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1 Repeated Integration I

1.1 The Lebesgue Measure and Measurability

The Story: Mathematicians wanted a way to rigorously define the intuitive notion of
“area”. In a perfect world, we’d hope that “area” satisfies a number of properties, such as:

1. (Universality) All sets have an “area”.

2. (Additivity) If E,F area disjoint, then the area of E ∪ F is the sum of the areas of E
and F .

Unfortunately, it turns out that there is no “perfect” way to define area. Every possible
definition has a weird problem. For example, one could try using the Lebesgue Outer Measure
to define area.

Definition 1.1 (Lebesgue Outer Measure)

The Lebesgue Outer Measure, denoted by LN
o , is defined by

LN
o (E) := inf

{
∞∑
n=1

measRn : Rn is a rectangle, and
∞⋃
n=1

Rn ⊇ E

}

for all sets E ⊆ RN .

This comes really close to working. We get a lot of nice “area-like” properties, like
LN

o (∅) = 0 and LN
o (E) ≤ LN

o (F ) whenever E ⊆ F . Unfortunately, additivity breaks. A
horrific construction, called the Vitali Set, gives an example of disjoint E,F ⊆ R for which
L1

o(E ∪ F ) ̸= L1
o(E) + L1

o(F ).

This is really bad. If we don’t have additivity then we really can’t do much with “area”.
So we sacrifice universality in order to get additivity back. That is, we restrict LN

o to
only work on “nice enough” sets.

Definition 1.2 (Lebesgue Measure)

The Lebesgue Measure, denoted by LN , is the restriction of LN
o to a family (...a sigma-

algebra) of sets of RN called Lebesgue measurable sets.

This way we can write things like LN(E ∪F ) = LN(E) +LN(F ) (for disjoint E,F ) with
a peace of mind, because the sets we’re feeding into LN have to be measurable in order for
this to work anyway.
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But what does it mean for a set to be measurable?

Definition 1.3 (Measurable)

A set E ⊆ RN is Lebesgue measurable if for all half-spaces A, we have that

LN
o (E) = LN

o (E ∩ A) + LN
o (E \ A).

This is known as the Catheodory Cutting Condition.

This is kind of a mess to work with so here are some properties, as well as some “prop-
erties”.

1.1.1 Something something outer regularity idk i forgot everything from 21-720
pls dont fire me

E is measurable iff for all ε > 0 there exists an open set U ⊇ E such that LN
o (U \E) < ε.

(Search terms for the curious: “Outer regularity”, “Radon Measure”)

Of course, this immediately implies that all open sets are measurable. To wit...

1.1.2 Some Niceish Sets

• All open sets are measurable.

• Heck, all closed sets are measurable too.

• If you have a countable family of measurable sets, then their union is measurable. And
their intersection.

Huh, a ton of things are measurable! In fact...

1.1.3 The “Officer I’m Not Trying To Break Math I Swear” Condition

Theorem 1.1 (not actually a theorem but it really should be tbh)

If you ever define a set E ⊆ RN and you’re not actively trying to break math, then E
must be measurable.
More precisely, if you’re defining E in an explicit, constructive manner (i.e. not non-
constructively), then E has to be measurable.

Examples:

7
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• Let E = B(0, 1) ⊆ RN . I am not trying to break math. Therefore E is measurable.

• Let E = QN . I am still not actively trying to break math. So E is measurable.

• Let

E =
∞⋃
n=1

∞⋂
m=1

(log(mn + πe), ((m+ n)!)!!] ⊆ R.

Even here, I am not engaging in the sacrilegious breaking of math. (Specifically, I’m
giving a very explicit construction of the set E. You can pick any x ∈ R and I can tell
you with confidence whether or not x is in it.) Thus E is measurable.

What do I mean by breaking math / non-constructive shenanigans? It’s the usage of the
Axiom of Choice. As long as you’re not using the Axiom of Choice, any set you define is
guaranteed to be measurable. In fact, we have the following incredibly silly property:

If you reject the Axiom of Choice, then every set is measurable!

