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0 Notation and Conventions

0.1 Multvariable Calculus

• Vector Fields and Scalar Fields: Vector fields are always denoted by capital letters.
Scalar fields are always denoted by lowercase letters.

• Gradients and Jacobians: For a function f : Rn → R, ∇f is the gradient of f . For
a vector field F : Rn → Rn

• Integration:

– I will not be writing
∫∫

,
∫∫∫

, etc. and will instead represent all integrals as
∫
.

–
∫
C
F · ds is the line integral of a vector field F over a path C.

– dx indicates integration over R, R2, or R3, depending on context. You may be
familiar with seeing dA or dV instead. I may instead use d(x, y)(≡ dA) to clarify
integration over R2, and similarly write d(x, y, z)(≡ dV ) to clarify integration over
R3.

– dS indicates a surface integral.

– In writing an integral we will often omit the independent variable for brevity/clar-
ity, e.g.

∫
Ω
f dx :=

∫
Ω
f(x) dx.

– If, however, the variable is important (particularly when multiple integrals are
involved), I may emphasize the name of the variable under the integral, e.g.∫

x∈E
f(x) dx :=

∫
E

f(x) dx.

• ν is the unit outward normal to the implied surface. (I am allergic to using n or n̂.)

• We write divF for divergence and curlF for curl (instead of ∇ ·F and ∇×F , respec-
tively).

• î, ĵ, k̂ are the basis vectors of R3. For example 3̂i+ 4ĵ + 5k̂ = (3, 4, 5).

0.2 Analysis

• Bn(x, r) is the n-dimensional ball centered at x with radius r. That is, Bn(x, r) :=
{y ∈ Rn : |x− y| < r}.

• For a set U , ∂U denotes the boundary of U .

• log is the natural log.
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1 Day 1: Integral Spam

1.1 Area and Volume

• Usually you want to find area/volume of a region by slicing the region into lower-
dimensional cross sections and integrating over the length/area of these sections.

• Consider using polar coordinates or other coordinate systems if such methods seem
relevant.

Example 1.1 (Stolen from the GRE): Find the volume of the region bounded
by y = x2, y = 2− x2, z = 0, and z = y + 3.

Solution. This is∫ 1

x=−1

∫ 2−x2

y=x2

∫ y+3

z=0

1 dz dy dx =

∫ 1

x=−1

∫ 2−x2

y=x2

y + 3 dy dx

=

∫ 1

x=−1

1

2
(2− x2)2 − 1

2
(x2)2 + 3(2− 2x2) dx

=

∫ 1

x=−1

8− 8x2 dx

= 16− 16

3
=

32

3

■

Example 1.2: Find the volume of the set

{(x, y, z) ∈ R3 : x2 + y2 < 1, y2 + z2 < 1, x2 + z2 < 1}.

Solution. By symmetry we can restrict to the octant x, y, z > 0 and then multiply the
answer we get by 8. A dumb expression for the volume is given by

V

8
=

∫ 1

x=0

∫ 1

y=0

∫ 1

z=0

1x2+y2<11y2+z2<11x2+z2<1 dz dy dx,

where we use the “indicator function”

1P :=

{
1, P is true

0, P is false
.
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This sets up a seemingly bare-bones integral, but this ends up working pretty well if you’re
having trouble imagining what the set looks like.

V

8
=

∫ 1

x=0

∫ 1

y=0

1x2+y2<1

∫ 1

z=0

1y2+z2<11x2+z2<1 dz dy dx

=

∫ 1

x=0

∫ 1

y=0

1x2+y2<1

∫ 1

z=0

1z<
√
1−x21

z<
√

1−y2
dz dy dx

=

∫ 1

x=0

∫ 1

y=0

1x2+y2<1min(
√
1− x2,

√
1− y2) dy dx

=

∫
x,y>0,x2+y2<1

min(
√
1− x2,

√
1− y2) d(x, y).

The min is ugly so we now use symmetry again by restricting to the region where x < y.
This gives

V

16
=

∫
x,y>0,x2+y2<1

min(
√
1− x2,

√
1− y2) d(x, y)

=

∫
x,y>0,x<y,x2+y2<1

min(
√
1− x2,

√
1− y2) d(x, y)

=

∫
x,y>0,x<y,x2+y2<1

√
1− y2 d(x, y)

=

∫ √
2/2

y=0

∫ y

x=0

√
1− y2 dx dy +

∫ 1

y=
√
2/2

∫ √
1−y2

x=0

√
1− y2 dx dy

=

∫ √
2/2

y=0

y
√

1− y2 dy +

∫ 1

y=
√
2/2

1− y2 dy

=

∫ 1/2

u=1

−1
2

√
u du+

(
1−

√
2

2

)
− 1

3
+

√
2

12

=
1

3
− (1/2)3/2

3
+

(
1−

√
2

2

)
− 1

3
+

√
2

12

=
1

3
−

√
2

12
+ 1−

√
2

2
− 1

3
+

√
2

12

= 1−
√
2

2
.

So V = 8(2−
√
2) . ■
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1.2 Change of Variables

Let g be a smooth bijection, and let f be sufficiently nice. Then:∫
x∈E

f(x) dx “ =

∫
g(y)∈E

f(g(y)) d(g(y)) dy ”

“ =

∫
g(y)∈E

f(g(y))
d(g(y))

dy
dy ”

=

∫
y∈g−1(E)

f(g(y))| detDg(y)| dy

1.3 Polar and Spherical Coordinates

1.3.1 Polar

The polar coordinates are given by the change of variables

g(r, θ) = (r cos θ, r sin θ),

which we can think of as the substitutions:

x = r cos θ

y = r sin θ

The determinant of the Jacobian is

detDg(r, θ) =

∣∣∣∣∂g1∂r
(r, θ) ∂g1

∂θ
(r, θ)

∂g2
∂r

(r, θ) ∂g2
∂θ

(r, θ)

∣∣∣∣ = ∣∣∣∣ ∂∂rr cos θ ∂
∂θ
r cos θ

∂
∂r
r sin θ ∂

∂θ
r sin θ

∣∣∣∣
=

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r,

and since r > 0 we simply have | det Jg(r, θ)| = r. Hence r is the “price” to pay in order
to change to polar coordinates. Thus, for example, if B2(0, R) is the ball with radius R
centered at (0, 0), then∫

Br(0,R)

f(x, y) d(x, y) =

∫ R

r=0

∫ 2π

θ=0

f(r cos θ, r sin θ) · r dθ dr.

