach Fixed Point Theorem)

Let (X, d) be a complete metric space, and let f : X → X be a contraction, i.e.

d(f(x), f(y)) ≤ Ld(x, y)

for all x, y ∈ X, where 0 ≤ L < 1.
Then there exists a unique fixed point of f , i.e. x0 ∈ X such that f(x0) = x0.

You proved it in homework a long while ago by picking some point x and then showing
that the sequence x, f(x), f(f(x)), . . . is Cauchy.
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When you’re picturing this theorem you’re probably thinking of X as like a subset of
Euclidean space. What’s really nice is that this can apply to other contexts! It’s incredible
that this theorem works seamlessly in like, spaces of function, and the classic example of this
is one first proofs in analysis that truly captivated me.

So here’s something called a differential equation:{
u′(t) = f(u(t), t)

u(0) = u0

Here f(x, t) : R×R → R is a given function, and u0 ∈ R is a given constant. We are trying
to solve for u. For example, we can easily solve the differential equation{

u′(t) = t2

u(0) = 0

as u(t) = 1
3
t3. (Here the f is f(x, t) = t2.) And{

u′(t) = u(t)

u(0) = 1

solves as u(t) = et. (Here f(x, t) = x).

What differential equations have a solution? Here’s an amazing result.

Theorem 12.3 (Cauchy-Lipschitz-Picard-Lindelöf, simplified slightly)

Suppos f is Lipschitz in space, i.e. there is a constant L ≥ 0 such that

|f(x, t)− f(y, t)| ≤ L|x− y|

for all x, y, t ∈ R. Then there exists a solution u : [0, T ] → R to the differential
equation, for some amount of time T .

Proof. We choose T = 1
2L
, which will make sense later. First, notice that to solve the

differential equation, we can take u′(t) = f(u(t), t) and integrate both sides to get

u(t) = u0 +

∫ t

0

f(u(s), s) ds. (∗)

It suffices to find a u which solves this “integral form” of the equation.

Let’s turn this into a problem about finding a fixed point... What metric space should
we work in? Let’s take it to be X = C([0, T ]), which is a complete metric space. (Recall that
C([0, T ]) is equipped with the sup norm ∥ · ∥∞.) Our goal is to find a u ∈ C([0, T ]) solving
(∗).
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Now we need to come up with a function F : C([0, T ]) → C([0, T ]), which is related
to (∗)... how about we take F (u) to be the right side of (∗)? That is, for a function
u : [0, T ] → R, we take F (u) to be the function

t 7→ u0 +

∫ t

0

f(u(s), s) ds.

Then (∗) reads as u = F (u), meaning that we need a fixed point of F ...

Wait, we’d be done if F were a contraction! Calculating,

∥F (u)− F (v)∥∞ = sup
0≤t≤T

∣∣∣∣∫ t

0

f(u(s), s)− f(v(s), s) ds

∣∣∣∣ ≤ ∫ T

0

|f(u(s), s)− f(v(s), s)| ds

≤ L

∫ T

0

|u(s)− v(s)| ds

≤ L

∫ T

0

∥u− v∥∞ ds = LT∥u− v∥∞ =
1

2
∥u− v∥∞.

So F is a contraction, and we’ve nuked the problem by using the Banach Fixed Point
Theorem. I think that’s really cool. □

If you look up the theorem you’ll see that the proof is more complicated. This is because
everyone else considers a more general f , whose domain isn’t necessarily on all of R, so a
bit more care is needed to set things up. It’s basically the same proof though.
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