One last example: Let B(RN) be the Borel Sigma-Algebra on RN , which is basically the
family of all sets you can make by applying countable union, countable intersection, and set
difference operations on open sets. The sets in B(RN) are called Borel sets.

Unsurprisingly, all Borel sets are measurable.

(...though there exist measurable sets that are not Borel. See https://www.math3ma.

com/blog/lebesgue-but-not-borel.)

1.2 Measurable Functions

Definition 1.4

A function f : E → R is measurable if {x ∈ E : f(x) > a} is measurable for all a ∈ R.

Exercise: It turns out that the following is an equivalent condition: f−1(F ) is measurable
for all Borel sets F ∈ B(R). Can you imagine why that is?

I don’t have a great intuitive explanation for why we take this definition, but hopefully
you buy that measurable functions are functions that aren’t horrifying. In fact:
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Theorem 1.2 (not actually a theorem but it really should be tbh v2)

If you ever define a function f : E ⊆ R and you’re not actively trying to break math,
then f must be measurable.
More precisely, if you’re defining f in an explicit, constructive manner (i.e. not non-
constructively), then f has to be measurable.

Examples:

• All continuous functions on measurable domains are measurable.

• The slightly horrifying function

f(x) :=
∞∑
n=1

1

2n
sin
(
ex−π·

√
n − 17− 9001x

)
· 1[−n,n]

is measurable.

1.3 Swapping Integrals: A Case Study

The story here is that we’d like to be able to swap integrals like∫
E

∫
F

· · · dx dy =

∫
F

∫
E

· · · dy dx.

But is this allowed? Not always!

The construction of this counter-example is inspired by the Grandi Series. That is,

1− 1 + 1− 1 + 1− 1 + . . .

is not a well-defined sum. Some middle-schoolers think its 0 because you can write it like
(1 − 1) + (1 − 1) + . . .. Other middle-schoolers think it’s 1 because you can write it like
1 + (−1 + 1) + (−1 + 1) + . . .. And that’s exactly what we’re going to exploit.

Let:
E :=

⋃
m,n∈N,m=n

(m− 1,m)× (n− 1, n)

F :=
⋃

m,n∈N,m=n+1

(m− 1,m)× (n− 1, n)

Then we take f : R2 → R via:

f(x, y) =


1, x ∈ E

−1, x ∈ F

0, otherwise

9
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By the draw-a-picture theorem, we see that:∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy = 1

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dy dx = 0

Swapping integrals has failed! We will see that:

• Tonelli’s Theorem indeed cannot be applied to this function f because it is sometimes
negative, and

• Fubini’s Theorem indeed cannot be applied either because f is not integrable.

1.4 Tonelli’s Theorem

Usually when people swap integrals, they cite Fubini’s Theorem. I think that Tonelli
does not get enough love! It can be useful in some situations that Fubini cannot be used in.
Really, all Tonelli needs is that your function is non-negative.

Theorem 1.3 (Tonelli)

Let E ⊆ RN , F ⊆ RM be measurable. If f : E × F → R is measurable and non-
negative, then∫

E

∫
F

f(x, y) dy dx =

∫
F

∫
E

f(x, y) dx dy =

∫
E×F

f(x, y)d(x, y).

Example 1.1: Let E = {(x, y) ∈ R2 : 0 < x ≤ 1, 0 ≤ y < x+ 1}. Compute∫
E

xy d(x, y).

Solution. This solution will be very pedantic and rigorous, just so you can see what such
rigorous arguments may look like. I’ll wave my hands more after this.

The first thing to check before we do anything is that the integrand is measurable. If it
isn’t, all bets are off. Fortunately, it’s continuous, and E is measurable because you can show
that it’s Borel (this is the one time I’ll wave my hands here; this isn’t hard just annoying)
so we’re chilling.
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To properly apply Tonelli, we want the domain to be of the form F × G. E isn’t quite
of this form. The prank here is to remember what

∫
E
means...∫

E

xy d(x, y) =

∫
xy · 1E(x, y) d(x, y) =

∫
R×R

xy · 1E(x, y) d(x, y)

Each of these equalities is essentially by definition. Now, since the integrand is non-negative
everywhere, we can apply Tonelli!