1.3.2 Cylindrical

The cylindrical coordinates are given by the change of variables

g(r, θ, z) = (r cos θ, r sin θ, z),
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which we can think of as the substitutions:

x = r cos θ

y = r sin θ

z = z

So cylindrical is actually pretty lame because it just tacks on a third dimension to polar
coordinates. You can find that | detDg(r, θ, z)| = r.

1.3.3 Spherical

The spherical coordinates are given by the change of variables

g(r, θ, ϕ) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ), 0 < θ < π, 0 < ϕ < 2π

which we can think of as the substitutions:

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

You can show that | detDg(r, θ, ϕ)| = r2 sin θ. Note that sin θ > 0 for 0 < θ < π, so this
indeed always non-negative.

I personally find this hard to remember. I highly remember understanding where
spherical coordinates come from instead of trying to memorize them. That way, you
can always rederive them when you need them.

1.4 Path Integrals

Summary:

• A (parametrization of a) path γ is given by φ : [a, b] → Rn.

• Line integral of a function f : Rn → R over γ is given by∫
γ

f ds :=

∫ b

a

f(φ(t))∥φ′(t)∥ dt.

– Does not depend on the parametrization, φ.

8
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–
∫
γ
f ds does not depend on the orientation of γ. It’s the same whether we go

forward of backward.

– Can think of
∫
γ
f ds as “the area under f along the path γ”, a picture best

imagined for f : R2 → R.

• Line integral of a vector field F : Rn → Rn over γ is given by∫
γ

F · ds :=
∫ b

a

F (φ(t)) · φ′(t) dt.

– Does not depend on the parametrization either.

– Does depend on the orientatiion of γ. In particular if −γ is the path obtained by
reversing the direction/orientation of γ, then

∫
−γ

F · ds = −
∫
γ
F · ds.

– Can think of
∫
γ
F · ds as “how much F agrees with the velocity of γ as we travel

along γ”.

– Other notations include:

∗
∫
γ
F · dr

∗
∫
γ
F

∗ In R2,
∫
γ
M dx+N dy, where F = (M,N), i.e. M and N are the components

of F .

• (For simplicity, we should assume that all functions and paths are smooth, but this
assumption can be weakened to “Lipschitz”.)

Two paths of the opposite orientation

Generally I’d say that line integrals of vector fields are more common and more useful,
so I’d focus your energy on those.

Example 1.3: Let f(x, y) = x2 + y. Let F (x, y) = (xy, x− y). Let γ be the unit
circle centered at (0, 0) oriented counter-clockwise.

(a) Compute
∫
γ
f ds.

(b) Compute
∫
γ
F · ds.

(c) Compute
∫
γ
x dy.
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Solution. Let’s use the parametrization φ(t) = (cos t, sin t) over t ∈ [0, 2π). Note that
φ′(t) = (− sin t, cos t), and that ∥φ′(t)∥ =

√
(− sin t)2 + (cos t)2 = 1 for all t.

Part (a)

∫
γ

f ds =

∫ 2π

0

f(cos t, sin t)∥φ′(t)∥ dt =
∫ 2π

0

cos2 t+ sin t dt.

This is just
∫ 2π

0
cos2 t dt which is probably like π or something.

Part (b)

∫
γ

F · ds =
∫ 2π

0

F (cos t, sin t) · φ′(t) dt =

∫ 2π

0

(cos t sin t, cos t− sin t) · (− sin t, cos t) dt

=

∫ 2π

0

− sin2 t cos t+ cos2 t− sin t cos t dt.

This evaluates to something.

Part (c)

I don’t like this notation so I like to think of this as∫
γ

x dy =

∫
γ

(0, x) · (dx, dy) =
∫
γ

(0, x) · ds.

So this is

=

∫ 2π

0

(0, cos t) · (− sin t, cos t) dt =

∫ 2π

0

cos2 t dt,

which is probably like π or something. ■

1.5 Surface Integrals

Now we’re going to integrate over higher-dimensional things! For simplicity we’ll stick to
2-dimensional manifolds in R3. Recall that a 2-dimensional manifold is, roughly speaking, a
set M ⊆ R3 which is smoothly parametrized by a function φ : U → M , with U ⊆ R2. φ is
called a chart.
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Definition 1.1 (Surface Integral)

Let f : R3 → R. The surface integral of f over M is given by∫
M

f dS :=

∫
U

f(φ(u, v))
√
det[Dφ(u, v)TDφ(u, v)] du dv,

where φ : U → M is a chart for M .
Other notations include

∫
M
f dA,

∫
M
f dσ,

∫
M
f dΣ, and

∫
M
f dH2.

The
√

det[Dφ(u, v)TDφ(u, v)] term (the “Jacobian”) is the nasty part. Some people
write it as |||φ(u, v)|||. A useful result for taming it is the Cauchy-Binet formula. In 2-
dimensions, this formula says that

det

(a b c
d e f

)a d
b e
c f

 =

∣∣∣∣a b
d e

∣∣∣∣2 + ∣∣∣∣a c
d f

∣∣∣∣2 + ∣∣∣∣b c
e f

∣∣∣∣2
= (ae− bd)2 + (af − cd)2 + (bf − ce)2

= ∥(a, b, c)× (d, e, f)∥2.

