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1 Integrating Factors

Note: There are two competing letter choices for ODEs that I know of.

• The first one views the independent variable as x and the dependent variable/function
as u for “unknown”. So it would look something like u′(x) = f(x, u(x)).

• The second one views the independent variable as time, hence naming it t, and the
dependent variable/function as x, so that x(t) is viewed as a particle’s position (its
“x”) at a time t. Hence ODEs look something like x′(t) = f(t, x(t)).

We will be using the first one because I think that’s what Leoni will be using this semester.
The second one certainly has its merits, but we’re not quite in a context that needs these
merits so it’s ok.

1.1 Warm Up

Example 1.1: Solve the IVP {
u′(x) = x2

u(x0) = u0
.

Solution. It’s as easy as you think it is. After integrating, we get u(x) = u0 +
1
3
(x − x0)3.

■

Example 1.2: Solve the IVP{
u′(x) + cos(x)u(x) = x2

u(x0) = u0
.

Solution. We use a clever idea: By multiplying each side by esin(x), we get

u′(x)esin(x) + cos(x)esin(x)u(x) = x2esin(x),

and magically the left side can be simplified using the product rule!

d

dx

[
u(x)esin(x)

]
= x2esin(x)

Integrating, we obtain

u(x)esin(x) − u(x0) =
∫ x

x0

t2esin(t) dt,
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and so the solution is given by u(x) = u0e
− sin(x) + e− sin(x)

∫ x

x0

t2esin(t) dt . This idea is cute

but also quite common! It is good to keep in mind, as it will pop up a lot in differential
equations. ■

This ODE was easy to solve because it’s linear. Namely, the term that contains the u(x)
term is linear in u(x). It would not be linear if that term were, say, sin(x + u(x)). That
would be pretty nasty to work with.

However, there are some cases in which ODEs are pretty easy to solve. A class of such
ODEs are called exact.

1.2 Exact Equations

Let’s say that a vector field F = (F1, F2) is conservative. Then it turns out that the
differential equation

F1(x, u(x)) + F2(x, u(x))u
′(x) = 0 (∗)

is actually pretty easy to solve for... at least, implicitly.

To rigorously state the problem, we have a conservative F : I × J → R2, where I and J
are intervals. Note that the assumption on what the domain looks like is quite necessary —
the natural domain for solutions to differential equations are intervals, and such solutions
ought to be continuous so their range will be an interval as well. We wish to solve the IVP{

F1(x, u(x)) + F2(x, u(x))u
′(x) = 0

u(x0) = u0

for some given x0 ∈ I and u0 ∈ J .

Since F is conservative, we may find a potential g : I × J → R for which ∇g = F . Then
our ODE becomes

∂g

∂x
(x, u(x)) +

∂g

∂y
(x, u(x))u′(x) = 0,

which is just
(1, u′(x)) · ∇g(x, u(x)) = 0,

or
d

dx
g(x, u(x)) = 0

by the chain rule. Thus the solution is given implicitly by g(x, u(x)) = c for a constant c.
That is, the solution follows a level set of the gradient potential! (Exercise: Why does this
make A LOT of sense?)
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Plugging in x = x0 we see that c must be g(x0, u0), so our implicit form for the solution

is g(x, u(x)) = g(x0, u0) .

Note that since I×J is simply connected, we can simply verify that ϕ is irrotational and
C1 for this theory to work.

Let’s see a concrete example.

Example 1.3: Assume that u0 ∈ R and x0 > 0. Find a solution to the IVP{
sin(u(x)) + x cos(u(x))u′(x) = 0

u(x0) = u0

for u : [x0,+∞)→ R.

Solution. If we were to run the above logic, the vector field in question would be F (x, y) =
(sin y, x cos y), which is indeed conservative with potential g(x, y) = x sin y. Thus the solution
to the IVP is a function whose graph is a level set of this gradient potential. It follows that

x sin(u(x)) = x0 sin(u0)

and so u(x) = sin−1

(
x0 sin(u0)

x

)
, which is well-defined because x ≥ x0 > 0. (By the way,

why might this not be unique?) ■

We call ODEs of the form (∗) exact when F is conservative.

1.3 Integrating Factors

Consider now the ODE
2u(x) + xu′(x) = 0.

This is unfortunately not exact. The associated vector field is F (x, y) = (2y, x), which is not
irrotational. So solving this might be unfortunately hard. However, note that we are free to
change the vector field by multiplying each side by whatever we want. For example, we can
turn it into

2xu(x) + x2u′(x) = 0

by multiplying by x. Now the associated vector field is F (x, y) = (2xy, x2), which is irrota-
tional! We therefore call x an integrating factor.

Definition 1.1

An integrating factor is an expression you multiply a diffeq by to make things much
nicer. (In this case, we’re using integrating factors to make ODEs exact.)
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In the context of vector fields, Fleming has a more precise definition.

Definition 1.2

Let F : Ω→ RN be a vector field. We call a function ϕ : Ω→ R an integrating factor
if ϕ(x) ̸= 0 for all x ∈ Ω, and ϕF is conservative.

Example 1.4: An integrating factor for the vector field (yz, 2xz, 3xy) is given by
yz2. Indeed, (y2z3, 2xyz3, 3xy2z2) is irrotational, and unsurprisingly it is also the
gradient of some function, namely xy2z3.

The natural question to ask is: When does an integrating factor exist? It turns out that
if things are sane, there always exists an integrating factor that exists “locally”, but that
doesn’t necessarily give us a good way to write it down.

A common dumb method for trying to find an integrating factor is to “pray” that
the integrating factor, if it exists, depends only on one variable. To start, let’s pray
that for the vector field F = (F1, F2), there exists a function ϕ such that ϕ(x)F (x, y) =
(ϕ(x)F1(x, y), ϕ(x)F2(x, y)) is irrotational. Doing the math, ϕ and F would have to satisfy

dϕ

dx
(x)F2(x, y) + ϕ(x)

∂F2

∂x
(x, y) = ϕ(x)

∂F1

∂y
(x, y).

Moving things around, this becomes

1

ϕ(x)

dϕ

dx
(x) =

∂F1

∂y
(x, y)− ∂F2

∂x
(x, y)

F2(x, y)
.

Since the LHS depends only on x, we see that a necessary condition for this above to be
sensible is for the RHS to depend only on x. But then this above would have the form

dϕ

dx
(x) = ϕ(x) · [some function of x],

which we can solve!

Theorem 1.1

If
∂F1
∂y

− ∂F2
∂x

F2
depends only on x, then a solution ϕ to the differential equation

ϕ′(x) =

(
∂F1

∂y
− ∂F2

∂x

F2

)
(x)ϕ(x)

will be an integrating factor, so that (ϕF1, ϕF2) is irrotational.

A similar result occurs if
∂F1
∂y

− ∂F2
∂x

F1
depends only on y.
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Example 1.5: “Solve” the differential equation

3x2u(x) + 2xu(x) + u(x)3 + (x2 + u(x)2)u′(x) = 0.

Solution. The corresponding vector field is F (x, y) = (3x2y + 2xy + y3, x2 + y2). This is
sadly not irrotational/conservative. However, we may note that

∂F1

∂y
(x, y)− ∂F2

∂x
(x, y)

F2(x, y)
= 3,

which does not depend on y. So by the theorem, an integrating factor ϕ is given by solving
the differential equation

ϕ′(x) = 3ϕ(x),

and easily we can pick ϕ(x) = e3x. We may now find that

ϕ(x)F (x, y) = ∇g(x, y)

where g(x, y) =
∫ y

0
(x2 + t2)e3x dt = (x2y + y3/3)e3x is a gradient potential for ϕ(x)F (x, y).

Hence a solution u(x) is a level set of g, i.e.

(x2u(x) + u(x)3/3)e3x = C

for a constant C. If you’re really desperate, you may now proceed to use the cubic formula
and obtain an explicit form for u. But I have better things to do. ■
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2 The Winding Number and Simply Connected Sets

2.1 Winding Number

The winding number of a curve around some point x0 is simply the number of times it
goes “around” x0. The way we make this rigorous is... uh...

Definition 2.1

Let γ be a closed curve and (x0, y0) ∈ R2. The winding number or index of γ around
(x0, y0) is defined as

wind(γ, x0) :=
1

2π

∫
γ

( −(y − y0)
(x− x0)2 + (y − y0)2

,
x− x0

(x− x0)2 + (y − y0)2
)
.

This is also just

1

2π

∫ 2π

0

−(φ2(t)− y0)φ′
1(t) + (φ1(t)− x0)φ′

2(t)

(φ1(t)− x0)2 + (φ2(t)− y0)2
dt

for a parametrization φ of γ.

Here’s a small digression on why this makes any sense whatsoever. If you’ve ever studied
any complex analysis, you may be aware of a notion of integrating over curves in C. The
ugly integrand has a natural representation in complex analysis. If we take a parametrization
φ : [0, T ]→ R2 of the curve, then

wind(γ, x0) =
1

2π

∫ T

0

−(φ2(t)− y0)φ′
1(t) + (φ1(t)− x0)φ′

2(t)

(φ1(t)− x0)2 + (φ2(t)− y0)2
dt.

If we now view points (x, y) as complex numbers, this can be massaged into

=
1

2π

∫ T

0

Re(1
i
(φ(t)− z0)φ′(t))

|φ(t)− z0|2
dt

= Re

(
1

2πi

∫ T

0

φ′(t)

φ(t)− z0
dt

)
,

and now using the notion of contour integration in the complex plane (which you may or
may not know) this is actually

= Re

(
1

2πi

∫
γ

1

z − z0
dz

)
.

This is precisely the number of times γ revolves around z0 by the Residue Theorem.
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2.2 Examples

Keep in mind that this definition of winding number isn’t just a formula for “stating the
obvious”. I view it as a bit more like a useful tool for rigorously studying this notion of
“going around things”.

Example 2.1: Let wind(∂B(0, 1), (0, 0)) where ∂B(0, 1) is oriented counter-
clockwise.

Solution. With the obvious parametrization φ(t) := (cos t, sin t), we have

wind(∂B(0, 1), (0, 0)) =
1

2π

∫ 2π

0

(− sin t, cos t) · (− sin t, cos t)

cos(t)2 + sin(t)2
= 1,

to the surprise of absolutely nobody. ■

Example 2.2: Consider the limaçon γ with polar equation r = 2 cos θ − 1, which
may be parametrized by

φ(t) := ((2 cos t− 1) cos t, (2 cos t− 1) sin t), t ∈ [0, 2π].

Compute wind(γ, (1/2, 0)).

Solution. Stuffing it into the definition, we have

wind(γ, (1/2, 0)) =
1

2π

∫ 2π

0

−φ2(t)φ
′
1(t) + (φ1(t)− 1/2)φ′

2(t)

(φ1(t)− 1/2)2 + φ2(t)2
dt

=
1

2π

∫ 2π

0

−φ2(t)φ
′
1(t) + (φ1(t)− 1/2)φ′

2(t)

(φ1(t)− 1/2)2 + φ2(t)2
dt

= Eww

= 2

■

2.3 Simply Connected Sets

Recall that a set is simply connected if it is path-connected, and any closed curve inside
it can be shrinked to a point. This shrinking is called a homotopy, and so the jargon would
be “the curve is homotopic to a constant curve”.

Recall:

12
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Definition 2.2

• Curves γ1 and γ2 are homotopic if there exists a continuous h : [0, 1] × [a, b]
such that h(0, t) = φ1(t) and h(1, t) = φ2(t) where φ1, φ2 are parametrizations
of γ1, γ2, respectively.

• γ1 and γ2 are fixed-endpoint homotopic if moreover h(s, a) = φ1(a) = φ2(a) and
h(s, b) = φ1(b) = φ2(b) for all s ∈ [0, 1].

Observe that these notions of homotopic equivalence are both equivalence relations.

In lecture, we defined the following notion of being null-homotopic.

Definition 2.3

A closed curve γ is null-homotopic if it is fixed-endpoint homotopic to the constant
curve which is equal to x0 for all time, where x0 = φ(0) = φ(1) for every parametriza-
tion φ of γ.

This is a bit annoying to work with. Intuitively we would like to view a closed curve as
being null-homotopic if it is homotopic to some constant curve (i.e. some point), not just
a very specific one. Fortunately we can show that this easier notion of null-homotopic is
equivalent.

Proof.

( =⇒ ) Null-homotopic implies homotopic to some point

Trivial.

(⇐= ) Homotopic to some point implies null-homotopic

Let γ be a closed curve and let φ be a parametrization of γ. Suppose γ is homotopic to
y0, witnessed by a homotopy h so that h(0, t) = φ(t) and h(1, t) = y0 for all t.

The picture to have in mind is that “we’ll do the homotopy but also draw the trail left
behind by x0 as it moves to y0”. To that end, consider the fixed-endpoint homotopy

h1(s, t) :=


h(2t, 0), 0 ≤ t < s/2

h
(
s, t−(s/2)

1−s

)
, s/2 ≤ t ≤ 1− s/2

h(2− 2t, 0), 1− s/2 < t ≤ 1

.

This fixed-endpoint homotopy shows that γ is fixed-endpoint homotopic to the curve γ1
parametrized by

φ1(t) :=

{
h(2t), 0 ≤ t < 1/2

h(2− 2t), 1/2 ≤ t ≤ 1
,

13
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which simply is a closed curve that goes from x0 to y0 and then back, along the same path.
It remains to “pull back” γ1 towards x0. This may be done via the fixed-endpoint homotopy

h2(s, t) :=

{
h(2((1− s)t), 0 ≤ t < 1/2

h(2(1− s)(1− t)), 1/2 ≤ t ≤ 1
.

So γ is fixed-endpoint homotopic to γ1 which is fixed-endpoint homotopic to the constant
curve at x0, thus γ is null-homotopic. □

Great, this means that to verify that a curve is null-homotopic, we can just show that it
is homotopic to some point x0 that we are free to choose.

Theorem 2.1

Any convex K ⊆ RN is simply connected.

Proof. That K is path-connected is obvious, since between any two points you can form
a path via the line segment between them. Now take a closed curve γ in K parametrized
by φ : [0, T ] → K, and for ease let us assume WLOG that 0⃗ ∈ K. We show that γ may be
shrinked to 0⃗. Indeed, consider the homotopy

h(s, t) := sφ(t).

Since 0⃗ ∈ K and φ(t) ∈ K we have h(s, t) = sφ(t) ∈ K for all s ∈ [0, 1] by convexity.
t 7→ h(0, t) parametrizes the constant curve with value 0⃗ and t 7→ h(1, t) parametrizes γ, so
γ is homotopic to a point. Hence K is simply connected. □

In particular, we see that RN is simply connected for all N . (Of course, if you attended
lecture, this is all just a special consequence of Example 25 which states that any star-shaped
set is simply-connected. Indeed, convex sets are star-shaped!)

Let’s take a look at some more specific examples.

Example 2.3: Is R2 \ {(0, 0)} simply connected?

Solution. No. If it were, then ∫
∂B(0,1)

( −y
x2 + y2

,
x

x2 + y2

)
should be 0 (because the vector field would have to be conservative). But we know that this
is actually 2π (when taking the counter-clockwise orientation). ■

Example 2.4: Is R3 \ {(0, 0, 0)} simply connected?

Solution. Yes. It’s obvious enough that it’s pathwise-connected, but showing that every
closed curve is null-homotopic is much more interesting. To help us prove this we shall look

14
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at some lemmas. This first lemma states intuitively that if two loops are null-homotopic,
then so is their “sum”.

Lemma 2.1

Let U be open, x, y ∈ U , let α be a path from x to y with range in U , and let β, γ be
two paths from y to x with range in U . Then the compositions αβ and β−1γ are two
closed paths that “share” the path β, going in opposite directions. If both of these
closed paths are null-homotopic, then so is αγ.

(It may be helpful to view αβ as the “initial curve” that we “lengthen” by “adding
β−1γ to it” to get αγ.)

Proof. Let a, b, c : [0, 1]→ U parametrize α, β, γ. Then αγ is parametrized by

ac(t) =

{
a(2t), 0 ≤ t < 1/2

b(2t− 1), 1/2 ≤ t ≤ 1
.

Step 1

Let’s first show that αγ is homotopic to (αβ)(β−1γ), which may be parametrized by

(ab)(b−1c)(t) =


a(4t), 0 ≤ t < 1/4

b(4t− 1), 1/4 ≤ t < 1/2

b(3− 4t), 1/2 ≤ t < 3/4

c(4t− 3), 3/4 ≤ t ≤ 1

.

Intuitively, we should imagine the curve αγ “growing an arm” at y, which extends to x along
β. Indeed, a homotopy is given by

h(s, t) =


a(4t/(2− s)), 0 ≤ t < (2− s)/4
b(4t− s), s/4 ≤ t < s/2

b(3s− 4t), s/2 ≤ t < 3s/4

c((4t− (2 + s))/(2− s), (2 + s)/4 ≤ t ≤ 1

.

As s moves from 0 to 1, h(s, ·) travels further down β and back.

Step 2

Since homotopic equivalence is an equivalence relation, it remains to show that (αβ)(β−1γ)
is null-homotopic. Intuitively,

Let homotopies h1 and h2 witness the hypothesis that αβ and β−1γ are null-homotopic,
respectively. Specifically we may take these to be homotopies to the point x. Now consider
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the homotopy

H(s, t) =

{
h1(s, 2t), 0 ≤ t < 1/2

h2(s, 2t− 1), 1/2 ≤ t ≤ 1
.

This works! Note that requiring these to be homotopies that shrink αβ and β−1γ to the
point x is what ensures that H is continuous at t = 1/2, because H(s, ·) will always be two
loops “glued at x”. □

This intuitive lemma is invaluable for the next result.

Lemma 2.2

Let open sets U, V be simply connected. If U ∩ V is non-empty pathwise connected,
then U ∪ V is simply connected.

Proof. Let γ be a closed curve with range in U ∪V . We will show that γ is null-homotopic.

Step 1

We will first divide γ into a bunch of paths, each of which stays entirely within either U
or V , with both endpoints in U ∩ V . This is not hard to do, but what we’re really aiming
for is to make the number of such paths finite, otherwise the implied induction in the next
step falls apart.

To wit, parametrize γ via φ : [0, 1] → U ∪ V . Note that φ−1(U) is a countable disjoint
union of relatively open intervals

⋃∞
i=1 Ii, and similarly φ−1(V ) =

⋃∞
j=1 Jj. Now (

⋃∞
i=1 Ii) ∪(⋃∞

j=1 Jj

)
is an open cover of [0, 1] (in the relative topology), so we may pass to a finite

subcover [0, b0) ∪
⋃n−1

i=1 (ai, bi) ∪ (an, 1].

We may pick and rearrange this subcover so that the right-endpoints are ordered (i.e.
0 < b0 < b1 < . . . < bn−1 < 1), and so that the cover is minimal. That is, it would not cover
[0, 1] if any interval is deleted.