=

∫
R

∫
R
xy · 1E(x, y) dy dx

Note that because of the shape of E, it’s better to integrate in y first.

We now split the inner integral into two parts.

=

∫
R

∫
[0,x+1)

xy · 1E(x, y) dy +
∫
R\[0,x+1)

xy · 1E(x, y) dy dx

Since the integrand in the second integral is always 0 (because of the indicator function), we
see that the second integral simply evaluates to 0.

=

∫
R

∫
[0,x+1)

xy · 1E(x, y) dy dx

Now we want to apply the Fundamental Theorem of Calculus (FTC). Unfortunately, the
indicator function is kinda in the way now. At this point we just argue that for all (x, y)
with x ∈ R and 0 ≤ y < x+ 1, we have that 1E(x, y) = 1(0,1](x). This lets us write

=

∫
R

∫
[0,x+1)

xy · 1(0,1](x) dy dx,

and finally we may apply the FTC via ∂
∂y

1
2
x1(0,1](x)y

2 = x1(0,1](x)y to get

=

∫
R

1

2
x(x+ 1)2 · 1(0,1] dx.

This integral is just

=

∫ 1

0

1

2
x(x+ 1)2 dx

by definition, and we may apply the FTC once more to get... **** it who cares just apply

Mathematica to obtain
17

24
. ■

Here’s something more exciting.
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Example 1.2 (Integral representation for log / Frullani Integral):
Prove that

log a =

∫ ∞

0

e−x − e−ax

x
dx.

Proof. The first step is magical. We write:∫ ∞

0

e−x − e−ax

x
dx =

∫ ∞

0

∫ a

1

e−xy dy dx

Since e−xy ≥ 0 for all x and y, we can swap using Tonelli:

=

∫ a

1

∫ ∞

0

e−xy dx dy

Now we just compute using the FTC:

=

∫ a

1

1

y
dy = log(a)− log(1) = log a

□

1.5 Fubini’s Theorem

This is the famous big-shot theorem. It can be used on functions that take both positive
and negative values. The condition Fubini needs is integrability.

Theorem 1.4 (Fubini)

Let E ⊆ RN , F ⊆ RM be measurable. If f : E × F → R is measurable and is
integrable, i.e. ∫

E×F

|f(x, y)|d(x, y) < +∞

then ∫
E

∫
F

f(x, y) dy dx =

∫
F

∫
E

f(x, y) dx dy =

∫
E×F

f(x, y)d(x, y).

In practice, Fubini is slightly harder to use than Tonelli because “f is integrable” takes
a bit more work than “lol f ≥ 0 ez”. That’s why you should first check that your integrand
is non-negative before going crazy with Fubini.

Let’s start with something simple.

Example 1.3: Evaluate∫
(123,456)×(789,101112)

ex − ey d(x, y).

12
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Solution. I’m not actually going to evaluate this lol.

First we check if we can use Tonelli... Aw man, this function seems negative at several
places.

Can we use Fubini? Indeed, we can argue as follows: Everything is measurable. The
integrand is continuous, and the domain is bounded. Thus the integrand is bounded (why?)
by some M . Since it’s bounded on a domain of finite measure, we see that it is integrable
because ∫

(123,456)×(789,101112)

|ex − ey| d(x, y) ≤
∫
(123,456)×(789,101112)

M d(x, y)

= ML2((123, 456)× (789, 101112)) < ∞.

Thus we may apply Fubini to write∫
(123,456)×(789,101112)

ex − ey d(x, y) =

∫ 456

123

∫ 101112

789

ex − ex dy dx.

Now you stuff this into Mathematica. ■

Let’s try something slightly more involved.