So it’s common to define/write∫
M

f dS :=

∫
U

f(φ(u, v))

∥∥∥∥∂φ∂u (u, v)× ∂φ

∂v
(u, v)

∥∥∥∥ du dv.

This makes some visual sense in that
∥∥∂φ

∂u
(u, v)× ∂φ

∂v
(u, v)

∥∥ is measuring the area of a par-

allelogram with “sides” ∂φ
∂u
(u, v) and ∂φ

∂v
(u, v), and is hence a “differential surface element”

that in some sense “measures how curvy/distorted M is at (u, v)”.

1.5.1 Integrating Over a Sphere

For a suitably decent function f , let us find a formula for the surface integral∫
∂B(0,R)

f dS,

where ∂B(0, R) is the surface of the ball of radius R centered at the origin. We can chart
out this surface in coordinates via

φ(ϕ, θ) = (R sinϕ cos θ, R sinϕ sin θ, R cosϕ), 0 < ϕ < π, 0 < θ < 2π.

We find that

Dφ(ϕ, θ) =

R cosϕ cos θ −R sinϕ sin θ
R cosϕ sin θ R sinϕ cos θ
−R sinϕ 0

 ,
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and so

|||Dφ(ϕ, θ)||| =

√√√√√(R2 sinϕ cosϕ cos2 θ +R2 sinϕ cosϕ sin2 θ)2

+(R2 sin θ sin2 ϕ)2

+(−R2 cos θ sin2 ϕ)2

= R2

√
sin2 ϕ cos2 ϕ+ sin4 ϕ

= R2| sinϕ| = R2 sinϕ.

(Sanity check: Why does R2 make sense, vis-a-vis, say, R or R3?)

Thus∫
∂B(0,R)

f dS =

∫ 2π

0

∫ π

0

f(R sinϕ cos θ, R sinϕ sin θ, R cosϕ) ·R2 sinϕ dϕ dθ.

(Normal people probably switch θ and ϕ around but I honestly don’t care lmao i just rederive
this every time)

1.5.2 Other Surfaces

Some manifolds, like the boundary of a cylinder, can’t really be parametrized with a single
chart. In that case, you divide the manifold into surfaces that can be (easily) parametrized.

Example 1.4: Let f : R3 → R be defined as f(x, y, z) = x2 + yz. Compute the
surface integral

∫
C
f dS, where C is the curved surface of the upside-down circular

cone with base B2(0, 1)× {1} and vertex (0, 0, 0).

Solution. Let’s parameterize C with the chart φ : (0, 1) × (0, 2π) given by φ(r, θ) :=
(r cos θ, r sin θ, r). Then∫

C

f dS =

∫ 1

0

∫ 2π

0

f(r cos θ, r sin θ, r)|||φ(r, θ)||| dθ dr.

We now compute the Jacobian |||φ(r, θ)|||. First we note that

Dφ(r, θ) =

cos θ −r sin θ
sin θ r cos θ
1 0

 ,

so by the Cauchy-Binet formula we see that

det(Dφ(y)TDφ(y)) =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣2 + ∣∣∣∣cos θ −r sin θ
1 0

∣∣∣∣2 + ∣∣∣∣sin θ r cos θ
1 0

∣∣∣∣2
= r2 + r2 sin2 θ + r2 cos2 θ = 2r2,
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thus
|||φ(r, θ)||| =

√
det(Dφ(y)TDφ(y)) =

√
2r.

It follows that∫
C

f dS =

∫ 1

0

∫ 2π

0

(r2 cos2 θ + r2 sin θ) ·
√
2r dθ dr =

√
2

∫ 1

0

πr3 dr =

√
2π

4
.

■
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2 Day 2: Vector fields, Stokes, and Series

2.1 Vector Fields

For curious analysts: All instances of “smooth” in this section can be replaced with
“Lipschitz”.

Basic Facts:

• A vector field is a function that looks like F : E(⊆Rn) → Rn.

• F is conservative if there exists a potential function, f : Rn → R, for which

∇f = F.

• f is a sort of “anti-derivative” for F , and hence satisfies the following version of the
FTC: For a, b ∈ Rn, we have ∫

C

F · dr = f(b)− f(a)

for any path C from a to b.

Example 2.1 (Winter 2017 #3): Consider the integral

I =

∫
Γ

x

x2 + y2
dx+ y

1− x2 − y2

x2 + y2
dy

integrated over a path Γ.

(a) Show that I does not depend on the path Γ chosen to connect two fixed points.

(b) Compute I if Γ is a path joining A = (0, 1) to B = (1, 1).

2.1.1 Divergence

Facts:

• The divergence of a vector field F is a function divF : Rn → R given by

divF =
n∑

i=1

∂F1

∂xi

.

14
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• In 3D, this is

divF =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

• Intuitively, divF (x, y, z) quantifies how much “F expands space at (x, y, z)”.

• divF is often written as ∇ · F .

• (Bonus: This is not a contrived quantity, in fact it is actually quite “natural” because,
surprisingly, divergence is independent of the (orthonormal) coordinate system chosen.)

The following is the fundamental fact that pretty much explains why divergence is so
important.

Theorem 2.1 (Divergence Theorem)

Let U ⊆ R3 be a bounded open set with smooth boundary. Let F : R3 → R3 be a
vector field. Then ∫

U

divF d(x, y, z) =

∫
∂U

F · ν dS,

where for a point p ∈ ∂U , ν(p) denotes the unit outward normal to ∂U at p.

Notes:

• The motto for the Divergence Theorem is basically this: “If you have a liquid in a
container, then the total pressure inside the liquid is equal to the total force the liquid
exerts on the container.” In layman’s terms, “if thing go in then thing go out”.

• When to use: This theorem gives you a great way to convert some nasty surface in-
tegrals to “normal” integrals. So if you hate surface integrals, the Divergence Theorem
can save you.