Now take any 0 ≤ i ≤ n − 1. Then bi is covered by the interval (ai+1, bi+1), and only
this interval (by minimality!). So ai+1 < bi. Thus we may pick xi with ai+1 < xi < bi. Since
xi ∈ (ai, bi) ∩ (ai+1, bi+1), we have that xi ∈ U ∩ V (I’m skipping some minor logical details
here — convince yourself that this is a valid leap!).

Consequently, we have for each 1 ≤ i ≤ n − 1 that φ([xi−1, xi] is the range of a curve
contained completely inside either U or V , with endpoints φ(xi−1), φ(xi) in U ∩ V . If we
assume WLOG via a “rotation homotopy” that φ(0) = φ(1) ∈ U ∩ V , then we get the same
nice property for φ([0, x0]) and φ([xn−1, 1]). This completes this step.

Step 2
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Changing notation a bit, we have from the previous step that we may write γ as a
composition (or “product”?) of paths γ1, γ2, · · · , γn, each fully contained in either U or V ,
such that for each i the endpoints yi−1, yi of γi lie in U ∩ V . (I’m playing fast and loose
with the notion of “composing curves” here, hopefully you don’t mind. If you’re concerned,
include some extra homotopies to get the time intervals to line up.)

Since U ∩ V is path-connected, we can find a path δi from yi to y0 with range in U ∩ V .
So γ1δ1 is a closed curve with range in U , and hence is null-homotopic. We can say the same
for δ−1

1 γ2δ2. Thus by the previous lemma, γ1γ2δ2 is null-homotopic. But so is δ−1
2 γ3δ3, so

γ1γ2γ3δ3 is null-homotopic. Inductively we deduce that γ1γ2 . . . γn (maybe plus a constant
curve) is null-homotopic. Done. □

Writing R3 \ {0, 0, 0} as U ∪ V where

U = {(x, y, z) : x = y = 0 and z > 0 or x, y ̸= 0 and z > −1}

V = {(x, y, z) : x = y = 0 and z < 0 or x, y ̸= 0 and z < 1},
we see that U and V are both simply connected because they are star-shaped, and moreover
U ∩ V = (R2 \ {(0, 0)}) × (−1, 1) which is path-connected. Thus R3 \ {(0, 0, 0)} is simply
connected. ■

With that out of the way, I’d like to wrap up by discussing why certain conditions in
Lemma 2.2 are quite necessary.

• It is critical that U ∩V be pathwise-connected. Consider, for instance, taking two “ba-
nanas” in R2 and overlaying their ends. Their union is homeomorphic to a punctured
disk and is hence not simply connected.

• It is of course incredibly important that U and V be simply connected. A counterex-
ample is not hard to cook up.

• What about the condition that U and V be open? We needed openness in the proof to
construct the open cover of [0, 1]. It turns out that if we don’t require openness then
things break. Here’s a simple counterexample in R2:

U := {(cos t, sin t) : 0 ≤ t ≤ π}

V := {(cos t, sin t) : π ≤ t < 2π}
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3 Connectedness

3.1 Definition in Topological Spaces

We’ve been working with this notion of “path-connectedness” for a while now. It turns
that the notion of connectedness is different from this.

Definition 3.1 (Disconnected, Connected)

Let (X, τ) be a topological space. A set E ⊆ X is disconnected if there exist open sets
U1, U2 ⊆ X for which:

• U1 ∩ E ̸= ∅ and U2 ∩ E ̸= ∅,

• U1 ∩ U2 ∩ E = ∅ (“U1 and U2 are separate”), and

• E ⊆ U1 ∪ U2 (“E is covered by U1 and U2”).

E is connected if it is not disconnected.

This definition has a bit of an oddity. The second bullet only necessitates that U1 ∩U2 ∩
E = ∅ instead of the possibly more intuitive condition U1 ∩ U2 = ∅, meaning that in our
definition, U1 and U2 are allowed to intersect outside of E.

It turns out this oddity is actually more intuitive. This is because we should view these
conditions as saying that E is being separated by relatively open sets. The philosophy here
is that we should only need to focus on what’s happening in E, not anything outside of E.
So if we frame the question as “is E separated, as a topological space?” then it is indeed
more natural to view the game we’re playing as happening entirely within E.

This philosophy will be reflected in Leoni’s notes when he writes E = (U1∩E)∪ (U2∩E)
instead of E ⊆ U1 ∪ U2. It’s equivalent but it really emphasizes how we only care about
what’s inside E.

Let’s begin with a simple example.

Example 3.1: Prove that if E is connected, then so is E.

Proof. We’ll prove the contrapositive. If E is disconnected, then we may find U1, U2

witnessing this. We claim that these open sets also witness that E is disconnected. Let’s
verify the conditions.

• Using 269-era arguments, you can show that E ∩U1 ̸= ∅ implies E ∩U1 ̸= ∅. Similarly
E ∩ U2 ̸= ∅.
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• ∅ ⊆ U1 ∩ U2 ∩ E ⊆ U1 ∩ U2 ∩ E = ∅ so U1 ∩ U2 ∩ E = ∅.

• E ⊆ E ⊆ U1 ∪ U2

□

3.2 ...it gets better in metric spaces!

If we upgrade the structure on X to a metric space, then we may actually remove this
oddity! That is, in metric spaces, a set E can be separated by relatively open sets iff it can
be separated by open sets!

Lemma 3.1

Suppose (X, d) is a metric space. Then in the definition of disconnectedness, we may
replace the condition U1∩U2∩E = ∅ with U1∩U2 = ∅. That is, E ⊆ X is disconnected
iff there exist open sets U1, U2 ⊆ X for which:

• U1 ∩ E ̸= ∅ and U2 ∩ E ̸= ∅,

• U1 ∩ U2 = ∅. and

• E ⊆ U1 ∪ U2.

Proof. One direction is trivial, so we do the other one. That is, suppose that E is
disconnected, so that we find U1, U2 satisfying the properties, with the possibility that U1 ∩
U2 ̸= ∅. We will construct open sets V1, V2 satisfying the properties so that V1 ∩ V2 = ∅.

Well, metric spaces let us draw balls, so let’s draw a crapton of balls! For each x ∈ U1∩E,
we find B(x, rx) ⊆ U1, and for each y ∈ U2 ∩ E we find B(y, ry) ⊆ U2. Now we simply take:

V1 =
⋃

x∈U1∩E

B(x, rx/2)

V2 =
⋃

y∈U2∩E

B(y, ry/2)

Let’s prove that this works. It’s clear that V1, V2 are open, V1 ∩ E, V2 ∩ E ̸= ∅, and E ⊆
V1 ∪ V2. It remains to show that V1 ∩ V2 = ∅. To see this, we suppose otherwise and take
z ∈ V1 ∩ V2. Then there is x ∈ V1 and y ∈ V2 such that d(x, z) < rx/2 and d(y, z) < ry/2.
So d(x, y) < rx/2 + ry/2. If WLOG rx < ry then d(x, y) < ry so x ∈ B(y, ry). So x ∈ U2,
hence x ∈ U1 ∩ U2 ∩ E. But U1 ∩ U2 ∩ E should be empty, contradiction! □

This lets us easily characterize all the connected sets in R.
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Example 3.2: Show that a set I ⊆ R is connected iff E is an interval.

Proof. ( =⇒ ) Suppose I is connected. Take x, y ∈ I, x ≤ y. Let x ≤ z ≤ y. We
want to show z ∈ I. Well, if not, then (−∞, z) ∪ (z,∞) is a separation of I by open sets,
contradiction.

(⇐= ) Suppose I is an interval. Suppose for contradiction that I is disconnected. Then
we may find U1, U2 witnessing this, and moreover we may ensure that U1 ∩ U2 = ∅ by the
lemma. Take x ∈ U1 ∩ I, y ∈ U2 ∩ I, and assume WLOG that x < y. Let z0 = sup{z ∈ I :
[x, z] ⊆ U1 ∩ I}. Note that x < z0 < y, so z0 ∈ I.

It follows that either z0 ∈ U1 or z0 ∈ U2. However neither is possible. On one hand, if
z0 ∈ U1 then [x, z0 + ε] ⊆ U1 for a small ε > 0, contradicting the definition of z0. On the
other hand, if z0 ∈ U2 then z0 − ε ̸∈ U1 for a small ε > 0, so [x, z0] ̸⊆ U1. □

3.3 ...it gets even better in normed spaces!

We defined a notion of pathwise connected in lecture, and now we have this weird other
notion of connected which is seemingly different. It turns out that in normed spaces such as
RN , they’re equivalent for open sets!

Theorem 3.1

Let (X, ∥ · ∥) be a normed space. Then an open set U ⊆ X is connected iff it is
pathwise connected.

Proof.

This proof is very fun! First, we leave the case U = ∅ to the philosophers and only
consider U ̸= ∅.

Forward Direction (Connected =⇒ pathwise connected)

Assume U is connected. Take a point x0 ∈ U . Let V be the set of points in U that can
be reached from x0 via a polygonal path.

CLAIM: V is open... (i.e. V is relatively open)

If x ∈ V , then we may find B(x, r) ⊆ U . For this r we will have B(x, r) ⊆ V . This is
because for any x′ ∈ B(x, r) we may reach x′ from x0 by first drawing a polygonal path from
x0 to x (possible by definition of V ) then drawing a segment from x to x′ (possible because
balls in normed spaces are convex).

CLAIM: ...uh, but also U \ V is open... (i.e. V is relatively closed)
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By similar reasoning, we see that if x ∈ U \ V , so that x0 cannot reach x via a polygonal
path, then x0 cannot reach points in a small ball around x, since otherwise x0 would be able
to reach x.

CLAIM: ...so actually V = U , which is what we needed to show.

U = V ⊔ (U \ V ) is a separation of U via disjoint open sets, which would disconnect U
unless either V or U \ V is empty. Since x0 ∈ V , the latter must hold, so U \ V = ∅ and
U = V .

Backward Direction (Connected ⇐= pathwise connected)

Assume U is pathwise connected. Suppose for contradiction that U is disconnected, and
find open sets U1, U2 that witness this. Take x ∈ U1 ∩E, y ∈ U2 ∩E, and find a path γ from
x to y parametrized by φ : [0, 1]→ U .

Now V1 := φ−1(U1) and V2 := φ−1(U2) are non-empty, disjoint, relatively open sets in
[0, 1] whose union is [0, 1]. So [0, 1] is disconnected, contradiction. □

Remarks:

• We used openness to draw balls...

• ...and we used the fact that X is a normed space so that we can safely draw line
segments in these balls by convexity!

• We implicitly, automagically proved some other properties in the above proof. For
example, it is true in general topological spaces that pathwise connected implies con-
nected, and that continuous functions preserve connectedness. If you’re bored, piece
together the proofs of these properties before Leoni does it in lecture.

3.4 Horrifying Counterexamples

3.4.1 We don’t have Lemma 3.1 in topological spaces.

Take (X, τ) with X = {1, 2, 3} and the open sets being ∅, {1, 2}, {2, 3}, {2} and {1, 2, 3}.
Then E = {1, 3} is disconnected, but the only way to disconnect it is via the open sets
U1 = {1, 2} and U2 = {2, 3}, which intersect outside of E.
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3.4.2 There is an open set in a metric space which is connected but not pathwise
connected. There is a set in a normed space which is connected but not
pathwise connected.

Definition 3.2

The Topologist’s Sine Curve is the set{(
x, sin

1

x

)
: 0 < x ≤ 1

}
∪ {(0, 0)}.

(Note: Leoni’s convention is to include the entire segment {0}× [−1, 1] instead of just
{(0, 0)}. This doesn’t change much, but some people call this the closed Topologist’s
Sine Curve.)

Call this set T . Viewing T as a subset of the normed space RN , we claim that T is
connected. Indeed, suppose open sets U1, U2 separate T . WLOG (0, 0) ∈ U1. Then U1

intersects the “squiggly part” S := {
(
x, sin 1

x

)
: 0 < x < 1}, but not all of it. U2 contains the

part of S not covered by U1. From this, we see that U1 and U2 separate S, so S is disconnected.
But S is connected because it is the image of the continuous map x ∈ (0, 1) 7→ (x, sin 1/x)
and (0, 1) is connected, contradiction.

However, T is not pathwise connected. If it were, then there exists a path from (1, sin 1)
to (0, 0) parametrized by φ : [0, 1] → T . Evidently φ([0, 1]) must be connected, and for
every x ∈ (0, 1) if (x, sin 1/x) ̸∈ φ([0, 1]) then the open sets (−∞, x) × R and (x,∞) × R
disconnect φ([0, 1]), which is bad. So it follows that φ([0, 1]) = T . Since continuous functions
send compact sets to compact sets, we deduce that T is compact. But it’s not. (For instance,
the point (0, 1) ̸∈ T is an accumulation point.)

Thus, T is a set in a normed set which is connected but not pathwise connected. How
about an open set in a metric space which is connected but not pathwise connected? It turns
out that T is also an example of this! By passing to a relative topology, we may sacrifice the
normed structure to force T to be open.

Specifically, we take our metric space to be T (endowed with the Euclidean metric),
and the open set in question is the entire space T . Reasoning about relative topologies
or otherwise, our arguments imply that T is an open connected set that is not pathwise
connected.
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4 Arc Length

4.1 Some Quick Examples of Connectedness

Example 4.1: Determine if the following sets are connected:

• Q2

• (R2 \Q2)

• {(x, y) ∈ R2 : x ∈ Q or y ∈ Q}

• {(x, y) ∈ R2 : x ∈ Q xor y ∈ Q}

• ∂B3(0, 1)

Solution.

• Q2 is not connected, take U1 = {x <
√
2} and U2 = {x >

√
2}.

• (R2 \ Q2) is connected. Path connected always implies connected, so it is sufficient
to show that it is path connected. Take x, y ∈ R2 \ Q2 and, using your favorite
methodology, draw uncountably many paths from x to y that are disjoint (except at x
and y). Q2 is countable, so surely one of these paths will not pass through an element
of Q2.

• {(x, y) ∈ R2 : x ∈ Q or y ∈ Q} is connected. It is possible to find a path between any
two points of this set by following only horizontal and vertical line segments.

• {(x, y) ∈ R2 : x ∈ Q xor y ∈ Q} is not connected. Consider {(x, y) : x > y} and
{(x, y) : x < y}.

• ∂B3(0, 1) is connected. We can in fact show that it is path connected. Intuitively
this is obvious, but the main point of the exercise is to figure out the cleanest way to
generate a path.

For any two distinct points x, y ∈ ∂B3(0, 1), find a path between them in R3 that does
not pass through (0, 0, 0). (If x and y are not diametrically opposite, a straight line will
do. Otherwise, you can do it in two segments.) Then project this path unto ∂B3(0, 1).
The projection is continuous so the image is also a path.

■
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4.2 Arc Length

Recall the following theorem.

Theorem 4.1

Let I be an interval and f ∈ BPV (I;Rd) (note that f is differentiable almost every-
where by Lebesgue Differentiation). Then∫

I

|f ′| dx = Var
I
f ⇐⇒ f is AC.

This will streamline our discussion on arc length.

Definition 4.1 (Arc Length)

Let γ be a curve in RN . The length of γ is given by

L(γ) := Var
I
φ,

where φ : I → RN is a parametrization of γ.

Is this well-defined? We should verify that VarI φ = VarJ ψ, where φ : I → RN and
ψ : I → RN are two different parametrizations of γ. Well, by the definition of a curve, if both
φ and ψ are parametrizations then they are equivalent, so that there exists a homeomorphism
h : I → J such that φ = ψ ◦h. Fixing an arbitrary partition t0 < t1 < . . . < tn in I, we have

n∑
i=1

∥φ(ti)− φ(ti−1)∥ =
n∑

i=1

∥ψ(h(ti))− ψ(h(ti−1))∥ ≤ Var
J
ψ,

and so by taking the sup on the LHS we get VarI φ ≤ VarJ ψ. But there was nothing special
about this order, so by the same logic we also get VarJ ψ ≤ VarI φ for free, hence the equality.

Example 4.2: The shortest path between two points is a straight line.

Proof. Let x0, y0 ∈ RN . Then for any curve γ with endpoints x0 and y0 and parametriza-
tion φ ∈ C([a, b],RN), we have

L(γ) = Var
I
φ ≤ ∥φ(a)− φ(b)∥ = ∥x0 − y0∥,

and the length of ∥x0 − y0∥ is obtained by a straight line. □

Note that if a curve γ is AC, so that it is parametrized by some AC φ : I → RN , then
the length is simply given by

L(γ) = Var
I
φ =

∫
I

|φ′| dt.
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For instance, it is unsurprising that the closed curve parametrized by φ(t) := (cos t, sin t),
t ∈ [0, 2π] has length 2π. Since φ is AC, we can show this explicitly via the integral∫ 2π

0

∥φ′(t)∥ dt =
∫ 2π

0

∥(− sin t, cos t)∥ dt =
∫ 2π

0

1 dt = 2π.

But some curves are not so nice.

Example 4.3: Let f : [0, 1] → [0, 1] be the Devil’s Staircase. Let γ be the curve
parametrized by φ(t) := (t, f(t)), t ∈ [0, 1]. What is L(γ)?

Solution. Although φ′ = (1, 0) exists for almost every t, we certainly cannot say that the

length is
∫ 1

0
∥φ′∥ dt = 1. Though, it is true that this gives the bound L(γ) ≥ 1.

I have no idea if there exists an AC parametrization. There probably isn’t one. So this is
one of those things where we need to use the definition via pointwise variation. If you think
about it from the right angle, you can show that L(γ) = 2. ■

4.3 Rectifiable Curves

Definition 4.2

A curve γ is rectifiable if L(γ) <∞. We say that γ is locally rectifiable if it admits a
parametrization φ ∈ BPVloc(I;RN).

There certainly exist continuous curves with a parametrization on [a, b] and infinite
length. Take, for instance, a space-filling curve, or the graph of x sin(1/x) over [−1, 1].

An example of a locally rectifiable curve which is not rectifiable is the graph of x2.

Definition 4.3

A parametrization φ : I → RN of a curve γ is a parametrization by arc length if

Var
[s,t]

φ = t− s

for all s, t ∈ I, s < t.

Some observations:

• Note that such a φ is Lipschitz and thus AC, so we can write

L(γ) =

∫ L(γ)

0

∥φ′∥ dt (∗)

for such curves γ.
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• Since φ is 1-Lipschitz, we have ∥φ′∥ ≤ 1 wherever it is differentiable, i.e. almost
everywhere. But from (∗) we can in fact observe that

0 =

∫ L(γ)

0

1− ∥φ′∥ dt ≥ 0,

which implies that φ′ = 1 almost everywhere. This makes a lot of intuitive sense!

We evidently have the inclusions:

Param. By Arc Length ⊆ Locally Rectifiable

Rectifiable ⊆ Locally Rectifiable

An example of a curve which is rectifiable but not parametrizable by arc length is a constant
curve φ(t) := x0, t ∈ [a, b], a < b. If there exists a parametrization ψ = φ ◦ h : [c, d] → RN

by arc length, then 0 = Var[c,d] ψ = d − c. So c = d. That’s kinda hard to pull off because
then [a, b] = h([c, d]) is a singleton, despite the assertion a < b.