Example 1.4: Integrate: ∫
[−1,1]3

1
3
√
xyz

d(x, y, z)

Solution. Everything is measurable, yay. The integrand is sometimes positive and some-
times negative, so Tonelli is out of the question. We must try and apply Fubini.

We need to prove that
∫
[−1,1]3

∣∣∣ 1
3
√
xyz

∣∣∣ d(x, y, z) < ∞. How, you ask? Using Tonelli, of

course! We have by Tonelli that∫
[−1,1]3

∣∣∣∣ 1
3
√
xyz

∣∣∣∣ d(x, y, z) = ∫ 1

−1

∫ 1

−1

∫ 1

−1

∣∣∣∣ 1
3
√
xyz

∣∣∣∣ d(x, y, z)
=

(∫ 1

−1

1

| 3
√
x|

dx

)(∫ 1

−1

1

| 3
√
y|

dy

)(∫ 1

−1

1

| 3
√
z|

dz

)
< ∞

Thus we are justified in applying Fubini:∫
[−1,1]3

1
3
√
xyz

d(x, y, z) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

1
3
√
xyz

d(x, y, z)

=

(∫ 1

−1

1
3
√
x
dx

)(∫ 1

−1

1
3
√
y
dy

)(∫ 1

−1

1
3
√
z
dz

)
= 0

■
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2 Repeated Integration II

2.1 Change of Variables

Now is the time to be a tad bit more careful with the terminology “measurable”. Although
this is typically interpreted as Lebesgue Measurable, it’s actually a bit vague.

Recall the definition of a Lebesgue Measurable (LM) function.

Definition 2.1 (Lebesgue Measurable)

A function f : E → R is Lebesgue measurable if {x ∈ E : f(x) > a} is Lebesgue
measurable for all a ∈ R.
(Equivalently, f−1(F ) is Lebesgue measurable for all Borel F .)

The definition of a Borel function is essentially the same.

Definition 2.2 (Borel Measurable)

A function f : E → R is Borel (measurable) if {x ∈ E : f(x) > a} is Borel for all
a ∈ R.
(Equivalently, f−1(F ) is Borel for all Borel F .)

Recall that a Borel set is a set that can essentially be written in terms of open sets.
(Concretely, it is the sigma-algebra that is generated by the topology of open sets!)

Some notes:

• Since every Borel set is LM, we have that every Borel function is a LM function. (We
do not have the converse :c)

• Every continuous f : E → R is Borel, provided that E is Borel.

We are now ready to state the Change of Variables Theorem in N dimensions.

14
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Theorem 2.1 (Change of Variables)

Let U be open and g : U → RN be a continuous function, such that:

1. (“Differomorphism a.e.”) there is F ⊆ U with LN(U \ F ) = LN(g(U \ F )) = 0
such that g is differentiable over F , and

2. (“Injection a.e.”) there is G ⊆ U with LN(g(U \ G)) = 0 such that g is an
injection over G.

Let E ⊆ U be Borel, and let f : g(E) → R be Borel such that either f ≥ 0 or f is
integrable. Then ∫

g(E)

f(y) dy =

∫
E

f(g(x)) · | det Jg(x)| dx.

This Theorem is the “most applicable / general” one. But also it hurts my eyes to read.
Here is a version that’s less general but also a lot simpler.

Theorem 2.2 (Change of Variables: Simplified Version)

Let f : E → R be Borel such that either f ≥ 0 or f is integrable.
Let U be open and g : U → RN be a differentiable injection such that E ⊆ g(U) (i.e.
the range of g covers E).
Then ∫

E

f(y) dy =

∫
g−1(E)

f(g(x)) · | det Jg(x)| dx.

What’s the intuition for Change of Variables? In particular, why do we have this
crazy | det Jg(x)| factor (the Jacobian determinant)?

Well, you can’t just change the variables and simplify things for free, that’d be too easy.
There’s gotta be a catch. Indeed, a change of variables does some weird morphing of the
domain space. Some parts of the domain by expand or shrink under the change of variables.
The expanding and shrinking behavior is captured by the Jacobian, naturally. Since the
determinant essentially “measures how much a linear transformation expands or shrinks
things”, we have that the Jacobian determinant should, intuitively, measure how much a
change of variables is expanding or shrinking space near a particular point. Multiplying by
this factor “counteracts” this effect, in a sense.