• The surface integral
∫
∂U

F · ν dS may be phrased as “flux”.

• (Bonus) By applying the Divergence Theorem, you can deduce the following variants
of “integration by parts”:

–

∫
Ω

f divGdx =

∫
∂Ω

f(G · ν) dS −
∫
Ω

∇f ·Gdx

–

∫
Ω

F · ∇g dx =

∫
∂Ω

(F · ν)g dS −
∫
Ω

(divF )g dx (literally the same as the previous

one)

It does not seem like these will appear on your exam, but being familiar with these is
quite crucial for studying PDE.

15
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2.1.2 Curl

The “amount” that a vector field “twists” space is a surprisingly revealing quantity.

• In R2, the curl of F is a function curlF : R2 → R, with

curlF =
∂F2

∂x
− ∂F1

∂y
.

How to remember the order:

– Method 1: You differentiate a function, so the first column is derivatives and the
second column is the functions in the “determinant”

curlF =

∣∣∣∣∂x F1

∂y F2

∣∣∣∣ .
– Method 2: The prototypical “twisty” vector field to test against is (−y, x). If you

sketch this you’ll find that this “twists counter-clockwise”, so you should expect
that curl(−y, x) > 0.

• In R3, the curl of F is a vector field curlF : R3 → R3, with

curlF =

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
.

How to remember the order:

– Method 1: Same mnemonic as in R2, but you attach a third column with the basis
vectors as in

curlF =

∣∣∣∣∣∣
∂x F1 î

∂y F2 ĵ

∂z F3 k̂

∣∣∣∣∣∣ .
– Method 2: The above determinant is basically the “cross product” ∇ × F , so if

you know how to take a cross product then you know how to compute 3D curl.

– Method 3: Test against the vector field (−y, x, 0). You should expect that the
components of curl(−y, x, 0) are non-negative.

A first important result regarding curl:

16
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Theorem 2.2 (Green’s Theorem)

Let U ⊆ R2 be a connected open set with (piecewise) smooth boundary. Let F : R2 →
R2 be a smooth vector field. Then∫

U

curlF d(x, y) =

∫
∂U

F · ds,

where ∂U is viewed as a path oriented counter-clockwise, and

curlF :=
∂F2

∂x
− ∂F1

∂y
.

Notes:

• This follows from the Divergence Theorem (why?).

• This is also an instance of Stoke’s Theorem (why?).

• By applying Green’s to certain vector fields (namely (0, x), (−y, 0), and (−y
2
, x
2
)), you

can find the area of any region by just examining its boundary.

• When to use:

– Can be useful for turning line integrals into possibly “nicer” area integrals, espe-
cially when the curl of F is a nice quantity.

– Is useful for finding the area of a region whose boundary is easy to parametrize,
whereas the region itself is hard to parametrize.

Theorem 2.3 (Stoke’s Theorem)

Let M ⊆ R3 be a smooth 2d manifold with smooth boundary ∂M . Let F : R3 → R3

be a vector field. Then ∫
M

curlF · ν dS =

∫
∂M

F · ds,

where the orientation of ∂M and the choice of ν are selected so that if ν is pointing
“up”, then ∂M is travelling “counter-clockwise” when viewed from above.

Notes:

• “Intuition:” https://www.smbc-comics.com/comic/2014-02-24

• When to use: Often this is used to turn nasty line integrals into “nice” surface
integrals, which are usually only “nice” when the curl ends up being a really simple
quantity like 0.

17
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2.2 Examples with Divergence, Green’s, Stoke’s

I am going to use the same notation as the exam. Use context to interpret the
problems!

Example 2.2 (Fall 2007 #2): Let F be the vector field on R3 defined by
F(x, y, z) = (2x− y2 − x3, 3y − y3,−x− z3).
For a closed surface S in R3, consider

∫
S
F.ndA, the flux of F through S. Here n is

chosen to be an outward normal. For what choice of S will
∫
S
F.ndA be maximal?

Explain your answer and compute
∫
S
F.ndA in that case.

Example 2.3 (Fall 2008 #4): An object moves in the force field F⃗ = yz⃗i +

zx⃗j + xyk⃗ starting at the origin and ending at some point A(ξ, η, ζ) that lies on the

surface x2

a2
+ y2

b2
+ z2

c2
= 1. What is the maximum possible value of the work done

W =
∮
F⃗ · dr⃗?

Example 2.4 (Winter 2009 #2): Compute∮
L

(y − z)dx+ (z − x)dy + (x− y)dz

where L is the curve given by the intersection of the two surfaces{
x2 + y2 + z2 = a2, a > 0

x+ y + z = 0

with counterclockwise orientation viewed from the positive x-axis.

Example 2.5 (Winter 2018 #1b): Let f : R3 → R3 be a continuously
differentiable vector field such that, for every continuously differentiable function
φ : R3 → R with compact support,∫

R3

f(x) · ∇φ(x) dx = 0.

Show that the divergence of f is zero.

18



Thomas Lam Day 2 07/29/2024

Example 2.6 (Winter 2019 #4): Let C be the closed curve formed by the

intersection of the surface {(x, y, z) ∈ R3 : x2+y2 = 1+z2} with the plane z =
√
3
2
y.

Choose an orientation for C and compute the line integral∫
C

F · dr

for the vector field F(x, y, z) := (x2 + z, sin y, cos z).

Example 2.7 (Fall 2021 #3):

(a) [some nonsense that i don’t want you worrying about]

(b) Let

f(x, y, z) =
1

x2 + y2 + z2
, F = ∇f.

What is the flux of F through the surface of the unit sphere?

(c) Lastly, consiedr the vector fields:

G = −r sinφi+ r cosφj+ k,

H = ∇×G,

where (r, θ, φ) are the usual spherical coordinates for a point in R3:

r =
√

x2 + y2 + z2, θ = arccos
z

r
, φ = arctan

y

x
.