The issue here is that the parametrization φ “stops” for a long time. It turns out that if
you prevent this from happening, then the curve will be parametrizable by arc length.

Theorem 4.2

Let γ be a continuous, locally rectifiable curve. Suppose γ may be parametrized by
a φ : I → RN which is not constant on any proper subinterval of I. Then γ may be
parametrized by arc length.

Proof. The idea is to revert the “lengthening” that φ is doing. To wit, pick a “start time”
t0 ∈ I and use it to define the indefinite variation

v(t) :=

{
Var[t0,t] φ, t ≥ t0

−Var[t,t0] φ, t < t0
. (∗∗)

The assumption that φ is not constant on any proper subinterval implies that v(t) is strictly
increasing (why?)! So it has a continuous inverse v−1 : v(I)→ I. We claim that ψ := φ◦v−1

is a parametrization by arc length. Indeed, consider s1, s2 ∈ v(I). Then it’s easy to argue
that

Var
[s1,s2]

ψ = Var
[v−1(s1),v−1(s2)]

φ,

and by definition of v this is

= v(v−1(s2))− v(v−1(s1)) = s2 − s1

as needed. □
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Example 4.4: The graph of the Cantor function, as a curve, is AC. To be more
precise, the curve parametrized by the obvious φ(t) := (t, f(t)), where f is the
Cantor function, can be parametrized by arc length because φ isn’t constant on any
interval by virtue of the strictly increasing first component. So there exists such a
parametrization ψ by arc length, and ψ is 1-Lipschitz and hence AC.

Here’s another criterion which follows as a corollary from the previous one: AC curves
that admit parametrizations that never “pause” for a moment are parametrizable by arc
length.

Theorem 4.3

Let γ be a continuous curve with an AC parametrization φ : I → RN such that φ′ ̸= 0
almost everywhere. Then γ can be parametrized by arc length.

Proof. Easy. □
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5 Completeness

5.1 Sequences

Sequences are really important! Lots of things in analysis become a lot more flexible when
viewed in the context of sequences. You might remember constantly passing to sequences
when justifying things for LDCT, for instance.

An example of sequences being very versatile is their ability to give an alternative char-
acterization for closed and compact sets!

Definition 5.1 (Sequential Closure)

Let (X, τ) be a topological space. A subset E ⊆ X is sequentially closed if for every
sequence xn ∈ E with a limit x ∈ X, we have x ∈ E.

That is, E is literally closed under convergence.

Definition 5.2 (Sequential Compactness)

Let (X, τ) be a topological space. A subset E ⊆ X is sequentially compact if every
sequence xn ∈ E admits a subsequence that converges in E.

Intuitively, being sequentially closed should be the same thing as being closed, that kinda
feels right. This is true in metric spaces!

Theorem 5.1

Let (X, d) be a metric space. Then E ⊆ X is closed iff it is sequentially closed.

And, similarly for sequential compactness.

Theorem 5.2

Let (X, d) be a metric space. Then E ⊆ X is compact iff it is sequentially compact.

The theorem for compactness will be done in lecture. Here we shall prove the theorem
for closedness.

The proof is basically “remember from a year ago that sets are closed iff they contain all
their accumulation points”, but I’ll write it out.

Proof. ( =⇒ ) Suppose E is closed. Take a sequence xn ∈ E that has a limit x ∈ X. Then
x is an accumulation point of {xn : n ∈ N}, and is thus an accumulation point of E. Since
closed sets contain their accumulation points, x ∈ E.
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( ⇐= ) Suppose E is sequentially closed. To show that E is closed, it suffices to prove
that it contains all its accumulation points. Well, if somehow we found a point x ∈ accE \E,
then we can take xn ∈ accE with xn → E, so x ∈ E, contradiction. □

We remark that it is not true that being sequential closed is not equivalent to being closed
in topological spaces. A counterexample will be a part of your homework in the future. The
silver lining is that you can get one direction: closed sets are always sequentially closed, even
in topological spaces. The proof is not hard.

5.2 Completeness in Metric Spaces

There is an important relation between being complete and being closed.

Theorem 5.3

(X, d) be a complete metric space. Then for a subset E ⊆ X, we have

E is closed ⇐⇒ (E, d) is complete.

Hence, in the context of Banach spaces, when people say “closed subspaces”, they’re
basically talking about subspaces that are Banach.

Proof. ( =⇒ ) Suppose E is closed. Let xn ∈ E be Cauchy in d. Then since xn ∈ X, and
X is complete, we have xn → x for some x ∈ X. But E is sequentially closed, so x ∈ E.

(⇐= ) Suppose (E, d) is complete. Take a sequence xn ∈ E that converges in X. Then
xn is Cauchy in d, so xn → x for some x ∈ E. So E is sequentially closed, and hence closed.
□

5.3 Relation to Uniform Continuity

The setting here is still metric spaces, but this result is so important that it deserves its
own section!

There is something really neat about uniform continuity that I never got to talk about
last semester because we just didn’t quite have the technology to discuss it. When a function
taking values in a complete metric space (like real-valued functions) is uniformly continuous,
then you can extend it!
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Theorem 5.4

Suppose X, Y are metric spaces, and that Y is complete. Let E ⊆ X and let
f : E → Y be uniformly continuous.
Then f can be extended continuously to all accumulations points of E (!!!).
In other words, we can find f̃ : E → Y continuous such that f̃ agrees with f over E.
Moreover, this extension is unique.

Before proving this, let us show a lemma.

Lemma 5.1

Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y be uniformly continuous.
Then f sends Cauchy sequences to Cauchy sequences.

Proof. Take a Cauchy sequence xn ∈ X. We claim that f(xn) is a Cauchy sequence in Y .

Indeed, fix ε > 0. Then

• since f is uniformly continuous, there exists δ > 0 such that dY (f(x), f(y)) < ε
whenever dX(x, y) < δ, and now

• since xn is Cauchy, there exists N so large that dX(xm, xn) < δ for all m,n ≥ N .

We claim that this works. Indeed, for all m,n ≥ N , we have dX(xm, xn) < δ, and it
follows that dY (f(xm), f(xn)) < ε for all such m,n. Tada! □

Now we may prove the theorem.

Proof.

• Take x0 ∈ (accE) \ E (don’t care about E, already know how to define over E).

• Since x0 is an accumulation point, we can find xn → x0.

• Since xn converges, it is Cauchy.

• Since f is uniformly continuous, it sends Cauchy sequences to Cauchy sequences.

• Therefore, {f(xn)}n ∈ Y is Cauchy.

• Y is complete, so we may conclude that f(xn) converges to some value in Y . We
define this value to be f̃(x0)! (Note that this is the only way to extend f to x0 in
a continuous way, so this proves uniqueness of the extension, provided that it exists.)
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Over all other points of x ∈ E, we naturally define f̃(x) to be f(x). Hence we have
defined a function f̃ : E → Y . It remains to check that f̃ is continuous. We will, in fact,
prove that it is uniformly continuous, to the surprise of probably nobody.

Take ε > 0 and find the corresponding δ > 0 witnessing the uniform continuity of f over
E. Take x, y ∈ E for which dX(x, y) < δ/2. Take xn, yn ∈ E with xn → x and yn → y such
that f(xn)→ f(x) and f(yn)→ f(y), as in the definition of f over E (if x ∈ E then we can
just take xn = x for all n, and same for y). Then

dY (f̃(x), f̃(y)) ≤ dY (f̃(x), f(xn)) + dY (f(xn), f(yn)) + dY (f(yn), f̃(y)).

By yet another triangle inequality, we have that

dX(xn, yn) ≤ dX(xn, x) + dX(x, y) + dX(y, yn) < δ

for all large enough n, so that dY (f(xn), f(yn)) < ε for all such n. Moreover we can get
dY (f̃(x), f(xn)) < ε and dY (f(yn), f̃(y)) < ε for all n large enough. So dY (f̃(x), f̃(y)) ≤ 3ε,
which is enough. □

5.4 Examples of Banach Spaces

5.4.1 Euclidean Space

RN is possibly the most important Banach space of all! This is what lets a good number
of other spaces be Banach.

5.4.2 Continuous bounded functions

Definition 5.3

Let (X, d) be a metric space. Then Cb(X) is the space of all continuous and bounded
functions f : X → R, endowed with the supremum norm ∥ · ∥∞.

Theorem 5.5

Cb(X) is Banach.

Proof. Apparently done in lecture. □

Corollary 5.1

C(K) equipped with ∥ · ∥∞ is a Banach space for any compact K.
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5.4.3 k-Continuously Differentiable Functions with Bounded Derivatives

Definition 5.4

Let Ω ⊆ RN be open. Then Ck
b (Ω) is the space of all f : Ω→ R for which the derivative

∂αf
∂xα exists and is continuous and bounded for all multi-indices α with |α| ≤ k. The
norm is given by

∥f∥Ck
b (Ω) := ∥f∥∞ +

∑
1≤|α|≤k

∥∥∥∥∂αf∂xα

∥∥∥∥
∞
.

Theorem 5.6

Ck
b (Ω) is Banach.

Proof. Let’s assume N = 1 so that this is easier to read. It’s not much harder in higher
dimensions.

Let {fn}n be Cauchy in ∥ · ∥Ck
b (Ω). Then {fn}n is Cauchy in ∥ · ∥∞, and hence converges

uniformly to a continuous function f ∈ Cb(Ω). But {f ′
n}n is also Cauchy in ∥ · ∥∞, so

f ′
n → g ∈ Cb(X) uniformly. We’re done if we can show that f ′ = g, since the argument for
higher-order derivatives will follow inductively.

Here’s one way. Take an x0 ∈ Ω. We’ll show that f ′(x0) exists and is g(x0). Take some
y0 < x0 such that (y0, x0) ⊆ Ω. Note that∫ x

y0

gn(t) dt = fn(x)

for all x ∈ (y0, x0]. Now send n→ +∞. Then fn(x)→ f(x), and since gn → g uniformly, a
domination argument shows that

∫ x

y0
gn(t) dt→

∫ x

y0
g(t) dt. Hence∫ x

y0

g(t) dt = f(x).

This holds for all x ∈ (y0, x0], so we may differentiate to obtain g(x) = f ′(x) for all such x,
and particularly this holds at x = x0 as needed. □

The idea of the proof immediately implies the following corollary.

Corollary 5.2

Ck([a, b]) equipped with the ∥ · ∥Ck
b ([a,b])

norm is Banach for any compact interval [a, b].
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5.4.4 Hölder Continuous Functions

Theorem 5.7

Let Ω ⊆ RN be open. Then C0,α(Ω), equipped with the norm

∥f∥C0,α(Ω) := sup
x,y∈Ω,x ̸=y

|f(x)− f(y)|
∥x− y∥α + sup

Ω
|f |,

is a Banach space.

Proof. Let {fn}n be Cauchy in this norm. Then it is Cauchy in ∥ · ∥∞, and since fn is
bounded (why?), it converges in ∥ · ∥∞ to some function f ∈ Cb(Ω). It’s easy to show that
f ∈ C0,α(Ω): For any x, y ∈ Ω we may write

|f(x)− f(y)|
∥x− y∥α = lim

n→∞

|f(x)− f(y)|
∥x− y∥α ≤ lim sup

n→∞
∥fn∥C0,α(Ω) <∞.

It remains to show that fn → f in ∥ · ∥C0,α(Ω). Fix ε > 0. Then we may find Nε such that
for m,n ≥ Nε we have

|(fm − fn)(x)− (fm − fn)(y)|
∥x− y∥α ≤ ∥fm − fn∥C0,α(Ω) < ε.

Send m→ +∞ and get
|(f − fn)(x)− (f − fn)(y)|

∥x− y∥α ≤ ε

for all n ≥ Nε. Thus “fn → f in the C0,α(Ω) seminorm” and also fn → f in ∥ · ∥∞, so that
fn → f in C0,α(Ω) as desired.

□
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6 ODE Existence and Uniqueness

Recall that an IVP looks something like{
x′(t) = f(t, x(t))

x(t0) = x0
,

for

• a function f : I × U → RN , U ⊆ RN ,

• a “start time” t0 ∈ I, and

• an initial data value x0 ∈ U .

We solve for a differentiable function u : I → U .

When we study ODEs, two questions arise:

1. Does a solution exist? (If not, does it exist locally?)

2. Is the solution unique?

Other questions we tend to ask include how the solution changes when we perturb the initial
data, or how “stable” certain solutions are. But we won’t study these questions here.

6.1 Existence

When do solutions exist? As it turns out, pretty much always, at least at a local level.
All you need is a very mild condition: continuity.

Theorem 6.1 (Local Existence)

Let I = [t0, t0 + T0] be a compact interval, and let f : I × BN(x0, r) → RN be
continuous. Then the IVP {

x′(t) = f(t, x(t))

x(t0) = x0

admits a solution x : [t0, t0 + δ]→ BN(x0, r) for some small δ > 0.
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Corollary 6.1 (Peano Existence Theorem)

Let W ⊆ R×RN be open, let f : W → RN be continuous, and let (t0, x0) ∈ W . Then
the IVP {

x′(t) = f(t, x(t))

x(t0) = x0

admits a solution x : (t0 − δ, t0 + δ)→ RN for some small δ > 0.

So, for instance, there definitely exists a solution to the IVPx′(t) = log

(
42 + cos(x(t))sin t

tt+
√

x(t)

)
x(1) = 1

.

But we don’t know how long this solution exists for around 1, and I definitely don’t know
what the solution actually is. Moreover, we thus far do not know if the solution in question
is the only solution, i.e. we are unsure if we have uniqueness.

If you actually want to apply the local existence theorem carefully, we can take like
I = [1, 2] and r = 0.5. The function

f(t, z) := log

(
42 +

cos(z)sin t

tt +
√
z

)
is definitely defined (and continuous) over all (t, z) ∈ [1, 2]× [0.5, 1.5].

How far can the solution go? Who knows, but at least we know that we can extend it
“as far as it can possibly go”.

Theorem 6.2 (Maximal Solutions)

Suppose f : I × U → RN is a function, and x′(t) = f(t, x(t)) over some subinterval
J ⊆ I. Then we may always extend x to a maximal solution. That is, we may extend
x to exist over an interval J ′ with J ⊆ J ′ ⊆ I such that no larger interval can support
a solution satisfying x′(t) = f(t, x(t)).

6.2 Uniqueness

We will prove in lecture the following theorem.
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Theorem 6.3 (Cauchy-Lipschitz-Picard-Lindelöf Uniqueness Theorem)

Let f : [t0, t0 + T0]×BN(x0, r)→ RN be continuous and Lipschitz in space. That is,

∥f(t, z1)− f(t, z2)∥ ≤ ∥z1 − z2∥

for a constant L > 0. Then for all T > 0 small enough, there is a unique solution
x : [t0, t0 + T ]→ RN to the IVP{

x′(t) = f(t, x(t))

x(t0) = x0
.

To be specific, it is sufficient for T to be small enough such that MT ≤ r and LT < 1,
where M = max

[t0,t0+T0]×BN (x0,r)
|f |.

Remark 1: The condition that MT ≤ r is highly necessary. It exists to make sure that x(t)
stays in BN(x0, r) for T amount of time. If we think of M as the “maximum possible speed
of x(t)”, then it logically follows that MT is the “maximum distance x(t) can travel away
from x0”, so it makes quite a bit of sense to have the constraint that MT ≤ r.

Remark 2: We can remove the “LT < 1”. It turns out that MT ≤ r is sufficient! Once we
prove the theorem in lecture, consider this strengthening of the theorem as a fun exercise.

Remark 3: This is not the most general uniqueness theorem. Google the “Osgood Uniqueness
Theorem” if you are interested in one generalization that I know of.

This theorem implies via an easy-ish argument that “Lipschitz-ness” will always prevent
two different solutions from existing.

Corollary 6.2 (Locally Lipschitz is a Uniqueness Property)

Let f : I × U → RN be locally Lipschitz in space (i.e. f is continuous and for every
(t, x) ∈ I ×U we can find δ > 0 and ε > 0 small enough such that f is Lipschitz when
restricted to (t − δ, t + δ) × (x − ε, x + ε)). Let (t0, x0) ∈ I × U . Suppose that x1, x2
are solutions to the IVP {

x′(t) = f(t, x(t))

x(t0) = x0

over some time interval J ⊆ I containing t0. Then x1 and x2 are actually the same
solution.
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6.3 Global Existence and Uniqueness

The results thus far have tended to be more local in nature. It is good to have results
that entail something about existence and uniqueness on the whole of a time interval, rather
than just some of it. Here’s the classic one.

Theorem 6.4 (Linear Growth Implies Global Existence)

Let f : I×RN → RN be continuous and locally Lipschitz in space. Let (t0, x0) ∈ I×RN .
Suppose that there are continuous functions α, β : I → [0,∞) such that

∥f(t, z)∥ ≤ α(t) + β(t)∥z∥.

Then there exists a solution u : I → RN to the IVP{
x′(t) = f(t, x(t))

x(t0) = x0
.

Remark: The solution must also be unique by the previous corollary.

6.4 Worked Examples

Example 6.1: Consider the IVP{
x′(t) = arctan(x(t))− 1

t

x
(
4
π

)
= 1

.

1. Prove that the IVP admits a unique global solution on (0,∞).

2. Does the limit limt→0+ x(t) exist in R? What is it?

Solution. Let f(t, z) = arctan(z)− 1
t
. Observe that f is C1, and hence locally Lipschitz in

space. Moreover, for (t, z) ∈ (0,∞)× R, we may write

|f(t, z)| ≤ 1

t
+ | arctan z| ≤ 1

t
+ |z|.

It follows by the global existence theorem that there exists a global and unique solution x(t)
over (0,∞).

Since we may bound arctan by π/2, we may note that

x′(t) ≤ π

2
− 1

t
, (∗)
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and so x′(t) < 0 for 0 < t < 2/π. In particular x(t) is monotone over (0, 2/π) and so the
limit limx→0+ x(t) must exist. To compute the limit, we may integrate (∗) over the interval
(t, 4/π) to find that

1− x(t) ≤ π

2

(
4

π
− t
)
+ log 4− log t.

A bit of rearrangement lets us deduce that limx→0+ x(t) = +∞. ■

Example 6.2: Consider the IVP{
x′(t) = 1

x(t)−t2

x(0) = x0
,

where x0 > 0.

1. Prove that the IVP admits a unique solution in a neighborhood of t = 0.

2. Prove that the solution exists over all of [0,∞).

3. Compute
lim

t→+∞
x(t),

where x(t) is the unique solution.

Solution. Let f(t, z) = 1
z−t2

. Note that f blows up when z = t2, so there is little hope for
an application of the linear growth criterion.

We’ll have to use bare hands instead. Let us first establish local existence and uniqueness.
Draw a small rectangle [−a, a] × [x0 − δ, x0 + δ] around (0, x0) that does not intersect the
graph of t2 (i.e. contains no points of the form (t, t2)). This is possible because x0 > 0. Note
that f is well-defined over [−τ, τ ]× [x0 − a, x0 + a], and moreover∣∣∣∣∂f∂z (t, z)

∣∣∣∣ = ∣∣∣∣ −1
(z − t2)2

∣∣∣∣ ≤ 1

min
[−τ,τ ]×[x0−a,x0+a]

|z − t2| <∞,

so f is Lipschitz in space. By Cauchy-Lipschitz it follows that there exists a unique solution
in a small interval [−T, T ].