Why do we need f Borel instead of just LM? That’s because the composition of
LM functions may not be LM. But if f is Borel and g is LM, then f−1 sends Borel sets to
Borel sets and then g−1 sends those Borel sets to LM sets, so that the composition just sends
Borel sets to LM sets. This chain is broken if we only had that f was LM!
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2.2 Simple Example: Scaling

Let f : E → R for E ⊆ RN . Let’s assume for ease that f is integrable, though this
won’t be necessary for this example (and the reason. The goal here is to find a relationship
between the quantities ∫

E

f(x) dx

∫
rE

f(x/r) dx

for r > 0. Here, rE = {rx⃗ : x⃗ ∈ E}.

Of course, for N = 1, you probably know from u-substitution that∫ b

a

f(x) dx = r

∫ rb

ra

f(x/r) dx.

We claim that this generalizes to N dimensions. Naturally, we wish to change variables to
transform

∫
E
f(x) dx into something else. Naturally, we pick g : R → R with

g(x) = x/r.

This is indeed a differentiable injection whose range covers E. So we may apply the change
of variables theorem to obtain∫

E

f(x) dx =

∫
g−1(E)

f(g(x)) · | det Jg(x)| dx =

∫
rE

f(x/r) · | det Jg(x)| dx.

It remains to evaluate det Jg(x). To figure that out, it might be clearer to write g as

g(x1, x2, · · · , xN) = (x1/r, x2/r, · · · , xN/r).

Now it’s clear that ∂gi
∂xi

(x) = 1
r
for all i, and ∂gi

∂xj
(x) = 0 for all i, j with i ̸= j. Thus Jg(x)

is just 1
r
IN where IN is the N × N identity matrix. In particular, | det Jg(x)| = 1

|rN | =
1
rN

.
Thus we have the relationship∫

E

f(x) dx =
1

rN

∫
rE

f(x/r) dx.

Yay!

Exercise: Can this result be extended to hold for all LM f?

2.3 Polar Coordinates: The 2D Case

Sometimes a function’s value at a point (x, y) is better expressed in terms of “radius and
angle” instead of “x-coordinate and y-coordinate”, especially if we are integrating over R2

or the ball B((0, 0), R).
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(I’m not going to explain what polar coordinates are, if you’re unfamiliar then you should
probably look it up.)

Corollary 2.1 (Polar COV)

Let 0 < R ≤ ∞ and let f : B((0, 0), R) → R be Borel and either non-negative or
integrable. Then∫

B((0,0),R
f(x, y) d(x, y) =

∫ 2π

0

∫ R

0

rf(r cos θ, r sin θ) dr dθ.

(Note that this works for
∫
R2 f d(x, y) too, by taking “R = +∞”.)

Motto: “The price to pay in order to change to polar coordinates is a factor of r.”

Proof. We are tempted to choose the change of variables g : [0, R)× [0, 2π) → B((0, 0), R)
defined as

g(r, θ) := (r cos θ, r sin θ).

However, this isn’t actually injective because g maps (0, θ) to (0, 0) for all θ. Hence this
doesn’t satisfy the conditions of the simplified COV theorem (do note, though, that this
actually satisfies the original COV theorem that I wrote, since g is an injection almost
everywhere).

If this concerns you, the fix is pretty easy: Delete (0, 0) from the domain of integration,
and restrict g to only take positive r so that g : (0, R) × [0, 2π) → B((0, 0), R) \ {(0, 0)}.
Tada! (EDIT: Actually this domain isn’t open. To fix this, throw out 0 so thhat g :
(0, R)× (0, 2π) → B((0, 0), R) \ {(0, 0)}. This is ok because this throws out a set of measure
zero. See next subsection.)

Now g is a differentiable injection and its range covers the domain over which we integrate
f , so the simplified COV theorem applies.