Compute the integral

β =

∫∫
S

H · dA,

where S is the top half of the unit sphere, i.e.

S = {x, y, z : x2 + y2 + z2 = 1 and z ≥ 0}.

Example 2.8 (I made this one up): Let F (x, y) = (y3, x − x3). Find the
maximum possible value of ∫

C

F · ds

over all simple closed curves C that are oriented counter-clockwise.

Solution. Let U be the region enclosed by C. Then by Green’s Theorem,∫
C

F · ds =
∫
U

curlF d(x, y) =

∫
U

1− 3x2 − 3y2 d(x, y).
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Evidently this is maximized by selecting the maximal region U for which the integrand
1 − 3x2 − 3y2 is non-negative. After some musing, you can find that U = B2(0, 1/

√
3) is a

great choice. The maximum value in this case is∫
B2(0,1/

√
3

1− 3x2 − 3y2 d(x, y) = 2π

∫ 1/
√
3

0

(1− 3r2)r dr

by polar coordinates. This evaluates to something. ■

Example 2.9 (I also made this one up): Let

H := {(x, y, z) : x2 + y2 + z2 = 1, z > 1}

be the upper half of the surface of the unit sphere. Compute∫
H

x4 + y4 + z4 dS.

Solution. ∫
H

x4 + y4 + z4 dS =

∫
H

(x3, y3, z3) · ν dS

= −
∫
{x2+y2<1}

(x3, y3, 0) · (0, 0,−1) dS +

∫
x2+y2+z2<1,z>0

3x2 + 3y2 + 3z2 d(x, y, z)

= 3

∫ π/2

ϕ=0

∫ 1

r=0

∫ 2π

θ=0

(r2 sin2 ϕ cos2 θ + r2 sin2 ϕ sin2 θ + r2 cos2 ϕ)r2 sinϕ

=

∫ π/2

ϕ=0

∫ 2π

θ=0

sinϕ dθ dϕ = 2π

■

2.3 Series Convergence

2.3.1 Basics

Theorem 2.4 (Stupid Test)

If lim
n→∞

|an| ≠ 0 then
∞∑
n=1

an does not converge.
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Theorem 2.5 (p-Test et. al.)

∞∑
n=1

1

np
converges for p > 1 and diverges for p ≤ 1.

∞∑
n=1

an converges for |a| < 1 and diverges for |a| ≥ 1.

Theorem 2.6 (Direct Comparison Test)

Let an ≥ 0 be a sequence. If you can find a bn that eventually dominates an (i.e. there

is N such that bn ≥ an for all n ≥ N), such that
∞∑
n=1

bn < ∞, then
∞∑
n=1

an < ∞ i.e.

converges.
Similarly, if instead you found a bn for which eventually 0 ≤ bn ≤ an forever, with
∞∑
n=1

bn = +∞, then
∞∑
n=1

an = +∞ i.e. diverges.

We’re going to be implicitly invoking direct comparison quite a lot. I’ll explain why this
test is so useful/underrated in a bit.

Theorem 2.7 (Limit Comparison Test)

If two sequences are close together, they behave the same way. That is, if an ≥ 0

and b > 0 are two sequences for which lim
n→∞

an
bn

= 1, then
∞∑
n=1

an converges iff
∞∑
n=1

bn

converges (so if either converges then the other converges, and if either diverges then
the other diverges!).

Note: Most sources instead write “ lim
n→∞

an
bn

= L where L ∈ (0,∞)”, but I think this

muddies the “best” way to think about using this test.

Limit comparison can be used to “clean up” junk and simplify a series. For example, if
we are aiming to ascertain convergence of the series

∞∑
n=1

n

n3 + 1
,

then limit comparison says we can multiply by a term with limit 1 and the convergence
behavior does not change. For instance we can multiply by n3+1

n3 to “convert” the series into

∞∑
n=1

n

n3
,
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which is far easier to reason with. Effectively, what we have done is erased the insignificant
“1” term in n3 + 1 and replaced it with n3. If this is something you wish to do, consider
limit comparison.

2.3.2 Positive and Negative Terms

Theorem 2.8 (Alternating Series Test)

If an ≥ 0 is monotone decreasing and tends to 0, then
∞∑
n=1

(−1)nan converges.

Theorem 2.9 (Absolute Convergence)

If
∞∑
n=1

|an| < ∞ then
∞∑
n=1

an converges.

2.3.3 Geometric-y Tests

The classic example of a convergent series is the geometric series,

∞∑
n−1

rn,

where |r| < 1. Intuitively, if we can ascertain whether a series “decays faster” than geometric,
then it should converge. Capitalizing on this idea, we can notice that there are two ways to
characterize the geometric sequence an = rn:

• The ratio between terms, an+1/an, is r with |r| < 1.

• The nth root of each term, n
√
an, is r with |r| < 1.

So for an arbitrary sequence an, it is fairly intuitive that if we do better than either of
the above properties, then we have convergence.

Please feel free to replace lim sup with lim if you are uncomfortable with lim sup.

• If lim sup
n→∞

|an+1/an| < 1, then this means that over the tail end of the sequence, the

ratio between terms is better than geometric, so it converges.
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• If lim sup
n→∞

n
√

|an| < 1, then this again means that over the tail end of the sequence, the

nth root of terms is better than geometric, so it converges.

Of course, these observations are simply the ratio test and root test.

Theorem 2.10 (Ratio Test)

Consider the limit of the ratio between successive terms, L = lim
n→∞

|an+1|
|an|

, if it exists.

• If L < 1, then
∞∑
n=1

an converges.

• If L > 1, then
∞∑
n=1

an diverges.

• (If L = 1, you know nothing.)

Theorem 2.11 (Root Test)

Consider L = lim
n→∞

n
√

|an|, if it exists.

• If L < 1, then
∞∑
n=1

an converges.

• If L > 1, then
∞∑
n=1

an diverges.