In particular the solution x is unique over [0, T ]. Now use the maximal existence theorem
to extend x to [0, τ) where τ is as large as possible. Since f is locally Lipschitz in space, this
extension is unique.

Assume for contradiction that τ <∞.

We claim that we may extend x to [0, τ ]. We need only show that the limit limt→τ− x(t)
exists in R. If it does not, then since x(t) > 0 over [0, τ ] (why?), we have that x′(t) =
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1
x(t)−t2

> 0 over [0, τ ]. So x is increasing, and if the limit does not exist in R then the

only possible reason is because limx→τ− x(t) = +∞. It follows that limx→τ− x
′(t) = 0. In

particular |x′(t)| ≤ 1 for all t ∈ [τ − δ, τ ] for δ > 0 small enough, and so

|x(t)− x(τ − δ)| ≤
∫ t

τ−δ

|x′(s)| ds ≤
∫ τ

τ−δ

1 ds = δ <∞.

Sending t→ τ−, the LHS blows up, contradiction. (Why can we apply the FTC? )

So x may be extended to [0, τ ]. Now the motto is to “restart the IVP at time t = τ”.
That is, consider the IVP {

y′(t) = 1
y(t)−t2

y(τ) = x(τ)
.

By mimicking our arguments in the beginning (i.e. draw a small rectangle around (τ, x(τ))),
there must exist a unique solution y over a small interval [τ, τ + ε). But now

x̃(t) :=

{
x(t), 0 ≤ t ≤ τ

y(t), τ < t < τ + ε

is a solution to the original IVP that extends x, contradicting maximiality of τ .

We conclude that τ = +∞. That is, there exists a global unique solution over [0,∞).

We have x(t) > t2 for all time (why?), so limt→+∞ x(t) = +∞. ■

Example 6.3: Consider the IVP{
x′(t) = ex(t)

2 − et2

x(0) = 0
.

1. Find the maximal interval (α, β) of existence.

2. Study the asymptotics of x(t) as t→ β−.

Solution. For any interval 0 ∈ I ⊆ R we have that f(t, z) := ez
2 − et2 is C1 and bounded

over I. Particularly we may write

∥f(t, z)∥ ≤ ∥f∥Cb(I×R) + 0 · ∥z∥.
So by the global existence theorem we have a solution on I. But I was arbitrary, so we can
argue that there exists a unique global solution on R (why?).

For asymptotics, we claim that limx→+∞ x(t) + t = 0. I have no proof of this that’s nice
so uh have fun. The Italian book Leoni gave me suggests showing that x(t) < −

√
t2 − 1 or

something.

■
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7 More ODEs

7.1 Linear ODEs

Recall that an ODE that looks like

u′(t) + a(t)u(t) = b(t)

is called linear. I must emphasize that these are very solvable, and that you should keep
the trick in mind! That is, the trick of using the product rule to make things simpler. If we

multiply by e
∫ t
t0

a(s) ds
to get

u′(t)e
∫ t
t0

a(s) ds
+ a(t)u(t)e

∫ t
t0

a(s) ds
= b(t)e

∫ t
t0

a(s) ds
,

then this is just
d

dt

(
u(t)e

∫ t
t0

a(s) ds
)
= b(t)e

∫ t
t0

a(s) ds
,

which we may solve by integration.

This is a sort of sly trick that you should always keep an eye out for. Here is an example
that I had to solve for my blog a while back:

1 + u′(x)2 = −2u(x)u′′(x)

This is not a linear ODE whatsoever, but that does not mean that we can use a similar idea.
If we multiply by u(x), we get

u′(x) + u′(x)3 = −2u(x)u′(x)u′′(x).

If you stare really hard, this reduces to

d

dx

[
u(x) + u(x)u′(x)2

]
= 0,

so we need only solve u(x) + u(x)u′(x)2 = c for some constant c ∈ R, and this is separable.
Speaking of which...

7.2 Separable ODEs

Consider the IVP {
dy
dx

= xy

y(1) = 2.
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One way people “solve” this is to “separate and integrate”. People write

1

y
dy = x dx

and then integrate to get

log |y| = 1

2
x2 + C.

People then conclude that
y = ±e 1

2
x2+C

for a constant C. This makes me a bit nervous for obvious reasons, so let’s do it right.

Definition 7.1

An ODE
u′(t) = f(u(t))g(t)

is called separable.

Observations:

• If f(z) has a root at z = a, then u(t) = a is a solution to the ODE.

• Let t0, u0 ∈ R, I an interval containing t0, J an interval containing u0. If f : J → R is
Lipschitz and g : I → R, then there exists a unique solution to the IVP{

u′(t) = f(u(t))g(t)

u(t0) = u0

locally near t0.

• If f(z) has no roots, we may find an explicit solution to the ODE by dividing by f(u(t))
and applying the chain rule.

Example 7.1: Solve the IVP {
u′(t) = tu(t)

u(t0) = u0.

using the “separate and integrate” method, but without being bad.

Solution. Of course, one way to solve this is to argue that the solution exists globally and
uniquely, and then use whatever methods you want to “guess” the correct solution, which
can be verified to work by plugging it in. This approach is completely rigorous. But just for
kicks, how would we show the unique existence of a solution (and calculate it) without such
technology?
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Let us first presume that u0 ̸= 0. ■

Example 7.2: Solve the IVP {
u′(t) = 1+2t

cos(u(t))

u(0) = π
.

Solution. Start by studying f(t, z) := 1+2t
cos z

. Since u(0) = π, we take the domain of f to be
R × (π/2, 3π/2) (note that we should be careful to dodge the zeroes of cosine). Over this
interval, f is certainly C1, so any solution we find must be unique over the time interval that
is exists over. In particular, the maximal solution has to be unique. Let’s find it.

If u(t) is the maximal solution, then we may multiply of cos(u(t)) to get

cos(u(t))u′(t) = 1 + 2t.

We can write this as
d

dt
[sin(u(t))] = 1 + 2t.

Thus we may apply the FTC and u(0) = π to deduce that

sin(u(t))− sin(u(0)) = sin(u(t)) = t+ t2.

Unfortunately we are now in dangerous territory. We cannot always take the arcsin of both
sides. We now need to do some rigorous reasoning.

First, we have reasoned thus far that if u(t) is the maximal solution, and its domain
is I, then it must satisfy sin(u(t)) = t + t2 for all t ∈ I. But since −1 ≤ sin(u(t)) ≤ 1,
we must have t + t2 ∈ [−1, 1], so t ∈ [−φ, φ−1] where φ is the golden ratio. In particular,
I ⊆ [−φ, φ−1]. The point of this reasoning is to make a deduction that lets us take inverses
without the dread of things possibly being undefined.

Now let’s actually solve. Remember that the domain of f is (π/2, 3π/2). That is, we
know that u(t) must live inside (π/2, 3π/2) at all times. Inside this interval, the unique z for
which sin z = a (where a ∈ [−1.1]) is given by π − arcsin(a) (draw a picture!). So u(t) must

satisfy u(t) = π − arcsin(t+ t2) , which holds for all t ∈ (−φ, φ−1), and we cannot extend

this to either endpoint, so this must be the maximum interval of existence. ■
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7.3 Homogenous ODEs

Definition 7.2

An ODE
x′(t) = f(t, x(t))

is homogenous if f is a function of x(t)/t. That is, we may write f(t, x(t)) = g(x(t)/t)
for a function f .

Observations:

• Why is it called homogenous? It is because if we have a solution to a homogenous ODE,
then it is still a solution if we “zoom in”. To be more precise, if x′(t) = g(x(t)/t), then
by taking x1(t) := kx(t/k), we have x′1(t) = x′(t/k) = g(x(t/k)/(t/k)) = g(x1(t)).

• To solve homogenous ODEs, you use the substitution y(t) = x(t)/t. Then the ODE
becomes

y′(t) =
x′(t)t− x(t)

t2
=

1

t
x′(t)− 1

t
· x(t)
t

=
1

t
[g(y(t))− y(t)] .

This is separable.

Example 7.3: The ODE

x′(t) =
x(t)2 + t2

x(t)t

is homogenous, as it can be massaged into the form

x′(t) =
(x(t)/t)2 + 1

x(t)/t
.

(insert motivation for “homogenous” and what it means)
To solve it, we substitute y(t) = x(t)/t. Then

y′(t) =

y(t)2+1
y(t)

− y(t)
t

=
1

t · y(t) .

Hence

2y(t)y′(t) =
2

t
y(t)2 − y(t0)2 = 2 log |t/t0|

x(t)2 = x(t0)
2t2/t20 + 2 log |t/t0|t2,

and which branch we choose will depend on t0.
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7.4 Solution by Series

Oftentimes, when we cannot find a nice closed-form solution to an ODE, we settle for a
solution in the form of a series.

Theorem 7.1

Let fn : I → R be a sequence of differentiable functions. If
∑∞

n=1 fn converges over I,
and the series

∑∞
n=1 f

′
n converges uniformly, then

d

dx

∞∑
n=1

fn(x) =
∞∑
n=1

f ′
n(x).

Proof. Next recitation. □

Example 7.4: Solve the problem
u′′(t) + t2u′(t)− 4tu(t) = 0

u(0) = 1

u′(0) = 0

by series.

Solution. First we find a “formal” solution. Consider the formal power series
∑∞

n=0 ant
n.

We want such a series that “satisfies” the problem. We are given that a0 = 1 and a1 = 0.
Hence we must solve

∞∑
n=2

n(n− 1)ant
n−2 +

∞∑
n=1

nant
n+1 −

∞∑
n=0

4ant
n+1 = 0.

Reindexing,

∞∑
n=2

n(n− 1)ant
n−2 +

∞∑
n=4

(n− 3)an−3t
n−2 −

∞∑
n=3

4an−3t
n−2 = 0.

So n(n − 1)an + (n − 7)an−3 = 0 for n ≥ 4, 6a3 − 4a0 = 0, and 2a2 = 0. This gives a2 = 0
and a3 = 2/3, which is enough to solve inductively for all coefficients.

To show that the resulting series works, we use the above theorem. ■
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8 Even More ODEs

8.1 Swapping Limit and Derivative

Theorem 8.1

Let U ⊆ RN be open, bounded, and convex. Let fn : U → R be a sequence of
differentiable functions. If

1. ∇fn → g uniformly for some g = (g1, g2, · · · gN), and

2. fn(x0) converges for some x0 ∈ U ,

then fn → f uniformly with ∂f
∂xi

= gi(= limn→∞
∂fn
∂xi

).

Proof. Step 1: We first show that fn converges uniformly. To do this, we need only show
that it is Cauchy in ∥ · ∥∞.

Take x ∈ U . We’ll draw the line between x and x0, take a derivative along it so that the
gradient pops out, and then play with it.

By the MVT (applied to the function t 7→ (fm − fn)((1 − t)x0 + tx)), we have that
(fm − fn)(x) − (fm − fn)(x0) = ∇(fm − fn)(y) · (x − x0) for some y on the line segment
between x0 and x. Note that y depends on m,n, and x. We rearrange this to get

|(fm − fn)(x)| ≤ ∥∇(fm − fn)(y)∥ · ∥x− x0∥+ |(fm − fn)(x0)|,

where we have applied Cauchy-Schwarz. Now, loosely speaking, note that:

• Since ∇fn converges uniformly, we know that ∥∇(fm − fn)(y)∥ → 0 uniformly.

• ∥x− x0∥ is uniformly bounded because U is bounded.

• |(fm − fn)(x0)| → 0 “uniformly” since there is no dependence on x.

So |(fm − fn)(x)| → 0 uniformly as m,n → +∞. This is morally the end of this step, but
let’s make this more precise. Fix ε > 0.

• Since ∇fn → g converges uniformly, there exists N1 such that ∥∇fn − g∥ < ε over U
for all n ≥ N1. In particular, if m,n ≥ N1 and we take the point y from before, then

∥∇(fm − fn)(y)∥ ≤ ∥∇fm(y)− g(y)∥+ ∥g(y)−∇fn(y)∥ < 2ε.

• ∥x− x0∥ ≤ diam(U) <∞
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• Since {fn(x0)}n converges, it is Cauchy in R, so there is some N2 for which |fm(x0)−
fn(x0)| < ε for all m,n ≥ N2.

Thus, if m,n ≥ max(N1, N2), then

|(fm − fn)(x)| ≤ (2ε)(diam(U)) + ε,

which is enough.

We have hence shown that fn → f uniformly for some f .

Step 2: Now let’s show that f is differentiable, and that its gradient is ∇f = g. To do this,
it is sufficient to show that

lim
y→x

|f(y)− f(x)− g(x) · (y − x)|
∥y − x∥ = 0.

For fixed x, y, n, let us write:

|f(y)− f(x)− g(x) · (y − x)|
∥y − x∥ ≤ |(f(y)− f(x))− (fn(y)− fn(x))|

∥y − x∥

+
|fn(y)− fn(x)−∇fn(x) · (y − x)|

∥y − x∥

+
|∇fn(x) · (y − x)− g(x) · (y − x)|

∥y − x∥ .

The second term will be killed when we send y → x, so we just need to pick a good value
of n that forces the first and third terms to be small for all y ∈ U .

For the first term, we again write

|(fm − fn)(y)− (fm − fn)(x)| ≤ ∥∇(fm − fn)(z)∥ · ∥y − x∥
for some z on the line segment between x and y. Since ∇fn converges uniformly, we know
that ∥∇(fm − fn)(z)∥ < ε for all z, provided that m,n are large enough. So

|(fm − fn)(y)− (fm − fn)(x)| ≤ ε∥y − x∥
for all m,n large enough. Sending m→ +∞, we end up with |(f − fn)(y)− (f − fn)(x)| ≤
ε∥y − x∥ for all large enough n, which is what we needed.

For the third term, we just use Cauchy-Schwarz to bound it by ∥∇fn(x) − g(x)∥. Of
course, this is bounded by ε for all large enough n.

Thus, we can pick n such that both |(f −fn)(y)− (f −fn)(x)| ≤ ε∥y−x∥ and ∥∇fn(x)−
g(x)∥ < ε hold. The triple triangle-inequality then reduces to

|f(y)− f(x)− g(x) · (y − x)|
∥y − x∥ ≤ ε+

|fn(y)− fn(x)−∇fn(x) · (y − x)|
∥y − x∥ + ε,
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which holds for all y ∈ U . Sending y → x gives

lim sup
y→x

|f(y)− f(x)− g(x) · (y − x)|
∥y − x∥ ≤ lim sup

y→x

|fn(y)− fn(x)−∇fn(x) · (y − x)|
∥y − x∥ +2ε = 2ε.

But ε > 0 was arbitrary, so actually the limit exists and is 0. □

Corollary 8.1 (Swapping Derivative and Limit)

Suppose U ⊆ RN is open and let fn : U → R be a sequence of differentiable functions.
Suppose that:

• fn converges pointwise.

• ∇fn converges locally uniformly. (That is, for every x ∈ U we have that ∇fn
converges uniformly over B(x, r) for some r > 0.)

Then
∇
(
lim
n→∞

fn(x)
)
= lim

n→∞
∇fn(x).

Proof. Fix x ∈ U . Find r > 0 for which ∇fn converges uniformly over B(x, r), and call
the limit g. B(x, r) is open, bounded, and convex, and moreover fn(x) converges. Thus by
the previous theorem we know that fn converges to some f uniformly with ∇f = g. That
is,

∇
(
lim
n→∞

fn(y)
)
= ∇f(y) = g(y) = lim

n→∞
∇fn(y)

for all y ∈ B(x, r). In particular this holds for y = x. □

Corollary 8.2 (Swapping Derivative and Sum)

Suppose U ⊆ RN is open and let fn : U → R be a sequence of differentiable functions.
Suppose that:

•
∑∞

n=1 fn converges.

•
∑∞

n=1∇fn converges locally uniformly.

Then

∇
∞∑
n=1

fn =
∞∑
n=1

∇fn(x).

Proof. Immediate. □

Now we’re ready to have some fun. Let us consider the problem
u′′(t) = u(t)

u(0) = 1

u′(0) = 0

.
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We will solve this in several different ways.

8.2 Solution By Series

I didn’t quite get to this methodology last time, so let’s just get it over with here. We
first find a formal solution. That is, we attempt to find

u(t) =
∞∑
n=0

ant
n

which solves the problem, where we interpret this as a formal power series rather than a
function. For this to make sense, we have to define its formal derivative

u′(t) :=
∞∑
n=1

nant
n−1.

Then its formal second-order derivative would be

u′′(t) :=
∞∑
n=2

n(n− 1)ant
n−2.

The condition that u′′ = u implies that an−2 = n(n−1)an for all n ≥ 2. The initial conditions
u(0) = 1 and u′(0) = 0 give us the base cases a0 = 1 and a1 = 0. From this we conclude
that an = 0 for all odd n, and an = 1

n!
for all even n. Thus our formal solution is

u(t) =
∞∑
n=0

t2n

(2n)!
.

Now let’s interpret this as a function. Factorials kill powers, so this certainly converges, and
hence this is well-defined.

We claim that in fact, the sum of the derivatives,
∑∞

n=1
t2n−1

(2n−1)!
, converges locally uniformly

over R. Fixing t0 ∈ R, we observe that for all t ∈ (t0 − 42, t0 + 42), we have∣∣∣∣∣
∞∑

n=m

t2n−1

(2n− 1)!

∣∣∣∣∣ ≤
∞∑

n=m

max(t0 − 42, t0 + 42)2n−1

(2n− 1)!

m→+∞−−−−→ 0,

proving our claim. Thus we may swap the sum with a derivative to write

u′(t) =
∞∑
n=1

t2n−1

(2n− 1)!
.
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This again converges pointwise, and
∑∞

n=1
t2n−2

(2n−2)!
converges locally uniformly by similar

reasoning. So we may swap again to get

u′′(t) =
∞∑
n=1

t2n−2

(2n− 2)!
= u(t).

Thus (after briefly checking the initial conditions juuuuusst to be sureee) we see that this
indeed satisfies the problem.

8.3 Reduction to first order

Great, we found a solution. But we should be at least a little sad because we haven’t
been able to apply those cool existence and uniqueness theorems to feel safe about what
we’re doing. Could there be another weird solution to the problem that isn’t analytic?

It turns out that our existence and uniqueness theory can definitely be applied to higher-
order ODEs! Let v := (u, u′) : I → R2. Then v satisfies

v′ =

[
u′

u′′

]
=

[
u′

u

]
=

[
0 1
1 0

] [
u
u′

]
= Av,

where A =

[
0 1
1 0

]
. This is a first order ODE! We have reduced to solving the IVP

{
v′ = Av

v(0) = (1, 0)
.