What’s the Jacobian determinant, i.e. the “price” we pay to make this change of vari-
ables? It’s not too hard to compute:

det Jg(r, θ) =

∣∣∣∣∂g1∂r
(r, θ) ∂g1

∂θ
(r, θ)

∂g2
∂r

(r, θ) ∂g2
∂θ

(r, θ)

∣∣∣∣ = ∣∣∣∣ ∂∂rr cos θ ∂
∂θ
r cos θ

∂
∂r
r sin θ ∂

∂θ
r sin θ

∣∣∣∣
=

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r

Since r > 0 we simply have | det Jg(r, θ)| = r. This is the claimed Jacobian determinant.

(Also, Tonelli/Fubini was implicitly applied to write the RHS as two integrals instead of
one.) □
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2.4 Quick Addendum: Yeeting Null Sets

Somehow I forgot to consider that measure theory is hard and that this was not something
known, so very quickly I wanted to add this note.

In the previous section, I did some weird tricks in which I threw away sets of measure
zero as if that was totally ok. Fortunately it is ok.

This is because if E0 is such that LN(E0) = 0, then
∫
E0

f(x) dx = 0 no matter what f is
(well, you should assume it’s measurable, but other than that...).

So, if E ⊆ RN is some LM set, and E0 ⊆ E is such that LN(E0) = 0, then we can do
this trick: ∫

E

f(x) dx =

∫
E\E0

f(x) dx+

∫
E0

f(x) dx =

∫
E\E0

f(x) dx

In other words, we can yeet sets of measure zero and you can’t stop me.

Concrete example: Consider integrating∫
[0,1]2

x2 + y d(x, y)

for some reason. Let’s say you’re allergic to closed sets or something. Fortunately, ∂[0, 1]2

has Lebesgue measure zero, meaning you can yeet it to write∫
[0,1]2

x2 + y d(x, y) =

∫
(0,1)2

x2 + y d(x, y)

and nobody can stop you.

Ok addendum over.

2.5 Gaussian Integral

We now look at an application of polar integration.

Theorem 2.3 ∫
R
e−x2

dx =
√
π

Proof. The prank here is to instead evaluate
(∫

R e
−x2

dx
)2
. We can manipulate this as

follows: (∫
R
e−x2

dx

)2

=

(∫
R
e−x2

dx

)(∫
R
e−x2

dx

)
18
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=

(∫
R
e−x2

dx

)(∫
R
e−y2 dy

)
(∫

R e
−x2

dx
)
is just a number, so we can shove it into the y-integral:

=

(∫
R

(∫
R
e−x2

dx

)
e−y2 dy

)
For each y, we have that e−y2 is just a number, so we can shove it into the x-integral:

=

(∫
R

(∫
R
e−x2−y2 dx

)
dy

)

=

∫
R

∫
R
e−x2−y2 dx dy

Now we apply Tonelli:

=

∫
R2

e−x2−y2 d(x, y)

We may now change variables to polar coordinates. We have x2 + y2 = r2, so the integral
just becomes:

=

∫ 2π

0

∫ ∞

0

re−r2 dr dθ

Remember that we get an extra factor of r when changing to polar... and this is exactly
what makes this integral solvable! By changing variables again with u = r2, this becomes

=

∫ 2π

0

1

2

∫ ∞

0

e−u du dθ

=

∫ 2π

0

1

2
dθ = π

This is the answer squared, so taking the square root of this gives the desired answer to the
integral! □

2.6 Measure of the N-Ball

Here is an application of the Gaussian integral and Tonelli.

Theorem 2.4

LN(BN(0, 1)) =
πN/2

Γ
(
N
2
+ 1
)
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Proof. We’re going to use a useful, general technique/prank here, so pay attention! We
start with the Gaussian integral on RN . That is,∫

RN

e−∥x∥2 dx =
N∏
i=1

∫
R
e−x2

i dxi = πN/2

by Tonelli applied a billion times.