• (If L = 1, you know nothing.)

Remark 1: The hyper-analysis-savvy reader would be delighted to know that you can
replace lim with lim sup.

Remark 2: You can use the root test to prove the ratio test.

2.3.4 Integral Test

If you only care about convergence, then numerous sums can be replaced by integrals.
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Theorem 2.12 (Integral Test)

In the series
∞∑
n=1

f(n), You can replace the sum with an integral and nothing changes

convergence-wise (as long as f is non-negative and monotone decreasing).

This is quite niche but if it just so happens that the summand “looks like something that
you can integrate”, consider this test.

2.3.5 (Semi-Optional) Summation by Parts and the Dirichlet Test

You should also know the Dirichlet test since that actually shows up in the writtens
sometimes. But the Dirichlet test can be hard to remember, so I will instead frame it as a
specific instance of a well-motivated general method.

First, recall the integration by parts: If F (x) =
∫ x

0
f(t) dt and G(x) =

∫ x

0
g(t) dt, then∫ ∞

0

f(x)G(x) dx = F (∞)G(∞)− F (0)G(0)−
∫ ∞

0

F (x)g(x) dx

= F (∞)G(∞)−
∫ ∞

0

F (x)g(x) dx.

(Here, F (∞) := limx→∞ F (x) =
∫∞
0

f(x) dx and similarly for G(∞).) In this way we may
thus “move an (anti-)derivative” from one factor to the other, and hence converting fG to
Fg.

Amazingly there is a discrete version of this formula, called summation by parts. My
thesis here is that you can essentially derive it by simply mimicking integration by parts: If
An =

∑n
k=1 ak and Bn =

∑n
k=1 bk, then

∞∑
n=1

anBn
?
= A∞B∞ −

∞∑
n=1

Anbn.

Unfortunately this isn’t exactly true, the indices are slightly wrong or something. But I
don’t give a fuck and neither should you. What is definitely true, and what is ultimately
important here, is that one side converges iff the other side converges. Thus the motto: for
determining convergence, we may freely “move” a partial sum from one factor
to the other. To be more precise:

Fact: With the above notation, assuming that “A∞B∞” := limn→∞AnBn = 0, we have that

∞∑
n=1

anBn converges ⇐⇒
∞∑
n=1

Anbn converges.
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A prototypical example that we may attack with this approach is the series
∞∑
n=1

sinn√
n
.

We choose the “an” sequence to be a factor whose partial sums are somehow nice. It turns
out that taking an = sinn is a great choice, because amazingly the sequence of partial sums
An =

∑n
k=1 sin k is bounded (why?).

That leaves us with taking the “Bn” sequence to be Bn = 1√
n
. But what is bn? You can

find that the only way to have Bn =
∑n

k=1 bk is if we choose b1 = 1 and bn = 1√
n−1

− 1√
n
for

n > 1. Convince yourself that this works: We “integrate” the sinn via a partial sum, and
“differentiate” the 1/

√
n via differences.

Our bet is that the “integral” of sinn is tame enough, and in return we expect that
1√
n−1

− 1√
n
is somehow much nicer to work with. And this is true!

The summation by parts method tells us that provided that AnBn → 0 (and it does,

because An is bounded and Bn → 0), we have that
∞∑
n=1

sinn√
n

converges iff

∞∑
n=1

Anbn

converges. But An is bounded with some upper bound M > 0, and so∣∣∣∣∣
∞∑
n=1

Anbn

∣∣∣∣∣ ≤
∞∑
n=1

M · |bn| = M
∞∑
n=1

bn = M ·B∞ < ∞,

so we have convergence!

If you review what properties were important in this argument, you’ll find that sinn can
be replaced with any sequence with bounded partial sums, and 1√

n
can be replaced with any

sequence that is positive and decreases to 0. This is Dirichlet’s Test.

Theorem 2.13 (Dirichlet Test)

Suppose that:

• an is a sequence with bounded partial sums, i.e. |
∑n

k=1 ak| ≤ M for all n, for
some large M > 0, and

• bn ≥ 0 be a decreasing monotone sequence that tends to 0.

Then
∑∞

n=1 anbn converges.

If you decide to practice this, seek problems from past exams which seem like they are
begging for the Dirichlet test (there are at least two such problems!), and try to solve them
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without looking at the above theorem, because the point of this exposition is to get you
to either derive it or bypass its necessity on the spot if it happens that you require this
test. All you need to remember is the prototypical example, and that it’s ultimately just
integration by parts.

2.4 Convergence Test Tier List and Minor Examples

SS Direct Comparison
S Stupid Test, Limit Comparison
A Alternating Series, Absolute Convergence
B Ratio, Root, Integral
C Dirichlet

• A-tier and above are by far the most useful. Direct comparison in particular is ex-
tremely underrated and people should abuse it much more often.

• Ratio and Root test are mid but can be useful. Integral test is good in specific instances.

• Dirichlet test is rare.

• I know I said that Limit Comparison was F tier during the actual workshop, but I
think if presented “correctly” it can have S-tier usefulness for simplifying series.

Now I’ll explain why I say that Direct Comparison is SS-tier. Often you can use it to
erase certain terms completely: Consider

∞∑
n=1

n

n3 + 1
.

As noted earlier, this is a prototypical use-case for Limit Comparison. However, we can
actually just use Direct Comparison by noting that 1

n3+1
≤ 1

n3 , and so

∞∑
n=1

n

n3 + 1
≤

∞∑
n=1

n

n3
=

∞∑
n=1

1

n2

which clearly converges.

This exact approach fails for a series such as

∞∑
n=2

n

n3 − 1
,
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in which case one can argue that Limit Comparison is now easier by “multiplying by n3−1
n3 ”.