We can apply all those lovely theorems! The function f : x ∈ R2 7→ Ax ∈ R2 is certainly
continuous, so a local solution clearly exists. It is also clearly C1, so it is locally Lipschitz
in space (...note that there is no dependence on time!), so solutions are unique... heck, for
this particular ODE, we can even observe that

∥f(x)∥ ≤ λ∥x∥,

where λ is the operator norm of A! (i.e. it is sup∥x∥=1 ∥Ax∥, which is finite by compactness.)
So the unique solution exists globally on R. Cool! Well, we kinda already knew that from
the last section, but it’s nice that we can figure this out without doing any computations.

In general, we can always reduce higher-order ODEs to first-order ODEs in this way. The
“sacrifice” is that the dimension of the range increases. A bit more explicitly, if we are faced
with a problem of the form{

u(k) = f(t, u, u′, · · · , u(k−1))

(u(t0), u
′(t0), · · · , u(k−1)(t0)) = (u0, u1, · · · , uk−1)

,
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then by letting v = (u, u′, · · · , u(k−1)), we have that

v′ = (u′, u′′, · · · , u(k)) = g(t, v),

where
g(t, z0, z1, · · · , zk−1) := (z1, z2, · · · , zk−1, f(t, z0, z1, · · · , zk−1)).

So we may apply our first-order ODE theory to the problem{
v′ = g(t, v)

v(t0) = v0

where v0 := (u0, u1, · · · , uk−1).

8.4 Wacky Matrix Exponentials

You might be wondering if we can actually solve the “reduction” v′ = Av as-is. Well, since

the solution to

{
f ′ = af

f(0) = f0
is f(t) = etaf0, surely the solution to

{
v′ = Av

v(0) = (1, 0) =: v0
is

v(t) = etAv0... right?

It turns out that this is completely legit. If you haven’t seen matrix exponentials before,
we define

eM :=
∞∑
n=0

Mn

n!

for square matrices M , which converges (and hence is well-defined) because factorials trump
exponentials. In this case, I’m making the bold claim that

v(t) =
∞∑
n=0

tn

n!
Anv0.

To see that this is legit, we can show as before that
∑∞

n=1
tn−1

(n−1)!
An converges locally uniformly

(in each of its “four components”... view the entries of An as dumb constants!), and so we
can pass a derivative through to get

v′(t) =
∞∑
n=1

tn−1

(n− 1)!
Anv0 =

∞∑
n=0

tn

n!
An+1v0 = Av(t).

Nice. Now we recover the solution u to the original ODE by taking the first component of
v. Whatever that is. (In this case the powers of An are easy to compute, so recovering the
series using this method is quite doable.)
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8.5 u′′ = f(u)

Let f : I → R be continuous. Then ODEs of the form

u′′ = f(u)

may be solved as follows. First multiply each side by u′ to obtain

u′′u′ = f(u)u′.

This magically simplifies as
d

dt

1

2
|u′|2 = d

dt
F (u),

where F : I → R is a primitive for f . We may then deduce that

1

2
|u′(t)|2 = F (u) + C

for a constant C. This is separable!

Let’s use this methodology to try and tackle our problem. From u′′ = u, we multiply by
u′ to get u′′u′ = u′u, and so

d

dt
|u′|2 = d

dt
|u|2.

Integrating over (0, t) gives
u′(t)2 − 0 = u(t)2 − 1.

So
u′(t)√
u(t)2 − 1

= 1,

and hence by integrating again we obtain

t =

∫ t

0

u′(s)√
u(s)2 − 1

ds =

∫ u(t)

u(0)

1√
x2 − 1

dx.

This integral indeed has a closed-form, but taking its inverse might be painful.

8.6 How normal people solve u′′ = u

Generally speaking, for ODEs of the form u(k) +
∑k−1

n=0 anu
(n−1) for constants {an}, you

form the characteristic polynomial p(x) = xk+
∑k−1

n=0 anu
(n) and look at its roots λ0, · · · , λk−1.

If they are all distinct, then solutions are given by

u(t) =
k−1∑
j=0

cje
λjt
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for constants {cj}. Here I use the index j because the exponentials may be complex. If roots
are repeated then the situation is dicier. But fortunately you need not memorize this theory
to survive on an island, since it can be readily derived.

One particularly nice way is to view differentiation as a linear operator D. For instance,
for u′′ = u, we may write this (D2 − I)u = 0, where I is the identity, and this may be
“factored” as (D + I)(D − I)u = 0. Letting v = (D − I)u = u′ − u, we have that 0 =
(D + I)v = v′ + v. So we may solve for v and then solve for u. This is not handwavy - it is
perfectly rigorous! You can convince yourself that the decoupled problem

v = u′ − u
v′ + v = 0

u(0) = 1

u′(0) = 0

is equivalent to the original problem, and that the lens of using D and “factoring” is merely
an algebraic trick that lets us see this more easily.

Anyway, the solution to v′+v = 0 is clearly v(t) = c1e
−t, where we can compute c1 = −1,

and so now we need only solve u′− u = −e−t. This is also easy, and the solution is given by
u(t) = c2e

t − e−t

2
, where we find that c2 =

1
2
. Thus u(t) = cosh t.

If you haven’t seen it before, try playing with an ODE such as u′′ − 2u′ + u = 0 or
u′′ + u = 0 using this methodology and seeing what happens.

8.7 Bernoulli Differential Equations

A Bernoulli ODE is of the form

u′(t) + a(t)u(t) = b(t)u(t)α,

where α ̸∈ {0, 1}.

To solve ODEs of this form, we make the substitution v(t) = u(t)1−α. Then

v′(t) = (1− α)u(t)−αu′(t) = (1− α)
[
b(t)− a(t)u(t)1−α

]
= (1− α) [b(t)− a(t)v(t)] .

So v′(t) + (1− α)a(t)v(t) = (1− α)b(t)
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Example 8.1: If u(t) is the percentage of people with covid, and if we make the
reasonable assumption that u′(t) is proportional to u(t)(1−u(t)), then the percentage
of people with covid is given by

u′(t) = ku(t)(1− u(t))

where k determines the rate of propagation. Of course, this is separable, but we can
also view this as a Bernoulli ODE. By making the substitution v(t) = 1/u(t), we
see that

v′(t) =
−u′(t)
u(t)2

= k

(
1− 1

u(t)

)
= k − kv(t).

Now this is easy to solve.

v′(t) + kv(t) = k

v′(t)ekt + kv(t)ekt = kekt

d

dt

[
v(t)ekt

]
= kekt

v(t)ekt − u−1
0 = ekt − 1

v(t) = 1− e−kt +
e−kt

u0

u(t) =
ektu0

u0(ekt − 1) + 1
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9 Compact Embeddings and Separability

9.1 Ascoli-Arzela and Precompactness

Recall Ascoli-Arzela.

Theorem 9.1 (Ascoli-Arzela)

Let (X, d) be separable and let F ⊆ Cb(X) be (1) bounded when evaluated at every
x ∈ X, and (2) equicontinuous. Then for every fn ∈ F there exists a subsequence
fnk
∈ F such that fnk

→ f ∈ Cb(X) uniformly.

A bunch of people often state Ascoli-Arzela in the lens of precompactness.

Definition 9.1 (Precompact)

Let (X, ∥ · ∥X) be a normed space. We say that a subset E ⊆ X is precompact (...or
relatively compact) if E is compact.

Note that E ⊆ X is precompact iff for every xn ∈ E there is a subsequence xnk
which

converges in X.

Proof. ( =⇒ ) xn ∈ E and E is sequentially compact, so there is a subsequence xnk
which

has a limit in E ⊆ X.

(⇐= ) If xn ∈ E, then for every xn there is some yn,m ∈ B(xn, 1/m)∩E. By hypothesis,
there is a subsequence ynk,nk

of {yn,n}n for which ynk,nk
→ x ∈ X. Evidently x ∈ E. It

remains to prove that xnk
→ x. But

∥xnk
− x∥ ≤ ∥xnk

− ynk,nk
∥+ ∥ynk,nk

− x∥ ≤ 1

nk

+ ∥ynk,nk
− x∥ k→+∞−−−−→ 0.

□

Indeed, this equivalence shows that Ascoli-Arzela is a statement about precompactness:
For separable X, bounded subsets of Cb(X) that are equicontinuous are precompact.
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9.2 Embeddings

Definition 9.2 (Continuous Embedding)

Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be Banach spaces with X ⊆ Y . Then:

• The inclusion map from X into Y is simply the map i : X → Y that sends
elements of X to themselves, i.e. i : x 7→ x.

• We say thatX is continuously embedded into Y if the inclusion map is continuous,
and we write X ↪→ Y .

Notes:

• X ↪→ Y iff there exists a constant C such that ∥x∥Y ≤ C∥x∥X for all x ∈ X.

• What this means is that the inclusion preserves convergence. If a sequence in X
converges with respect to ∥ · ∥X , then it must converge with respect to ∥ · ∥Y .

• “By going from X to Y , it becomes easier to converge.”

Definition 9.3 (Compact Embedding)

Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be Banach spaces with X ⊆ Y . We say that X is
compactly embedded into Y if X ↪→ Y and every ∥ · ∥X-bounded sequence in X has a
subsequence ∥ · ∥Y -converging in Y . We say “X ↪→ Y is compact” or write X ⊂⊂ Y .

Note that if X ↪→ Y , then X ↪→ Y is compact iff any bounded subset of (X, ∥ · ∥X) is
precompact in (Y, ∥ · ∥Y ).

A bunch of the spaces that we have studied / will study are related by embeddings.

For this first example, recall that C0,α(Ω) is endowed with the norm

∥u∥C0,α(Ω) := ∥u∥∞ + |u|C0,α(Ω),

where

|u|C0,α(Ω) := sup
x ̸=y

|u(x)− u(y)|
∥x− y∥α .

Theorem 9.2

Let Ω ⊆ RN be open and bounded, and let 0 < α < β ≤ 1. Then the inclusion
C0,β(Ω) ↪→ C0,α(Ω) is compact.

Proof. We first show that C0,β(Ω) ↪→ C0,α(Ω), i.e. the inclusion map from C0,β(Ω) to
C0,α(Ω) is continuous.
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Take u ∈ C0,β(Ω). Then for any x, y ∈ Ω we may write

∥x− y∥β = ∥x− y∥α · ∥x− y∥β−α ≤ C∥x− y∥α,

where we may take C = (diamΩ)β−α. Now

|u(x)− u(y)|
∥x− y∥α ≤ C · |u(x)− u(y)|∥x− y∥β ≤ C|u|C0,β(Ω),

and taking the sup gives |u|C0,α(Ω) ≤ C|u|C0,β(Ω). Thus

∥u∥C0,α(Ω) = ∥u∥∞+|u|C0,α(Ω) ≤ max(1, C)∥u∥∞+max(1, C)|u|C0,β(Ω) ≤ max(1, C)∥u∥C0,β(Ω),

proving that C0,β(Ω) ↪→ C0,α(Ω).

Now we may show that C0,β(Ω) ↪→ C0,α(Ω) is compact. Take any sequence un ∈ C0,β(Ω)
bounded in ∥ · ∥C0,β(Ω). Then {un}n is equicontinuous and uniformly bounded, so by Ascoli-
Arzela there exists a subsequence unk

such that unk
→ u ∈ C(Ω) uniformly. In fact, we

may note for later that u ∈ C0,β(Ω). This is because |unk
(x)− unk

(y)| ≤ M∥x− y∥β for all
k, where M is an upper bound on ∥unk

∥C0,β(Ω), and we may send k → ∞ and use simple
pointwise convergence of unk

→ u.

We know that ∥unk
−u∥∞ → 0, so it remains to show that |unk

−u|C0,α → 0. For x, y ∈ Ω,
we may write

|(unk
− u)(x)− (unk

− u)(y)|
∥x− y∥α

=

( |(unk
− u)(x)− (unk

− u)(y)|
∥x− y∥β

)α/β

|(unk
− u)(x)− (unk

− u)(y)|1−α/β

≤ |unk
− u|α/β

C0,β(Ω)
(∥unk

− u∥∞ + ∥unk
− u∥∞)1−α/β

≤
(
|unk
|C0,β(Ω) + |u|C0,β(Ω)

)α/β
(2∥unk

− u∥∞)1−α/β .

Taking the sup gives

|unk
− u|C0,α ≤

(
|unk
|C0,β(Ω) + |u|C0,β(Ω)

)α/β
(2∥unk

− u∥∞)1−α/β .

Since ∥unk
− u∥∞ → 0, {|unk

|C0,β(Ω)}k is bounded, and |u|C0,β(Ω) < ∞ (since we proved
u ∈ C0,β(Ω)), we may conclude. □

As a corollary, we have the continuous inclusions

C0,1(Ω) ↪→ C0,α(Ω) ↪→ C(Ω),

all of which are compact.

Why do we care about such compactness results? One reason is that the ability to extract
convergent subsequence is crucial for the existence of minimizers.
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Example 9.1: Let us consider the problem

min
{
|u|C0,1([0,2023]) : u ∈ C0,1([0, 2023]), u(0) = 0, u(2023) = 1

}
.

Does this minimum exist? Note that the set

E := {u ∈ C0,1([0, 2023]), u(0) = 0, u(2023) = 1}

is nonempty (take u(x) = x/2023) and bounded from below by 0, so E has an
infimum I := inf E ≥ 0. Take a sequence un ∈ E for which |un|C0,1([0,2023]) → I.
Since convergent sequences are bounded, we have that |un|C0,1([0,2023]) is bounded
from above by a constant M > 0.
But now it follows that {un}n is bounded in ∥ · ∥C0,1([0,2023]) (...why is it bounded in
∥ · ∥∞?), and since C0,1([0, 2023]) ↪→ C([0, 2023]) is compact, it follows that there
exists a subsequence unk

converging uniformly to some u. Now since

|unk
(x)− unk

(y)| ≤ |unk
|C0,1[0,2023] · ∥x− y∥,

we may send k → +∞ to get |u(x) − u(y)| ≤ I∥x − y∥. Hence u ∈ C0,1([0, 2023])
with |u|C0,1([0,2023]) ≤ I. But u(0) = 0 and u(2023) = 1, so u ∈ E and hence
|u|C0,1([0,2023]) ≥ I. We conclude that |u|C0,1([0,2023]) = I. That is, the minimum
exists!

9.3 Separability

Theorem 9.3

Let (X, d) be separable. Then (E, d) is separable for any E ⊆ X.

Proof. Let {xn}n ∈ X be a countable dense set. Then for each m,
⋃∞

n=1B(xn, 1/m) covers
E. For each n,m for which B(xn, 1/m) intersects E, pick a point yn,m ∈ B(xn, 1/m), and
let I be the collection of indices (n,m) for which we have chosen a yn,m. Then {yn,m}(n,m)∈I
is countable. Moreover, for any y ∈ E and any ε > 0, we may pick 1/m < ε/2 and find
an xn ∈ B(y, 1/m). But then y ∈ B(xn, 1/m), hence B(xn, 1/m) intersects E, so there is
yn,m ∈ B(xn, 1/m) ∩ E. Now d(y, yn,m) ≤ d(y, xn) + d(xn, yn,m) ≤ 2/m < ε. □

What are examples of separable spaces?

• RN and any finite-dimensional normed space

• Any compact metric space

• Lp(E) for 1 ≤ p <∞
• C(K) for K ⊆ RN compact
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What are examples of NOT separable spaces?

• L∞(E)

• Cb(RN)

• BPV (I)

To see that Cb(RN) is not separable, suppose otherwise, and let {gn}n ∈ Cb(RN) be
dense. Take a bump φ ∈ Cc([−1/2, 1/2]N) for which φ(0) = 1 and ∥φ∥∞ = 1. Then consider

f(x) =
∞∑
n=1

anφ(x− ne1).

For each n, we may choose an ∈ {−1, 1} for which |gn(n) − an| ≥ 1. Then we must have
∥f − gn∥∞ ≥ 1 for all n.

58



Thomas Lam 21-236 Recitation 10 3/28/2022

10 Lebesgue Spaces

10.1 A Generalization of Dominated Convergence

There is a more powerful version of the LDCT, called Vitali’s Theorem. To set it up, we
need two useful definitions. We begin with equi-integrability.

Definition 10.1 (Equi-integrability)

A family F ⊆ L1(X,M, µ) is equi-integrable if the following two conditions hold:

• (“Equi-tightness”) For all ε > 0 we can find a “big” set E ∈M with µ(E) <∞
such that ∫

X\E
|f | dµ < ε

for all f ∈ F .

• (“Equi-AC”) For all ε > 0 we can find δ > 0 such that∫
F

|f | dµ < ε

for all F ∈M with µ(F ) < δ, and for all f ∈ F .

Notes:

• When (X,M, µ) is a finite measure space, we may throw out the equi-tightness condi-
tion.

• Equi-tightness may be thought of as the condition “the family F doesn’t explode
horizontally”.

• Equi-AC may be thought of as the condition “the family F doesn’t explode vertically”.

To get our feet wet, let’s prove something lame.

Lemma 10.1

Let f ∈ L1(X,M, µ) (i.e. f is integrable). Then {f} is equi-integrable.

Proof. You know already that the AC condition holds for a single f . So we need only
show that we have tightness. Let us assume first that f ≥ 0. We may take a sequence of
simple functions φn ↗ f , and pick n large enough so that

∫
X
f − φn dµ < ε. φn, by virtue
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of being a simple function, may be expressed as

φn =
m∑
k=1

ck · 1Ek

for ck > 0 and Ek ∈ M. Since f is integrable, so is φn, and thus µ(Ek) < ∞ for each k.
Take F =

⋃m
k=1Ek. We claim this works. Indeed,∫

X\F
f dµ =

∫
X\F

f − φn dµ+

∫
X\F

φn dµ < ε+ 0.

□

This result, although a bit boring, has some corollaries.

Corollary 10.1

Any finite subset {f1, f2, · · · , fn} ∈ L1(X,M, µ) is equi-integrable.

Corollary 10.2

Let F ⊆ L1(X,M, µ). Suppose there is some g ∈ L1(X,M, µ) for which that |f | ≤ |g|
for all f ∈ F . Then F is equi-integrable.

The next definition we need is a notion of function convergence in measure spaces, called
convergence in measure.

Definition 10.2 (Convergence in Measure)

Let (X,M, µ) be a measure space. Let {fn}n, f : X → R be M-measurable. We say

fn converges to f in measure, and we write fn
µ−→ f , if for all ε > 0 we have that

lim
n→∞

µ({|fn − f | ≥ ε}) = 0.

Notes:

• This is the analogue of probability’s convergence in probability.

• In a finite measure space, fn → f a.e. implies fn
µ−→ f . But this is not true in

general!

• fn → f in Lp(X) implies fn
µ−→ f .

• For more relationships, see https://www.johndcook.com/blog/modes_of_convergence/
which does a great job of summarizing everything that’s true. (Don’t worry about the
“AU”.)
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We are now ready to state Vitali’s Theorem.

Theorem 10.1 (Vitali Convergence Theorem)

Let {fn}n, f ∈ Lp(X,M, µ). Then

• {|fn|p}n is equi-integrable and

• fn
µ−→ f

if and only if fn → f in Lp(X,M, µ).

Proof. Homework. □

Let’s show that Vitali is stronger than the LDCT by proving that if fn → f a.e. and the
fn are dominated by some integrable g, then {fn}n is equi-integrable and fn

µ−→ f .