Here comes to prank. Let’s rewrite the integrand by introducing an indicator function
and a second integral!

πN/2 =

∫
RN

e−∥x∥2 dx =

∫
RN

∫ ∞

0

1[0,e−∥x∥2 ](t) dt dx

Make sure you see why this works. We now apply Tonelli to swap:

=

∫ ∞

0

∫
RN

1[0,e−∥x∥2 ](t) dx dt

To simplify this thing, we now want to rewrite the indicator function to be a function of x
instead of t. To do this, we reason that for all 0 ≤ t ≤ ∞, we have that 0 ≤ t ≤ e−∥x∥2 holds
iff log t ≤ −∥x∥2 iff ∥x∥2 ≤ − log t iff ∥x∥ ≤

√
− log t iff x ∈ BN(0,

√
− log t), and in fact

this is valid only for t ∈ [0, 1]. Thus 1[0,e−∥x∥2 ](t) = 1BN (0,
√
− log t)(x) · 1[0,1](t), so in addition

to replacing the indicator, we also replace the
∫∞
0

dt with
∫ 1

0
dt

πN/2 =

∫ 1

0

∫
RN

1BN (0,
√
− log t)(x) dx dt =

∫ 1

0

LN(BN(0,
√

− log t)) dt

By a scaling argument, we know that LN(BN(0,
√
− log t)) =

(√
− log t

)N LN(BN(0, 1)).
Thus

πN/2 = LN(BN(0, 1))

∫ 1

0

(− log t)N/2 dt.

Lastly we change variables with s = − log t. Then ds = (−1/t) dt i.e. dt = −t ds = −e−s ds
to get

πN/2 = LN(BN(0, 1))

∫ 0

∞
−e−ssN/2 ds = LN(BN(0, 1))

∫ ∞

0

e−ssN/2 ds = Γ

(
N

2
+ 1

)
.

Rearranging, we conclude that LN(BN(0, 1)) =
πN/2

Γ
(
N
2
+ 1
) . □

20



Thomas Lam 21-235 Recitation 3 9/15/2022

3 Spherical Coordinates

We started with polar coordinates, given by the COV

g

([
r
θ1

])
=

[
r cos θ1
r sin θ1

]
.

Spherical coordinates generalizes to N coordinates, with the COV

g





r
θ1
θ2
...

θN−2

θN−1




=



r cos θ1
r sin θ1 cos θ2
r sin θ1 sin θ2 cos θ3
...
r sin θ1 sin θ2 sin θ3 . . . sin θN−2 cos θN−1

r sin θ1 sin θ2 sin θ3 . . . sin θN−2 sin θN−1


,

where we have 0 ≤ θ1, θ2, · · · , θN−2 ≤ π and 0 ≤ θN−1 ≤ 2π.

The way this works out is inductively (draw a picture for N = 3 to follow along!).

• θ1 is the angle between x and the positive x1 axis, so that x1 = r cos θ1. (Note that we
have 0 ≤ θ1 ≤ π; if you think about it, it makes no sense for two vectors to form an
angle of 270◦...)

• Then, we remove/“zero-out” the x1 component from x by projecting it unto the N−1-
dimensional subspace formed by x2, x3, · · · , xN . This doesn’t change the x2, x3, · · · , xN

coordinates, but it does change the magnitude from r to r sin θ1.

• Then we keep going: The angle between this projected vector and x2 we shall call θ2,
so that x2 = (new magnitude) cos θ2 = r sin θ1 cos θ2. (Again, 0 ≤ θ2 ≤ π.)

• Now you project unto the N − 2 subspace formed by x3, · · · , xN and etc. etc. etc.

• After enough projections, we project unto a 2D plane. After that, we just need one last
angle θN−1 to specify where we are in the plane, given that our projection has length
r sin θ1 sin θ2 sin θ3 . . . sin θN−2. That’s why the last two components of this coordinate
system end in a cos θN−1 and sin θN−1, like in 2D polar coordinates. This is also why
we don’t need to restrict θN−1 to [0, π] like the other angles.