But actually Direct Comparison can still be used in the following way: We can note that
1

n3−1
≤ 1

n3/2
for all n large enough; say, n ≥ 10100. Then

∞∑
n=10100

n

n3 − 1
≤

∞∑
n=10100

n

n3

which converges, thus the original sum converges because the first one billion terms do
not matter! A finite number of terms, no matter how large, can never affect whether the
sum converges!

Here’s an example where Direct Comparison trumps Limit Comparison. For the series

∞∑
n=1

1

2
√
n
,

it’s tough to get a handle on the asymptotic nature of 2
√
n, so Limit Comparison isn’t very

usable. However, using the philosophy of throwing away the first 1 trillion terms, we may
use Direct Comparison by arguing that

2
√
n ≥ n2

for all n ≥ 109999999 (why?). Hence

∞∑
n=109999999

1

2
√
n
≤

∞∑
n=109999999

1

n2
< ∞,

so the original series converges because the first 1 quadrillion terms do not matter.

2.5 Examples with Series: Convergence Tests

Example 2.10 (Winter 2008 #1): Find all the values p ∈ R such that the
following series converges:

∞∑
k=2

(log k)p log k

Example 2.11 (Fall 2008 #2): For each of the following, find the range of
x ∈ R for which the series converges:

(a)
∞∑
n=1

xn(1− xn)

n

(b)
∞∑
n=1

nxn

n2 + x2n
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Example 2.12 (Winter 2011 #3): Find the range of the parameter for which
the series converges.

(i)
∞∑
n=1

1

2n+ 1

(
1− 2x

1 + x

)n

(ii)
∞∑
n=1

sin
( x

n2

)

(iii)
∞∑
n=1

(nx)n

n!

Example 2.13 (Winter 2017 #1): Consider the power series

∞∑
n=2

(−1)n

log n
xn.

Determine the radius of convergence R of the series. Determine whether the series
conerges or diverges for x = R and x = −R.

Example 2.14 (Fall 2019 #4): Let An = a1
1+a1

+ a2√
2+a2

+ · · ·+ an√
n+an

, an > 1√
n
,

and consider the series,
∞∑
n=1

cos(
√
3n+ π

3
)

An

.

Show that the series is convergent.

2.6 Example with Series: Bare Hands

Sometimes there simply are no big guns you can use to nuke problems. You’ll have to
tackle these series with nought but your bare hands.

Example 2.15 (Fall 2007 #5b): Does the series
∑

n∈S
1
n
converge, where S

consists of those positive integers whose decimal expansion does not contain the
digit 1?
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Example 2.16 (Winter 2018 #5): Show that the limit

lim
N→∞

N∑
n=1

1

n
sin(log n)

does not exist.

2.7 Convergence of Functions

There are numerous notions of function converge. For the writtens you should know two:
pointwise convergence and uniform convergence.

Definition 2.1 (Pointwise Convergence)

A sequence of functions fn converges pointwise to f if

lim
n→∞

fn(x) = f(x)

for all x.

Definition 2.2 (Uniform Convergence)

A sequence of functions fn converges uniformly to f if

lim
n→∞

sup
x

|fn(x)− f(x)| = 0.

The pointwise/uniform convergence of series are defined in terms of the pointwise/uni-
form convergence of their partial sums.

How to think about uniform convergence:

• To show that fn → f uniformly, you want to find a really nice upper bound on
|fn(x) − f(x)| that doesn’t have an x in it. If the upper bound you find goes to 0 as
n → ∞, you win.

• To show that
∑∞

n=1 fn converges uniformly, you want to find a really nice upper bound
on |

∑∞
n=1 fn(x)| that does not depend on x.

Prototypical Example 1: sinx
n

→ 0 uniformly (in x), because∣∣∣∣sinxn
∣∣∣∣ ≤ 1

n
,
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and 1/n is an upper bound that has no x in it, and moreover 1/n → 0.

M-Test: For uniform convergence of series in particular, there is a very nice test you can
use: If you can find a nice upper bound on |fn(x)| that does not involve x, and

∞∑
n=1

(Upper bound on |fn|) < ∞,

then the series
∑∞

n=1 fn converges uniformly!

Prototypical Example 2:
∑∞

n=1
sinx
n2 converges uniformly, because we have the upper

bound ∣∣∣∣sinxn2

∣∣∣∣ ≤ 1

n2
,

whose sum converges.

Now some examples from the actual writtens.

Example 2.17 (Winter 2021 #2): Define, for each n ∈ N,

un(x) =
x

n2 + x2
, (x ≥ 0).

(a) Show that
∑∞

n=1 un converges uniformly on [0, K] for every K > 0.

(b) Determine whether
∑∞

n=1 un converges uniformly on [0,∞).

Example 2.18 (Fall 2019 #3): For α ≥ 1, the sequence of functions {fn} is
defined by

fn(x) = xα ln

(
x+

1

n

)
, x ∈ (0,∞).

Show that (a) {fn} is uniformly convergent when α = 1; (b) {fn} is not uniformly
convergent when α > 1.

Example 2.19 (I made this one up): Consider the series

∞∑
n=1

nxe−nx2

for x ∈ (0,∞).

(a) Find all intervals (a, b) ⊆ (0,∞) over which the series converges pointwise.

(a) Find all intervals (a, b) ⊆ (0,∞) over which the series converges uniformly.
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2.8 Swapping

Several questions on the writtens require you to do things like swap a limit and an integral,
so we need to cover this. The theorems I list here are in decreasing order of importance, and
this list is far from exhaustive.

2.8.1 Swap Limit and Integral

This is so important that the average measure theory class dedicates a ton of time to
this. Unfortunately we don’t have that luxury so here’s a “cheap” result that should be good
enough for the exam.

Theorem 2.14 (Swap Limit and Integral)

Suppose a sequence of functions fn on a bounded interval [a, b] converges uniformly to
some f . Then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

Proof. We have∣∣∣∣∫ b

a

fn(x)− f(x) dx

∣∣∣∣ ≤ ∫ b

a

|fn(x)−f(x)| dx ≤
∫ b

a

sup
[a,b]

|fn−f | dx = (b−a) sup
[a,b]

|fn−f | n→∞−−−→ 0.