Since |fn| ≤ g with g integrable, Corollary 10.2 shows that the family {|fn|}n is equi-
integrable. Moreover, since fn → f a.e., we have by LDCT (lol) that fn → f in L1. This
implies convergence in measure.

It follows that Vitali is applicable in more situations than the LDCT. If you are trying
to apply an LDCT-like argument but it’s not quite working, consider using Vitali.

10.2 Other Useful Tools

From Remark 144 in the lecture notes:

Theorem 10.2 (Lp implies a.e. up to a subsequence)

If fn → f in Lp(X), then there is a subsequence fnk
for which fnk

→ f a.e.

From Theorem 151 in the lecture notes:

Theorem 10.3 (“Continuity of the Integral”)

Let f ∈ Lp(RN). Then for all ε > 0 there exists δ > 0 such that∫
RN

|f(x+ h)− f(x)|p dx < ε

for all ∥h∥ < δ.
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10.3 Some Problems

Example 10.1 (CMU Measure and Integration Basic Exam): Suppose
I = [0, 1], fn : I → R is Lebesgue measurable for all n ∈ N, and∫

I

|fn|2 dx ≤ 5 ∀n ∈ N.

Suppose moreover that fn(x)→ 0 as n→∞ for every x ∈ I.

(a) Does it necessarily follow that lim
n→∞

∫
I

|fn|2 dx = 0?

(b) Does it necessarily follow that lim
n→∞

∫
I

|fn| dx = 0?

Solution. (a) is false. For example, we can take fn =
√
n · 1(0,1/n).

(b) is true. Since [0, 1] has finite measure, the convergence fn → 0 a.e. implies that
fn → 0 in measure. We claim that {|fn|}n is equi-integrable. Again, since [0, 1] has finite
measure, it is sufficient to prove that it is “equi-AC”.

Fix ε > 0. Then if δ = ε2/5, then for any F with L1(F ) < δ we have that∫
F

|fn| dx ≤
(∫

F

|fn|2 dx
)1/2(∫

F

12 dx

)1/2

≤
√
5 ·
√
L1(F ) <

√
5δ = ε.

Now by Vitali we have that fn → 0 in L1([0, 1]), as needed. ■

Example 10.2 (U of Washington Analysis Qualification Exam): Let
1 < p < ∞. Let fn ∈ Lp([0, 1]) be a sequence bounded in Lp([0, 1]). Suppose that
f ∈ L1([0, 1]) and fn → f in L1([0, 1]).

(a) Show that f ∈ Lp([0, 1]).

(b) True or false: We must have fn → f in Lp([0, 1]).

Solution. Let M = supn

∫ 1

0
|fn|p dx. Since fn → f in L1([0, 1]), we may extract a subse-

quence fnk
which converges to f a.e., so that∫ 1

0

|f |p dx ≤
∫ 1

0

lim inf
k→∞

|fnk
|p dx ≤ lim inf

k→∞

∫ 1

0

|fnk
|p dx ≤M.

It is not true in general that fn → f in Lp([0, 1]). Take f = 0 and fn = n1/p · 1(0,1/n). ■
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Example 10.3 (CMU Measure and Integration Basic Exam):

(a) Show that there are measure spaces for which
⋂

1≤p<∞ Lp ̸= L∞.

(b) Fix f ∈ ⋂1≤p<∞ Lp. Prove that the map p 7→ p log ∥f∥Lp is convex on [1,∞).

Solution.
(a) Consider (N, 2N, µ) with µ({n}) := 1

n!
. Consider f(n) = n. Then for every 1 ≤ p <∞

we have ∫
N
|f |p dµ =

∞∑
n=1

npµ({n}) =
∞∑
n=1

np

n!
<∞

so f ∈ Lp(N, 2N, µ). But we do not have f ∈ L∞(N, 2N, µ). This is because for every M > 0,
we have that {|f | > M} has positive µ-measure, so ∥f∥L∞(N,2N,µ) = +∞.

(b) Let p, q ∈ [1,∞) and let θ ∈ (0, 1). Then we would like to show that

log

∫
X

|f |(1−θ)p+θq dµ
?

≤ (1− θ) log
∫
X

|f |p dµ+ θ log

∫
X

|f |q dµ,

or ∫
X

|f |(1−θ)p+θq dµ
?

≤
(∫

X

|f |p dµ
)1−θ (∫

X

|f |q dµ
)θ

.

Fortunately this is immediate by Hölder with exponents 1
1−θ

and 1
θ
. ■

Example 10.4 (UCLA Analysis Qualification Exam): Let 1 < p <∞. Let
f ∈ Lp(RN) and g ∈ Lq(RN) where q is the Hölder conjugate of p. Prove that the
convolution

(f ∗ g)(x) :=
∫
RN

f(x− y)g(y) dy

is continuous, and that moreover lim∥x∥→∞(f ∗ g)(x) = 0.

Solution. Fix x1, x2 ∈ RN . Then

|(f ∗ g)(x1)− (f ∗ g)(x2)| ≤
∫
RN

|f(x1 − y)− f(x2 − y)| · |g(y)| dy

≤
(∫

RN

|f(x1 − y)− f(x2 − y)|p dy
)1/p

∥g∥Lq(RN ).

Fix ε > 0. Get a corresponding δ > 0 from continuity of the integral. Then if ∥x1−x2∥ < δ,
we have that

|(f ∗ g)(x1)− (f ∗ g)(x2)| ≤ ε1/p∥g∥Lq(RN ),

which is enough to deduce continuity of f ∗ g. (The argument shows that it is, in fact,
uniformly continuous!)
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Now we show that (f ∗ g) vanishes at infinity. Fix ε > 0. Find Rf and Rg such that∫
RN\B(0,Rf )

|f |p dx < ε and
∫
RN\B(0,Rg)

|g|p dx < ε. Take R = max(R1, R2). Now, for all

x ∈ RN with ∥x∥ ≥ 2R, we have that

|(f ∗ g)(x)| ≤
∫
RN

|f(x− y)g(y)| dy

≤
∫
RN\B(0,R)

|f(x− y)g(y)| dy +
∫
RN\B(x,R)

|f(x− y)g(y)| dy

≤
(∫

RN\B(0,R)

|g|q dy
)1/q

∥f∥Lp(RN ) +

(∫
RN\B(0,R)

|f |p dy
)1/p

∥g∥Lq(RN )

≤ ε1/q∥f∥Lp(RN ) + ε1/p∥g∥Lq(RN ),

which is enough to say that lim∥x∥→∞(f ∗ g)(x) = 0. ■

Example 10.5: Show that if (X,M, µ) is a finite measure space and f : X → R
is measurable, then

lim
p→∞
∥f∥Lp(X) = ∥f∥L∞(X).

Solution.

Let M = ∥f∥L∞(X). On one hand, since f ≤M a.e., we have that(∫
X

|f |p dµ
)1/p

≤
(∫

X

Mpµ

)1/p

=Mµ(X)1/p,

so sending p→ +∞ gives
lim sup
p→∞

∥f∥Lp(X) ≤M.

On the other hand, if we take a small ε > 0, then E := {|f | > M − ε} has positive measure,
so we may write(∫

X

|f |p dµ
)1/p

≥
(∫

E

|f |p dµ
)1/p

≥
(∫

E

(M − ε)p dµ
)1/p

= (M − ε)µ(E)1/p,

so sending p→ +∞ gives
lim inf
p→∞

∥f∥Lp(X) ≥M − ε.

Now send ε→ 0+. ■

Remark: Supposedly this is still true if instead of X being a finite measure space, you knew
only that f ∈ Lp(X) for some 1 ≤ p <∞.
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11 Helly’s Selection Theorem and Sobolev Spaces

11.1 Helly’s Selection Theorem

A major theme in this cousre has been compactness : The art of taking a sequence that is
bounded in one sense and extracting a subsequence that converges in another sense. Helly’s
Selection Theorem is a prime example of a compactness result.

Theorem 11.1 (Helly’s Selection Theorem)

Let I be an interval and fn : I → R. Suppose that

• {VarI fn}n is bounded, and

• there is some x0 ∈ I for which {fn(x0)}n is bounded.

Then there exists a subsequence fnk
such that fnk

→ f pointwise, for some f : I → R.

Proof. A bunch of proofs rely on first making a nice assumption on what we have to work
with. This is one of them. Remember that any g ∈ BPV (I) can be written as the difference
between two monotone functions? What this means is that it essentially suffices to assume
that each fn is monotone.

Step 1. We first reduce to the case in which each fn is increasing. Indeed, suppose that we
have proven the theorem under the assumption that the sequence of functions is increasing.
If fn is not necessarily increasing, we may write it as a difference fn := vn− (vn− fn), where
vn is the indefinite pointwise variation starting at some fixed point (say, z0) in I. That is,

vn(x) :=

{
Var[z0,x] fn, x ≥ z0

−Var[x,z0] fn, x < z0

We know classically that vn and vn − fn are both increasing. So now we just need to
justify applying the theorem for increasing sequences of functions to each of them. Indeed:

• VarI vn = supI vn − infI vn = VarI fn, which is bounded, and you can argue that
|vn(x0)| ≤ |fn(x0)|+VarI fn, which is again bounded.

• VarI(vn−fn) ≤ VarI vn+VarI fn which is bounded by the previous bullet, and vn(x0)+
fn(x0) is also bounded by the previous bullet.

Great. From the first bullet, we may extract a subsequence vnk
of vn which converges

pointwise in I. From the second bullet, we may extract a subsequence vnkj
−fnkj

of vnk
−fnk
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which converges pointwise in I. Since vnkj
also converges pointwise in I, we conclude that

fnkj
= vnkj

+ (fnkj
− vnkj

) converges pointwise in I.

Thus it indeed is sufficient the prove the statement for when fn is increasing. Assume
that this is the case.

Step 2: Our goal in this step is to get convergence in a dense set. Let E := {qi}∞i=1 enumerate
all rationals in I.

Observe that {fn(x)}n is a bounded sequence for all x. (To be specific, if VarI fn ≤ M
and |fn(x0)| ≤M for all n, then |fn(x)| ≤ |fn(x0)|+ |fn(x)− fn(x0)| ≤M +VarI fn ≤ 2M .)
Thus we may do some silly diagonalization where we repeatedly apply Bolzano-Weierstrass
to extract subsequences forever.

• Extract a subsequence {f1,n}n of {fn}n for which f1,n(q1) converges to a value that we
shall call g(q1).

• Extract a subsequence {f2,n}n of {f1,n}n for which f2,n(q2) converges to a value that
we shall call g(q2).

• Extract a subsequence {f3,n}n of {f2,n}n for which f3,n(q3) converges to a value that
we shall call g(q3).

• Extract a subsequence {f4,n}n of {f3,n}n for which f4,n(q4) converges to a value that
we shall call g(q4).

• ...

In this way, we define a function g : E → R, and moreover the diagonalization {fn,n}n
converges to g pointwise in {qi : i ∈ N}.

Step 2.5: In this step, we categorize the remaining points in I \E into two categories to be
dealt with separately.

Note that g is increasing. Indeed, take qi, qj ∈ E with qi < qj. Then fn,n(qi) ≤ fn,n(qj)
because fn,n is increasing. Send n→ +∞ to get g(qi) ≤ g(qj).

It follows that g is “continuous on I” except at countably many (possibly irrational) points
x1, x2, · · · ,∈ I. Rigorously speaking, pick some increasing extension of g to the whole of I.
Call the extension g̃. (It doesn’t matter which one we choose. Take e.g. g̃(x) := supqn<x g(qn)
for x ̸∈ E, g̃(x) := g(x) for x ∈ E.) We may classify the remaining points we need to deal
with (i.e. those points in I \ E) into two categories: The points F := {xi}∞i=1 at which g̃ is
discontinuous, and all other points I \ E \ F , where g̃ is continuous.
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Step 3: In this step, we find a further subsequence which converges in the discontinuity set
F (as well as E).

This is “easy”. Note that F is countable, so we may repeat the wacky diagonalization
trick where we extract a million subsequences of fn,n to end up with a subsequence fn,n,n
which converges pointwise on both E and F . As before, for x ∈ F we let g(x) be the
pointwise limit of fn,n,n(x). (This could disagree with g̃!) This indexing notation is cursed
so let fnk

be the subsequence we have extracted so far, converging on E ∪ F .

Step 4: Finally we show that the subsequence we obtained actually converges everywhere
else in I.

All the other points are points of continuity of g̃. We claim that fnk
(x0) converges for

every x0 where g̃ is continuous, and that moreover the limit is g̃(x0).

To see this, we take a point x0 where g̃ is continuous, and fix ε > 0 (wow shocking). By
continuity of g̃ at x0, we may find some rational qi slightly less than x0 for which g̃(x0) −
g̃(qi) < ε, and find some rational qj slightly greater than x0 for which g̃(qj)− g̃(x0) < ε.

Since fnk
is increasing, we have that

fnk
(qi) ≤ fnk

(x0) ≤ fnk
(qj).

Sending k → +∞, and using the fact that fnk
converges pointwise to g̃ on the rationals, we

get that

g̃(x0)− ε ≤ g̃(qi) ≤ lim inf
k→∞

fnk
(x0) ≤ lim sup

k→∞
fnk

(x0) ≤ g̃(qj) ≤ g̃(x0) + ε.

Sending ε→ 0+, we conclude that the limit limk→∞ fnk
(x0) exists and is g̃(x0).

Thus, if we define g(x) := g̃(x) for x ∈ I \E \ F , we finally have that fnk
→ g pointwise

everywhere in I. □

It happens to be the case that f ∈ BPV (I), and that moreover we can bound its pointwise
variation.

Theorem 11.2

If fn → f pointwise, then
Var
I
f ≤ lim inf

n→∞
Var
I
fn.

Proof. Exercise. □
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11.2 Sobolev Spaces

11.2.1 Motivations

One way to motivate Sobolev spaces is that it is the “right” space to do differentiation
on Lp functions. Imagine, if you will, a space of functions S1,p(Ω) which consists of all C1(Ω)

functions u for which both
∫
Ω
|u|p dx and

∫
Ω

∣∣∣ ∂u∂xi

∣∣∣p dx are finite for all i.

Previously, when studying spaces such as C1(Ω), we desired a preservation of continuity
which is why the appropriate norm was ∥ · ∥∞, which promoted uniform convergence to
enforce the “right” structure. Here though, in this weird space S1,p(Ω), we are motivated
purely by wanting to differentiate in Lp spaces, and so the right structure and convergence
that we want this S1,p(Ω) space to exhibit is that of Lp. To wit, the “correct” norm would
have to be

∥u∥S1,p(Ω) := ∥u∥Lp(Ω) +
N∑
i=1

∥∂iu∥Lp(Ω).

Indeed this makes S1,p(Ω) into a normed space with the desired structure we want: Conver-
gence in this space means Lp(Ω) convergence of both the function and its derivatives. All
seems well and good. However, it is not complete!

This means that S1,p(Ω) sucks to work with. It’s basically useless and it should feel bad.
A nice analogue of this issue is Q: It’s a space that feels like it should be nice, but it’s not
complete so trying to do analysis on Q is dumb. The solution, then, is to pass to a larger
space which is actually complete. In the case of Q this was R. In the case of S1,p(Ω), we
weaken the strong derivatives to weak derivatives so that we obtain the larger, complete
space, W 1,p(Ω).

As for why we are motivated to define weak derivatives in the way they are, I will
for now simply say that “passing to integration by parts” is the most “natural” way to
“generalize” differentiation, since the introduction of an integral “smooths out negligible
gaps in differentiability”. I will also note that it also makes good sense that we do not try
to directly differentiate Lp functions, because they are not functions in the traditional sense;
they can only be integrated, so it is logical to use integrals to try and define some kind of
derivative for Lp functions. If you are unsatisfied, there are also some deeper motivations in
the theory of distributions that I will not discuss here. At least, for now.
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11.2.2 Weak Derivatives

Lemma 11.1 (Fundamental Lemma of the Calculus of Variations)

Let Ω ⊆ RN be open and 1 ≤ p ≤ ∞. Suppose that f ∈ Lp(Ω) such that∫
Ω

fφ dx = 0 ∀φ ∈ C∞
c (Ω).

Then f = 0.

Proof. Motivation: Lebesgue points are nice. They are the only points at which an Lp

“function” would have a “most natural” or “canonical” value.

Associate f with one of its representatives. Take a Lebesgue point x0 ∈ Ω of f and take
φ ∈ C∞

c (B(0, 1)) to be a mollifier. Then the mollification fε of f converges to f(x0) as
ε→ 0. That is,

f(x0) = lim
ε→0+

∫
B(x0,ε)

f(x)φε(x0 − x) dx.

But
∫
B(x0,ε)

f(x)φε(x0 − x) dx =
∫
Ω
f(x)φε(x0 − x) dx = 0 since x 7→ φε(x0 − x) is a smooth

function with compact support. So f(x0) = 0.

But f is locally integrable (Hint: Hölder!) and so almost every point is a Lebesgue point.
So f = 0 almost everywhere. □

One consequence of this lemma is that weak derivatives are unique. Indeed, suppose that
some f ∈ Lp(Ω) admits two weak derivatives g1 and g2. Then∫

Ω

g1φdx = −
∫
Ω

f
∂φ

∂xi
dx =

∫
Ω

g2φdx

for all φ ∈ C∞
c (Ω). Subtracting gives∫

Ω

(g1 − g2)φdx = 0

for all such φ, which then entail that g1 − g2 = 0.

Now let us look at some examples of weak derivatives.
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Example 11.1: Let I = (−1, 1) and let f(x) = |x|. Then we may view f as a
function in Lp(I).
f has a weak derivative: It is sgnx. To prove this, we must show that∫ 1

−1

|x|φ′(x) dx = −
∫ 1

−1

(sgnx)φ(x) dx

for all φ ∈ C∞
c (−1, 1). Indeed, we may write∫ 1

−1

|x|φ′(x) dx =

∫ 0

−1

−xφ′(x) dx+

∫ 1

0

xφ′(x) dx

=

[
0 · φ(0)− (−1) · φ(−1)−

∫ 0

−1

−φ(x) dx
]

+

[
1 · φ(1)− 0 · φ(0)−

∫ 1

0

φ(x) dx

]
= −

∫ 1

−1

(sgnx)φ(x) dx.

Since f ∈ Lp(I) and f ′ ∈ Lp(I) for all 1 ≤ p ≤ ∞, we may say f ∈ W 1,p(I).

Example 11.2: Let f : I → R be AC where I ⊆ R. Then f has a weak derivative,
and the weak derivative is the strong derivative f ′. Indeed, f being AC is enough
for the integration by parts to hold, so this is unsurprising.

Example 11.3: In fact, in higher dimensions, most “nice” functions have a weak
derivative. For example, it is true that f ∈ C1(B(0, 1)) admits first-order weak
derivatives, and so any f ∈ C1(B(0, 1)) will be in the Sobolev space W 1,p(B(0, 1)).
Moreover the “strong” derivatives agree with the weak derivatives.

Example 11.4: The function f(x) =

{
−1, −1 < x < 0

1, 0 ≤ x < 1
does not have a weak

derivative. You will show something like this on the homework.

The connection between regularity and being Sobolev will be made concrete by the Ab-
solute Continuity on Lines (ACL) condition.

Sobolev functions need not be bounded.
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Example 11.5: Let us consider f(x) := 1
∥x∥ε , and suppose 0 < ε < 1, 1 ≤ p < N,N

are such that (1 + ε)p < N . Then f ∈ W 1,p(B(0, 1)). Indeed, we have∫
B(0,1)

|f |p dx =

∫
B(0,1)

1

∥x∥εp dx <∞

because εp < N , so that f ∈ Lp(B(0, 1)), and∫
B(0,1)

∣∣∣∣ ∂f∂xi
∣∣∣∣p dx = C1

∫
B(0,1)

∣∣∣∣ 1

∥x∥1+ε
· xi∥x∥

∣∣∣∣p dx
≤ C1

∫
B(0,1)

1

∥x∥p+εp
dx,

which is finite when p+ εp < N .

Example 11.6: Let f ∈ W 1,p(Ω) and φ ∈ C∞
c (Ω). Then fφ ∈ W 1,p(Ω).

Indeed, we claim that the weak derivative of fφ in the xi direction is ∂f
∂xi
φ + f ∂φ

∂xi
.

This is because for all ψ ∈ C∞
c (Ω) we have∫

Ω

(
∂f

∂xi
φ+ f

∂φ

∂xi

)
ψ dx =

∫
Ω

∂f

∂xi
φψ dx+

∫
Ω

f
∂φ

∂xi
ψ dx

= −
∫
Ω

f(
∂φ

∂xi
ψ + φ

∂ψ

∂xi
) dx+

∫
Ω

f
∂φ

∂xi
ψ dx

= −
∫
Ω

fφ
∂ψ

∂xi
dx.

It’s easy to see that fφ ∈ Lp(Ω) and ∂f
∂xi
φ+ f ∂φ

∂xi
∈ Lp(Ω), thus fφ ∈ W 1,p(Ω).

Remark: Using the exact same proof, we have that if f ∈ W 1,p(Ω) ∩ L∞(Ω) and φ ∈
C∞

b (Ω), then fφ ∈ W 1,p(Ω) and its weak derivative is what you think it is.
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12 More on Sobolev Spaces

12.1 Compactness

Theorem 12.1 (Rellich-Kondrachov for Kindergarteners)

Let Ω := (a, b) ⊆ R be a bounded open interval. Then W 1,p(Ω) ↪→ Lp(Ω) is compact.

Proof. Obviously ∥u∥Lp(Ω) ≤ ∥u∥W 1,p(Ω) for all u ∈ W 1,p(Ω), so W 1,p(Ω) ↪→ Lp(Ω). Now
take a bounded sequence in un ∈ W 1,p(Ω). Then un is bounded in Lp(Ω) and u′n is bounded
in Lp(Ω). Find some large M so that ∥un∥Lp(Ω) ≤M and ∥u′n∥Lp(Ω) ≤M for all n.

Let ũn be the AC representative of un. Observe that

Var
Ω
ũn =

∫
Ω

|ũ′n| dx ≤ ∥un∥Lp(Ω)L1(Ω)1/p
′ ≤ML1(Ω)1/p

′

for all n, thus VarΩ ũn is bounded.

Moreover we claim that {ũn}n is uniformly bounded (in the ∥ · ∥∞ sense). If not, then
for every K we can find n and x ∈ Ω for which |ũn(x)| ≥ K. Since the variation of ũn is
bounded by ML1(Ω)1/p

′
, it follows that |ũn(y)| ≥ K −ML1(Ω)1/p

′
for all y ∈ Ω. So

Mp ≥
∫
Ω

|un|p dy ≥ L1(Ω)
(
K −ML1(Ω)1/p

′
)p
.

This holds for all large enough K by assumption, which is clearly impossible. Contradiction.

Therefore, by Helly’s Selection Theorem we may extract a subsequence ũnk
which con-

verges pointwise to some function ũ. But {ũnk
}k is uniformly bounded in ∥ · ∥∞ so by a

domination argument,
∫
Ω
|ũnk
− ũ|p dx→ 0. In particular u ∈ Lp(Ω) where ũ is a represen-

tative of u. So unk
→ u in Lp(Ω). □

12.2 Product Rule and Chain Rule

Theorem 12.2 (Product Rule)

Let 1 ≤ p <∞. Suppose f, g ∈ W 1,p(Ω) ∩ L∞(Ω). Then fg ∈ W 1,p(Ω) ∩ L∞(Ω) and

∂(fg)

∂xi
=
∂f

∂xi
g + f

∂g

∂xi

(almost everywhere).
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There may be a way to do this well by using the following lemma, but I couldn’t quite
get the convergence to work.

Lemma 12.1

For f ∈ W 1,p(Ω), we have that fε → f in W 1,p
loc (Ω). That is, we have W

1,p convergence
on compact subsets of Ω.

Anyways, in the end it’s easy to show the product rule by simply using the ACL condition.

Proof. To use the ACL condition on fg, we first need to verify that fg ∈ Lp(Ω). This is
easy, since

∥fg∥Lp(Ω) ≤ ∥g∥L∞(Ω)∥f∥Lp(Ω) <∞.
With that settled, we now must show that on almost every slice, the product fg is AC with
strong derivative in Lp.

We start by extracting good slices.

Since f, g ∈ W 1,p(Ω), we have by the ACL condition applied to both f and g that on
almost every slice Ωx′

i
, we have that f(·, x′i) and g(·, x′i) are AC (and moreover ∂f

∂xi
, ∂g
∂xi
∈

Lp(Ω)). These slices are good, but I want them to be even better! Particularly, I want to
make sure they are nice and bounded on the slices, for later.

We get this additional niceness by a Fubini argument. Since f ∈ L∞(Ω), we have that
there is some M <∞ for which |f |, |g| ≤M almost everywhere. If we let E = {|f | ≤M} ⊆
Ω, then LN(Ω \ E) = 0. Thus

0 =

∫
Ω\E

1 dx =

∫
x′
i∈RN−1

∫
xi∈(Ω\E)x′

i

1 dxi dx
′
i ≥ 0,

which can only be possible if ∫
xi∈(Ω\E)x′

i

1 dx = 0

for almost every x′i ∈ RN−1. For all such x′i, we have |f | ≤ M for L1-a.e. xi ∈ Ωx′
i
, by

definition of E! Repeating the argument for g, we have for almost every x′i that |f |, |g| ≤M
L1-a.e. in Ωx′

i
.

Bringing these two excursions together: We have for almost every x′i ∈ RN−1 that f(·, x′i)
and g(·, x′i) are AC, and |f |, |g| ≤ M for L1-a.e. xi ∈ (Ω \ E)x′

i
. In particular, f(·, x′i) and

g(·, x′i) are bounded by M on this slice (since they is AC)!

For every such nice x′i slice, we claim that f(·, x′i)g(·, x′i) is AC. Indeed, both f(·, x′i) and
g(·, x′i) are AC and bounded, so a recitation from a very long time ago lets us conclude that
the product is AC.

73



Thomas Lam 21-236 Recitation 12 4/11/2022

It follows that we may apply the AC chain rule to get

∂(fg)

∂xi
(·, x′i) =

∂f

∂xi
(·, x′i)g(·, x′i) + f(·, x′i)

∂g

∂xi
(·, x′i) (∗)

almost everywhere in the slice.

Since we have the formula (∗) for a.e. x′i ∈ RN−1, we actually have it a.e. on the whole
space. That is,

∂(fg)

∂xi
=
∂f

∂xi
gc+ f

∂g

∂xi

almost everywhere. The last thing we need to do is show that this strong derivative, ∂(fg)
∂xi

,
is in Lp(Ω). This follows because∫

Ω

∣∣∣∣∂(fg)∂xi

∣∣∣∣p dx =

∫
Ω

∣∣∣∣ ∂f∂xi gc+ f
∂g

∂xi

∣∣∣∣p dx ≤ C

∫
Ω

∣∣∣∣ ∂f∂xi
∣∣∣∣p |g|p dx+ C

∫
Ω

|f |p
∣∣∣∣ ∂g∂xi

∣∣∣∣p dx
≤ CMp

∫
Ω

∣∣∣∣ ∂f∂xi
∣∣∣∣p dx+ CMp

∣∣∣∣ ∂g∂xi
∣∣∣∣p <∞.

To wrap up: We have found that fg ∈ Lp(Ω) is AC on a.e. slice, and its strong derivative
is in Lp(Ω). Thus by the ACL condition, fg ∈ W 1,p(Ω), and in fact fg ∈ W 1,p(Ω) ∩ L∞(Ω)
since clearly |fg| ≤M2 a.e., and the product rule holds as we found in (∗). □

Theorem 12.3 (Chain Rule)

Let Ω ⊆ RN be an open, bounded, and let 1 ≤ p <∞. Suppose f : R→ R is Lipschitz
and u ∈ W 1,p(Ω). Then f(u) ∈ W 1,p(Ω) and ∂(f◦u)

∂xi
(x) = f ′(ũ(x)) ∂u

∂xi
(x) a.e., where ũ

is the absolutely continuous representative of u, and we take f ′(ũ(x)) ∂u
∂xi

(x) to be 0

whenever ∂u
∂xi

(x).

This follows basically immediately from the chain rule for AC functions:

Theorem 12.4 (AC Chain Rule)

Let I, J ⊆ R be intervals and let f : J → R and g : I → J such that f, g, f ◦ g are
differentiable a.e.. If f has the Lusin N property, then

(f ◦ g)′(x) = f ′(g(x))g′(x)

a.e., where f ′(g(x))g′(x) is taken to be zero whenever g′(x) = 0.

Let us prove the chain rule for Sobolev spaces.

Proof. Fix x′i ∈ RN−1 for which t 7→ u(x′i, t) is AC with (strong) derivative in Lp(Ωx′
i
).

Then in particular, u(x′i, ·) is strongly differentiable a.e., and moreover f is Lipschitz so f is
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differentiable a.e., satisfies the Lusin N property, and f(u) is AC (and hence differentiable
a.e.). It follows by the AC chain rule that

d

dt
f(u(x′i, t)) = f ′(ũ(x′i, t))

∂u

∂xi
(x′i, t)

for a.e. t. It remains to prove that f(u) ∈ Lp(Ω) and f ′(ũ) ∂u
∂xi
∈ Lp(Ω).

For the fisrt, fix x0 ∈ Ω and write∫
Ω

|f(u)|p dx ≤ Cp

∫
Ω

|f(ũ(x))− f(ũ(x0))|p dx+ |f(ũ(x0))|p dx

≤ CpL
p

∫
Ω

|ũ(x)− ũ(x0)|p dx+ LN(Ω)|f(ũ(x0))|p

≤ C2
pL

p

∫
Ω

|ũ(x)|p dx+ C2
pL

p

∫
Ω

|ũ(x0)|p dx+ LN(Ω)|f(ũ(x0))|p

≤ C2
pL

p

∫
Ω

|ũ(x)|p dx+ C2
pL

pLN(Ω)|ũ(x0)|p + LN(Ω)|f(ũ(x0))|p <∞.

For the second, we simply use f ′ ≤ L and use the fact that ∂u
∂xi
∈ Lp(Ω). □
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13 Embeddings of Sobolev Spaces

13.1 Trivial Embeddings

Theorem 13.1

• For E finite measure, we have Lp(E) ↪→ Lq(E) for q < p. That is, higher-power
Lp spaces embed into lower powers.

• W 1,p(Ω) ↪→ Lp(Ω)

• For Ω finite measure, we have W 1,p(Ω) ↪→ W 1,q(Ω) for q < p.

Proof. Easy. □

The point here is that higher-powers should be thought of as generally more “restrictive”.
So, we should not expect a priori that the Lp or W 1,p space should embed into spaces with
higher power.

But in a crazy plot twist, W 1,p defies this intuition.

13.2 The Sobolev Embedding Theorem

Being in Lp is nothing to write home about. But if your derivatives are in Lp, i.e. if
you’re in W 1,p, we often get two really nice benefits:

1. It can boost integrability. That is, if f ∈ Lp and ∇f ∈ Lp, you often can conclude that
f ∈ Lmore than p!

2. It can give compactness. A sequence in Lp need not have a subsequence converging in
Lq. But a sequence in W 1,p often does.

I say “often” and not “always” because real analysis counterexamples exist. Ignoring the
subtlties, let’s state the Sobolev Embedding Theorem, which characterizes the first benefit
of increasing integrability... and even increasing regularity !
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Theorem 13.2 (Sobolev Embedding Theorem)

Let Ω ⊆ RN be open and “nice enough”. Then:
W 1,p(Ω) ↪→ L

Np
N−p (Ω), p < N

W 1,N(Ω) ↪→ Lq(Ω) for all 1 ≤ q <∞, p = N

W 1,p(Ω) ↪→ C0,1−N/p(Ω), p > N

What is “nice enough”? I say that Ω is “nice enough” if it is an extension domain. A
sufficient condition for this to occur is if ∂Ω is Lipschitz.

This has some crazy consequences. Sobolev embeddings not only boost integrability and
regularity: Since the embeddings are continuous, they boost convergence as well!

Integrablity and Regularity Boosting

Example 13.1: Let’s suppose that u ∈ W 1,1((0, 1)2). Then in fact, u ∈ L2((0, 1)2),
because 1∗ = 2·1

2−1
= 2.

Example 13.2: Let’s suppose that u ∈ W 1,2((0, 1)2). Then u has pretty much
unlimited integrability. For example, u ∈ L9999999999((0, 1)2).

Example 13.3: Let’s suppose that u ∈ W 1,3((0, 1)2). Then u is uniformly contin-
uous.

Convergence Boosting

Example 13.4: Suppose un, u ∈ C1([0, 1]) and that un → u in L2([0, 1]) and
u′n → u′ in L2([0, 1]). Then actually, un → u uniformly!!!
This is because W 1,2((0, 1)) ↪→ C0,1/2(Ω), and any convergence in a Hölder space is
uniform.

13.3 Rellich-Kondrachov Compactness

If we “loosen” any of the Sobolev embeddings, we get compactness!
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Theorem 13.3 (Rellich-Kondrachov Compactness)

Let Ω ⊆ RN be open, bounded, and “nice enough”. Then:
W 1,p(Ω) ↪→ Lq(Ω) is compact for all 1 ≤ q < Np

N−p
, p < N

W 1,N(Ω) ↪→ Lq(Ω) is compact for all 1 ≤ q <∞, p = N

W 1,p(Ω) ↪→ C0,α(Ω) is compact for all 0 < α < 1−N/p, p > N

Remark: If Ω is not bounded, you’d still get compactness results, it’s just that the subse-
quence you extract would only converge over compact sets, i.e. the convergence is local.

Example 13.5: Let fn ∈ C1(0, 1) be a family of functions for which
∫ 1

0
|fn|2 dx ≤

M and
∫ 1

0
|f ′

n|2 dx ≤M for all n, for some M > 0.

Then fn is bounded in W 1,2(Ω). 2 > 1, so by Rellich-Kondrachov we may extract a
subsequence fnk

which converges to some f ∈ C0,1/3(Ω) in ∥·∥C0,1/3(Ω). In particular,
the convergence fnk

→ f is uniform!

(By the way, could we have reached a similar conclusion using Ascoli-Arzela?)
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13.4 Rooms and Passages

h1

h1

h1

δ1 h2

h2

h2

δ2 h3

h3

h3

δ3 · · ·

The Rooms and Passages is a methodology for creating terrible sets that serve as coun-
terexamples to both the Sobolev Embedding Theorem and Rellich-Kondrachov. They show
that these theorems cannot be applied necessarily to sets with highly irregular boundary.

I refuse to explicitly describe the set, so all you get is the above picture. The “rooms”
are the hn×hn squares, and the “passages” are the thin h1×δ1 hallways between the rooms.

For this set to be a more powerful counterexample, we will take it to be bounded. So we
would like

∞∑
n=1

hn <∞ . (1)

Now we shall build a function f on this weird set, that we shall call Ω. Let the nth room be
Rn, and let the nth passage be Pn. Then our function f shall be defined as follows:

• f shall take the value an > 0 in room Rn.

• In Pn, f will linearly interpolate between the values an and an+1. That is, f will be
such that ∂f

∂x
= an+1−an

hn
and ∂f

∂y
= 0 in Pn.

That’s it! Let’s make some counterexamples.

13.4.1 Killing Sobolev Embedding Theorem

Let us generate f ∈ W 1,2(Ω) such that f ̸∈ Lq(Ω) for any q > 2. This will disprove
Sobolev Embedding’s p = N case.

For this, let us require that the sequence of values an is increasing. This lets us compute
bounds for ∥f∥Lp(Ω), ∥∂xf∥Lp(Ω), and ∥∂yf∥Lp(Ω) more easily.
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In Rn, we have that
∫
Rn
|f |p d(x, y) = h2na

p
n. Thus∫

Ω

|f |p d(x, y) ≥
∫
⋃∞

n=1 Rn

|f |p d(x, y) =
∞∑
n=1

h2na
p
n.

To ensure that f ̸∈ Lq(Ω) for all q > 2, it suffices to have

∞∑
n=1

h2na
q
n = +∞ (2)

for all q > 2. However, we will definitely require

∞∑
n=1

h2na
2
n <∞ (3)

if we want f ∈ L2(Ω).

To finish ensuring f ∈ L2(Ω), we may write the bound f(x, y) ≤ an+1 in passageway Pn

to see that ∫
Pn

|f |2 ≤ a2n+1hnδn.

Thus ∫
⋃∞

n=1 Pn

|f |2 d(x, y) ≤
∞∑
n=1

δnhna
2
n+1.

So we need
∞∑
n=1

δnhna
2
n+1 <∞ . (4)

It remains to ensure that ∂xf ∈ L2(Ω), since ∂yf = 0. In Pn, f has a “slope” of an+1−an
hn

.
So ∫

Pn

|∂xf |2 d(x, y) = δnhn ·
(an+1 − an)2

h2n
=
δn(a

2
n+1 − 2anan+1 + a2n+1)

hn
.

So the final condition we require is

∞∑
n=1

δn(an+1 − an)2
hn

<∞ . (5)

The trickiest criteria to satisfy are (2) and (3). The only “nice” way to get this sort of
behavior for the domain of convergence is the include a log. This is because taking an = nt
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for some power t simply isn’t flexible enough to somehow get convergence at 2 but divergence

for all greater powers. To wit, the insight is to choose an =
n

log n
.

Now to get both (2) and (3), we choose hn =
1

n3/2
. Indeed, we are using the fact that∑∞

n=1
1

n log2 n
converges but

∑∞
n=1

1
n1−ε logk n

does not.

Our choice of hn also ensures (1). Let us now get (5) to converge. (an+1 − an)2 is kinda
small. Whatever its asymptotics are, it surely can’t be better than, say, n2. So the sum
converges if

∑∞
n=1 δnn

3/2+2 converges. Noticing that there is no penalty in any of the other

conditions for choosing a ridiculously small δn, we may simply take δn =
1

n1000
. This forces

(5) to converge, and (4) obviously converges as well because this is so darn small.