□

Comments:

• There are much better results like Dominated Convergence but I won’t make you
remember them.

• (Technically we need to assume that the functions involved are nice enough for their
integral to “make sense”, but whatever.)

2.8.2 Swap Derivative and Integral

A derivative is just a limit! So you can use the above result.
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2.8.3 Swap Limit and Sum

Theorem 2.15

Let fn(t) be a function depending on a parameter t. Suppose that the sum
∑∞

n=1 fn(t)
converges uniformly in t. Then

lim
t→t0

∞∑
n=1

fn(t) =
∞∑
n=1

lim
t→t0

fn(t).

Notes:

• A similar result can be used to swap two limits.

• This can be used to prove that an infinite sum is continuous. To be precise, if fn
is continuous for all n and the sum

∑∞
n=1 fn converges uniformly, then

∑∞
n=1 fn is

continuous. (Of course, this is just an instance of “the uniform limit of continuous
functions is continuous”.)

2.8.4 Swap Derivative and Limit

Theorem 2.16

Let fn : I → R be a sequence of differentiable functions on an interval I. Suppose:

• fn converges pointwise to a function f , and

• f ′
n converges uniformly to a function g.

Then f is differentiable with f ′ = g.

Proof. We have ∫ x

x0

f ′
n(t) dt = fn(x)− fn(x0).

Now send n → ∞. The left side converges to
∫ x

x0
g(t) dt because f ′

n → g uniformly. The
right side converges to f(x)− f(x0) because fn → f pointwise. So∫ x

x0

g(t) dt = f(x)− f(x0).

Differentiating in x, we conclude that f ′(x) = g(x). □
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2.8.5 Swap Derivative and Sum

A direct application of the previous theorem allows us to more closely study the regularity
of a series!

Theorem 2.17

Let fn : I → R be a sequence of differentiable functions on an interval I. Suppose:

•
∞∑
n=1

fn converges pointwise, and

•
∞∑
n=1

f ′
n converges uniformly.

Then
∑∞

n=1 fn is differentiable, and

d

dx

∞∑
n=1

fn(x) =
∞∑
n=1

d

dx
fn(x).

By an inductive argument we have the following corollary: If

•
∞∑
n=1

fn converges pointwise,

•
∞∑
n=1

f ′
n converges uniformly,

•
∞∑
n=1

f ′′
n converges uniformly,

•
∞∑
n=1

f ′′′
n converges uniformly,

• . . .

• and
∞∑
n=1

f (k)
n converges uniformly,

then
∑∞

n=1 fn is k-times differentiable!
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2.8.6 Swap Integral and Integral

For finite intervals [a, b] and [c, d], when is it true that∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy?

I’ll give you two possible “tests” you can use:

1. It is true when f is non-negative. (Tonelli’s Theorem)

2. It is true when f is bounded. (Budget Fubini’s Theorem)

For example, if f is continuous on [a, b]× [c, d], then f is bounded and so you can swap.

2.8.7 Swap Derivative and Derivative

Easy one: If f ∈ C2(Rn) (i.e. f is twice-differentiable and all second derivatives are
continuous), then you can swap partial derivatives, i.e.

∂2f

∂xi∂xj

=
∂2f

∂xj∂xi

.

(This is the Schwarz Theorem.)

2.9 Examples on Swapping

Example 2.20 (Winter 2009 #5): Let un(x) = xn log x, x ∈ (0, 1].

(a) Check the convergence and uniform convergence of
∞∑
n=1

un(x) in (0, 1].

(b) Compute I =

∫ 1

0

(
∞∑
n=1

xn log x

)
dx.

Example 2.21 (Fall 2017 #4): Show that the series

∞∑
n=1

sin(nx)

n3 + x2

defines a continuously differentiable function of x ∈ R.
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Proof. First let’s show that it is differentiable. By the “swap derivative and sum” theorem,
we need only show that the sum of the derivatives converges uniformly. The series in question
is

∞∑
n=1

d

dx

sin(nx)

n3 + x2
=

∞∑
n=1

n cos(nx)

n2 + x2
− 2x sin(nx)

(n3 + x2)2
.

It’s not clear what the pointwise limit is, so it is wise to try the Weierstrass M -test. Let’s
get an upper bound on the nth term that’s independent of x:∣∣∣∣n cos(nx)

n3 + x2
− 2x sin(nx)

(n3 + x2)2

∣∣∣∣ ≤ n

n3
+

∣∣∣∣ 2x

n3 + x2

∣∣∣∣ · ∣∣∣∣ sin(nx)n3 + x2

∣∣∣∣ ≤ 1

n2
+

1

n3/2
· 1

n3

This upper bound converges when summed, so the M -test applies and we deduce uniform
convergence of the derivatives. Hence the series

∑∞
n=1

sin(nx)
n3+x2 is differentiable and its derivative

is
d

dx

∞∑
n=1

sin(nx)

n3 + x2
=

∞∑
n=1

n cos(nx)

n2 + x2
− 2x sin(nx)

(n3 + x2)2
.

But we are not done yet because we actually want to show that the series is continuously
differentiable. Thus it remains to show that

∑∞
n=1

n cos(nx)
n2+x2 − 2x sin(nx)

(n3+x2)2
is continuous. By “the

uniform limit of continuous functions is continuous”, we just need to show that this series
converges uniformly. But we’ve already shown that, so we’re done. □

Example 2.22 (Fall 2020 #2): Consider the series f(x) :=
∞∑
n=1

xn sin(xnx)

where x is a real variable.

(a) Is there a (positive length) interval over which f is well-defined and continuous?

(b) Is there a (positive length) interval over which f is differentiable? If so, is it
infinitely differentiable anywhere in this interval?
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