13.4.2 Killing Rellich-Kondrachov

We will construct a sequence fn ∈ W 1,2(Ω) which is bounded in W 1,2(Ω), but such that
it has no subsequence converging in L2(Ω).

The idea is pretty simple: We will let fn take value an > 0 in room Rn, have it linearly
slope downwards to 0 in the nearby hallways Pn−1 and Pn, and then fn = 0 in all other
rooms and passages.

Let’s ensure that ∥fn∥W 1,2(Ω) is bounded by enforcing that ∥fn∥Lp(Ω) is bounded and
∥∂xfn∥Lp(Ω) is bounded. To do this, it suffices to enforce∫

Ω

|fn|2 dx ≤ (hn−1δn−1 + h2n + hnδn)a
2
n ≤ 3 (1)

and

δn−1hn−1 ·
(
an−1

hn−1

)2

+ δnhn ·
(
an
hn

)2

≤ 2 . (2)

To ensure that there is no subsequence converging in L2(Ω), we can just ensure that the
L2-difference between fn and fm is large, for |n −m| ≥ 42. This ensures that there cannot
exist a subsequence that is Cauchy in L2(Ω).

Well, when n and m are far apart, then the rooms they are supported in are far apart, so
their L2 difference will certainly be at least

∫
Rn
|fn|2 dx. So we just need to ensure something

like ∫
Rn

|fn|2 dx = h2na
2
n ≥ 1 . (3)
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A quick glance shows that δn only appears in (1) and (2), which is really helpful (this
demonstrates the power of this template for making counterexamples!). So we can start by

satisfying (3). We can do this by taking something like hn =
1

2n
and an = 2n .

Next, we can satisfy (1), which reduces to satisfying hn−1δn1a
2
n + hnδna

2
n ≤ 2. Evidently,

a choice of δn such as δn =
1

9999 · 100n surely will be enough. A quick glance shows that

this choice of δn will also satisfy (2). Thus we have generated a counterexample to Rellich-
Kondrachov compactness in the case that the domain’s boundary is bad.
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14 The Last Recitation

Example 14.1: Let Ω := {(x, y) : 0 < x < 1, 0 < y < x5}. Prove that:

• If u : Ω → R is defined as u(x, y) := x−4.999, then u ∈ W 1,1(Ω) but u cannot
be extended to a function in W 1,1(R2).

• If u : Ω → R is defined as u(x, y) := x−1.999, then u ∈ W 1,2(Ω) but u cannot
be extended to a function in W 1,2(R2).

• If u : Ω → R is defined as u(x, y) := x−0.999, then u ∈ W 1,3(Ω) but u cannot
be extended to a function in W 1,3(R2).

Proof. We’ll more or less handle all three cases at once.

We first show that if u(x, y) = x1−
6
p
+δ then u ∈ W 1,p(Ω). Indeed, we have that∫

Ω

|u|p d(x, y) =
∫ 1

0

∫ x5

0

x(1+δ)p−6 dy dx =

∫ 1

0

x(1+δ)p−1 dx <∞

and ∫
Ω

|∂xu|p d(x, y) = C

∫ 1

0

∫ x5

0

x(1+δ)p−7 dy dx =

∫ 1

0

x(1+δ)p−2 dx <∞

because −1 < (1 + δ)p− 2. This is enough to conclude that u ∈ W 1,p(Ω) (why?).

Now suppose for contradiction that u can be extended to a function in W 1,p(R2) (with u
not relabelled).

• For the case p = 1, we have by SGN that W 1,1(R2) ↪→ L2(R2), so u ∈ L2(R2). But∫
Ω

|u|2 d(x, y) =
∫ 1

0

∫ x5

0

x2(−5+δ) dy dx =

∫ 1

0

x−5+2δ dx = +∞

since δ is small.

• For the case p = 2, we have that W 1,2(R2) ↪→ L100(R2), so u ∈ L100(R2). But∫
Ω

|u|100 d(x, y) =
∫ 1

0

∫ x5

0

x100(−2+δ) dy dx =

∫ 1

0

x−200+100δ dx = +∞

since δ is small.

• For the case p = 3, we have by Morrey that W 1,3(R2) ↪→ C0,1/3(R2), so u ∈ C0,1/3(R2).
Of course, one could conclude that u ∈ L100(R2) to get a contradiction as before, but
we can also observe that u being Holder continuous would imply in particular that it
is continuous at (0, 0), and evidently x−0.999 cannot be extended as such.

□
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14.1 Calculus of Variations: Tonelli’s Direct Method

hi leoni if you’re reading this what happened was i completely forgot what to teach after
that example so uh yeah

You won’t need to know any of this for the final exam. The reason why I’m
showing you all of this is to demonstrate that analysis isn’t just abstract non-
sense — all the tools you have learned thus far can be used to obtain extremely
powerful results that have genuinely important consequences and real-world ap-
plications. The theory I’m showcasing here pretty much ties up content over
your entire Leoni analysis experience.

Recall a quick definition:

Definition 14.1 (Sequentially lower-semicontinuous)

Let (X, τ) be a topological space. A function f : X → R is sequentially lower-
semicontinuous (slsc) if for every x0 ∈ X and every xn

τ−→ x0, we have the inequality

f(x0) ≤ lim inf
n→∞

f(xn).

(Is it true in topological spaces that f is slsc iff f is lsc? Why or why not? What about
in metric spaces? )

Let us attempt to minimize the functional

F (u) :=

∫ 1

0

|u|2 dx

over u ∈ L2(0, 1). Yes, it’s obvious, but uh pretend for a moment that it isn’t. First, we
observe that there exists an infimum I := infu∈L2 F (u), so there exists a sequence un with
F (un)→ I. We call this a minimizing sequence.

Now, here’s the idea. We want to first use a compactness argument to find a subsequence
unk
→ u under some notion of convergence τ . τ needs to be weak enough for such a

subsequence to exist. Now, if F is sequentially lower-semicontinuous (“slsc”) with respect
to τ , then we may conclude that

I ≤ F (u) ≤ lim inf
k

F (unk
) = I,

so that F (u) = I and u solves the minimization problem. τ must be strong enough to
have sequential lower-semicontinuity (why does stronger convergence make it easier to have
sequential lower-semicontinuity?).

So here we have a weird little game that we must play: Pick a good convergence τ that
is weak enough to have compactness results, but is strong enough to have sequential lower-
semicontinuity. This whole scheme is called the Direct Method of Calculus of Variations.
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Let’s try some notions of convergence and see what happens.

• What if we take τ to be the topology in which only eventually-constant sequences
converge?

We do not get compactness. A sequence un being bounded in F (i.e. F (un) bounded,
i.e. un is bounded in L2(0, 1)) need not have a subsequence that is eventually constant.

We get the slsc. Clearly F (or any functional) will be slsc under such a topology,
since un → u0 only when un = u0 forever eventually, in which case it is clear that
f(u0) ≤ lim infn→∞ F (un).

Thus, this convergence is too strong.

• What if we take τ to be the topology in which all sequences converge?

We get compactness. Clearly any sequence of un’s has a subsequence, and this subse-
quence converges under this dumb topology.

We do not get the slsc. If e.g. u0 ≡ 1 and un ≡ 0, then un would converge to u under
this topology, and this sequence contradicts F being slsc.

Thus, this convergence is too weak.

• What if we take τ to be L2(0, 1) convergence?

We do not get compactness. I leave it to you to verify that there is a sequence bounded
in L2(0, 1) that does not admit a subsequence converging in L2(0, 1).

We get the slsc. To see this, suppose that un → u0 in L2(0, 1). Letting L :=
lim infn→∞ F (un), we wish to prove that F (u0) ≤ F (un).

By properties of the liminf, there exists a subsequence unk
for which

L = lim inf
n→∞

F (un) = lim
k→∞

F (unk
).

Next, since unk
→ u0 in L2(0, 1), we know that there exists a subsequence unkj

con-

verging to u0 a.e.. Thus the conclusion follows from Fatou:

F (u0) =

∫ 1

0

|u0|2 dx =

∫ 1

0

lim inf
j→∞

|unkj
|2 dx

≤ lim inf
j→∞

∫ 1

0

|unkj
|2 dx = lim

j→∞
F (unkj

) = L.

This shows that L2(0, 1) convergence is too strong.
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14.2 Weak Convergence

If L2(0, 1) convergence is too strong, then what is something weaker that is not too weak?
Here is the miracle answer:

Definition 14.2 (Weak Convergence)

Let 1 ≤ p <∞. We say that fn ∈ Lp(E) converges weakly in Lp(E) to some f ∈ Lp(E)
if ∫

E

fng dx→
∫
E

fg dx

for all g ∈ Lq(E) where q is the Hölder conjugate, and we write “fn ⇀ f in Lp(E)”.

(We have a similar definition for p = +∞, and we call it “weak star” convergence
instead, for a subtle reason that you shall learn in Functional Analysis.)

Exercise: Show that “strong” Lp(E) convergence implies weak Lp(E) convergence.
Show that the converse does not hold by proving that sin(nx) ⇀ −1 in Lp(−1, 1) as
n→ +∞.

With some mental gymnastics, one can justify looking at such a definition by being
inspired by category theory. Specifically, instead of studying functions in Lp(E), we can
study mathematical constructs that probe such functions, i.e. continuous linear functions
on Lp(E). It turns out that any T : Lp(E) → R that is continuous will take the form
T (f) :=

∫
E
fg dx for some g ∈ Lq(E). This is called the Riesz-Representation Theorem.

Theorem 14.1 (RRT in Lp spaces)

Let 1 < p <∞ and q be the Hölder conjugate.

• For every g ∈ Lq(E), the map

Tg : f ∈ Lp(E) 7→
∫
E

fg dx ∈ R

is a continuous linear functional on Lp(E).

• Conversely (!), for every continuous linear T : Lp(E) → R, there is a unique
g ∈ Lq(E) for which

Tf =

∫
E

fg dx ∀f ∈ Lp(E).
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We remark that the first bullet is pretty easy, because by Hölder,

|Tf | ≤
∫
E

fg dx ≤ ∥f∥p∥g∥q <∞.

Weak convergence in Lp is weak enough to get compactness.

Theorem 14.2

If {fn}n ∈ Lp(E) is bounded in Lp(E), then there is a subsequence {fnk
}k such that

fnk
⇀ f in Lp(E) for some f ∈ Lp(E).

Proof. This is hard. If you assume the RRT for Lp spaces, you can find a proof on my
blog. Otherwise, take Functional Analysis. □

But is weak Lp(E) convergence too weak for sequential lower-semicontinuity? Nope! We
can prove it is strong enough as follows.

Lemma 14.1

Let (X, ∥ · ∥) be a normed space and f : X → R. Then f is convex iff f is the sup
of a family F of continuous affine maps (i.e. continuous linear functions on X plus a
constant).

Prototypical picture to have in your head: f(x) = x2 is convex, and it is the sup of all
its tangent lines.

Proof. (⇐= ) Trivial.

( =⇒ ) Google “Hahn-Banach”. □

Theorem 14.3

F : L2(0, 1) → R defined by F (u) :=
∫ 1

0
u2 dx is weakly sequentially lower semi-

continuous (“wslsc”).

Proof. F is convex, so it is the sup of some family F of affine maps. Take some A ∈ F ,
so that A(u) =

∫
E
uv dx + c for some continuous linear u 7→

∫
E
uv dx (for some v ∈ Lq(E))

and some c ∈ R.

Let un ⇀ u in L2(E). Then by definition of weak convergence,

A(u) =

∫
E

uv dx+ c = lim
n→∞

∫
E

unv dx+ c = lim
n→∞

A(un).

On the RHS, we go up with F (u) to get

A(u) ≤ lim inf
n→∞

F (un).
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On the LHS, we take the sup over all A ∈ F to get

F (u) ≤ lim inf
n→∞

F (un).

□

With this, we can conclude by the direct method that F has a minimizer.

14.3 Back to Sobolev Spaces

Now let’s try something less stupid:

F (u) :=

∫ 1

0

u2 + |u′|2 dx

for F : W 2,2(0, 1)→ R. (We useW 2,2 instead ofW 1,2 to make things a lot easier at the end.)
Let’s minimize this over the set E := {u ∈ W 2,2(0, 1) : u(0) = 0, u(1) = 1}. (Of course,
by something like u(0) = 0, I mean that ũ(0) = 0 where ũ is the uniformly continuous
representative of u.)

Let us run the usual program. Take I = infu∈E F (u). Take un ∈ E with F (un) → I.
Then un is bounded in L2(0, 1) and u′n is bounded in L2(0, 1). By weak compactness on both
un and u′n, we have that there is a subsequence such that unk

⇀ u in L2(0, 1) and u′nk
⇀ v

in L2(0, 1).

We claim that u ∈ W 2,1 with u′ = v. Indeed, since every φ ∈ C∞
c (0, 1) satisfies φ, φ′ ∈

L2(0, 1), we have by definition of weak convergence that∫ 1

0

uφ′ dx
k→∞←−−−

∫ 1

0

unk
φ′ dx = −

∫ 1

0

u′nk
φdx

k→∞−−−→ −
∫ 1

0

vφ dx,

as needed.

(I’m putting this in parentheticals because it is a subtle but annoying issue: Do we have
that u ∈ E? That is, does u satisfy the boundary conditions? Weak convergence does not
necessarily preserve much pointwise data, so we can’t quite conclude that it does... but we
can modify this argument to that the boundary conditions are indeed preserved. The way
to do this is as follows: Before we extract any subsequences, extract a subsequence of un
that converges uniformly! We can do this because of Rellich-Kondrachov: 2 > 1 and un is
bounded in W 1,2(0, 1). Now everything works: Once we’re done extracting sequences, u is
not only the W 1,2-weak limit of the unk

— it must also be the uniform limit! And uniform
limits are awesome at preserving pointwise data.)
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Moreover, we claim that F is slsc under this so called “weak W 2,1(0, 1) convergence”.
That is, we claim that unk

⇀ u and u′nk
⇀ u′ in L2(0, 1) implies that

F (u) ≤ lim inf
k→∞

∫ 1

0

u2nk
+ |u′nk

|2 dx.

The handwavy proof is that “F is a sum of two convex functions so obviously it’s true”.
Though we do need to do a little bit to tame the liminf. For the actual proof: let L be the
liminf, and first extract a subsequence (not relabelled) so that the limit

L1 := lim
k→∞

∫ 1

0

u2nk
dx

exists in [0,∞], and extract another subsequence (also not relabelled) so that the limit

L2 := lim
k→∞

∫ 1

0

|u′nk
|2 dx

exists in [0,∞]. Then L1 + L2 = L. Since v 7→
∫ 1

0
|v|2 is a convex functional on L2(0, 1), we

then have that ∫ 1

0

u2 dx ≤ lim inf
k→∞

∫ 1

0

u2nk
dx = L1

and ∫ 1

0

|u′|2 dx ≤ lim inf
k→∞

∫ 1

0

|u′nk
|2 dx = L2.

Adding, we get F (u) ≤ L1 + L2 = L as needed.

From all of the above, we may now conclude that F has a minimizer in u ∈ W 2,2(0, 1)
(note that this reasoning would still have worked in W 1,2(0, 1). The extra regularity will
come in soon.) But what is it?

14.4 Hunting Down the Minimizer: The Euler-Lagrange Equation

Since u is the minimizer, we must have that F (u + tφ) obtains a relative minimum at
t = 0, where φ ∈ C∞

c (0, 1). That is, the directional derivative of F in the direction of φ is 0,
which means that

0 = lim
t→0

F (u+ tφ)− F (u)
t

= lim
t→0

∫ 1

0

2uφ+ 2u′φ′ + tφ2 + t|φ′|2 dx =

∫ 1

0

2uφ+ 2u′φ′ dx,

so ∫ 1

0

uφ+ u′φ′ dx = 0 ∀φ ∈ C∞
c .
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How shall we proceed? First let us separate the terms and integrate by parts to get

0 =

∫ 1

0

uφ dx+

∫ 1

0

u′φ′ dx =

∫ 1

0

uφ dx−
∫ 1

0

u′′φdx =

∫ 1

0

(u− u′′)φdx.

Note that here we needed that u ∈ W 2,2(0, 1)! Otherwise we can’t take a second derivative
of u.

We now apply the Fundamental Lemma of Calculus of Variations.

Lemma 14.2

If v ∈ L1
loc(I) and

∫
I
vφ dx = 0 for all φ ∈ C∞

c (I), then v = 0.

This was proven in Recitation 11.

Since
∫ 1

0
(u− u′′)φdx = 0 for all φ ∈ C∞

c (0, 1), it follows by the fundamental lemma that
u − u′′ = 0. This is a differential equation! And, since u ∈ E, it satisfies boundary data
u(0) = 0 and u(1) = 1.

By the 8th recitation, we see that u must take the form u(x) = c1e
x+c2e

−x, and plugging

in the boundary conditions gives the solution u(x) =
e

e2 − 1
· (ex − e−x) . Note that this is

the only solution, so this is the unique minimizer.

Thus, by using various things that we have learned throughout the semester, we have
rigorously shown that the minimum

min
v∈E

F (v)

exists, and is given by F (u) =
e2 + 1

e2 − 1
.

14.5 Regularity Reduction

We see that we needed to ensure u ∈ W 2,2(0, 1), otherwise we could not have obtained
a second-order differential equation for u. Is there hope if we instead did everything in
W 1,2(0, 1)?

Yes, there is. All of the logic in the past two sections will work up to obtaining the
following equation: ∫ 1

0

uφ+ u′φ′ dx = 0 ∀φ ∈ C∞
c .

If we knew only that u ∈ W1, 2(0, 1), we now have to use a different trick. Let us instead
integrate by parts on the other term! That is, let U(x) :=

∫ x

0
u(t) dt be a primitive for u.
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Then

0 =

∫ 1

0

uφ dx+

∫ 1

0

u′φ′ dx = −
∫ 1

0

Uφ′ dx+

∫ 1

0

U ′′φ′ dx =

∫ 1

0

(U ′′ − U)φ′ dx

for all φ ∈ C∞
c (0, 1). Now we pull out a totally different lemma.

Lemma 14.3 (Dubois-Reymond)

Suppose that v ∈ L1
loc(I) and that

∫
I
vφ′ dx = 0 for all φ ∈ C∞

c (I). Then v is constant.

Proof. See Lemma 4 in https://mccuan.math.gatech.edu/courses/7581/notes/lecture3.
pdf. □

Thus U ′′ − U = c for a constant c, and we have the boundary conditions U ′(0) = 0,
U ′(1) = 1, and U(0) = 0. One way to solve this is to multiply by U ′ to get a separable
equation. Whatever you do, you’ll end up with the same solution for u(x) — this time
witout the assumption that u ∈ W 2,2(0, 1). Thus we have shown rigorously that the problem

min
u∈W 1,2(0,1),u(0)=0,u(1)=1

∫ 1

0

|u|2 + |u′|2 dx

admits a solution.
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