If you rough it out, the Jacobian determinant is given by

det Jg(x) = rN−1 sinN−2 θ1 sin
N−3 θ2 . . . sin θN−2.
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Example 3.1 (Hemisphere Center of Mass): Compute

1
2
3
π

∫
E

z d(x, y, z),

where E = {(x, y, z) ∈ B3(0, 1) : z > 0} is the upper unit hemisphere.

Solution. We use spherical coordinates with the COV

g

xy
z

 ?
=

 r cos θ
r sin θ cosφ
r sin θ sinφ

 .

But the astute reader may observe that the condition z > 0 would translate to r sin θ sinφ >
0, which is ugly to deal with, so let’s switch the order around real quick so we don’t have to
deal with that:

g

xy
z

 =

r sin θ sinφr sin θ cosφ
r cos θ

 .

Now z > 0 iff r cos θ > 0, which is much easier to deal with; in fact, this occurs iff −π/2 <
θ < π/2. This restriction, combined with the restrictions 0 < r < 1, 0 ≤ θ ≤ π, and
0 ≤ φ ≤ 2π, tells us what our new integral(s) look like:

1
2
3
π

∫
E

z d(x, y, z) =
1
2
3
π

∫ 1

0

∫ 2π

0

∫ π/2

0

r cos θ ·
(
r2 sin θ

)
dθ dφ dr.

Remark 1: Note the Jacobian determinant of r2 sin θ.

Remark 2: This should make a lot of sense: To specify what angle you’re facing, among
the points on the surface of a hemisphere, you first specify a pitch (“up and down-ness”;
imagine nodding “yes”) within a range of 180 degrees, and then you specifiy a yaw (“left
and right-ness”; imagine shaking your head ala “no”) between 0 and 360 degrees!

Using Tonelli spam, we may evaluate these new integrals:

=
1
2
3
π

(∫ 1

0

r3 dr

)(∫ 2π

0

1 dφ

)(∫ π/2

0

sin θ cos θ dθ

)
=

1
2
3
π
(1/4)(2π)(1/2) =

3

8
.

■
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3.1 Integrals depending only on magnitude

At some point (perhaps in a certain advanced real analysis course?), you might become
very interested in integrating functions that depend only on magnitude, such as∫

R3

1

1 + x2 + y2 + z2
d(x, y, z).

The general form for such a problem would be
∫
a≤∥x∥≤b

f(∥x∥) dx, for 0 ≤ a ≤ b ≤ ∞ and

an integrable function f : [0,∞) → R. Naturally, we’d like to tame this using spherical
coordinates. We have: ∫

a≤∥x∥≤b

f(∥x∥) dx

=

∫
[0,π]N−2×[0,2π]

∫ b

a

f(r) · rN−1 sinN−2 θ1 sin
N−3 θ2 . . . sin θN−2 dr d(θ1, · · · , θN−1)

Ewww!!! Blegh! Let’s rearrange this into:

=

∫ b

a

f(r) · rN−1 dr ·
(∫

[0,π]N−2×[0,2π]

sinN−2 θ1 sin
N−3 θ2 . . . sin θN−2 d(θ1, · · · , θN−1)

)
The good news is that that second term does not depend on f ! In fact, it depends only on
N , so we may call this a constant αN .∫

a≤∥x∥≤b

f(∥x∥) dx = αN

∫ b

a

rN−1f(r) dr (∗)

Even if we don’t really know what αN is, this is already really useful for ascertaining con-
vergence.

Example 3.2: For what exponents a ∈ R does the integral∫
BN (0,1)

1

∥x∥a
dx

converge? For what exponents b ∈ R does the integral∫
RN\BN (0,1)

1

∥x∥b
dx

converge?

Solution. Using our cute formula, we have that∫
BN (0,1)

1

∥x∥a
dx = αN

∫ 1

0

rN−1

ra
dr = αN

∫ 1

0

1

ra−N+1
dr,
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and classically this converges exactly when a−N + 1 < 1, i.e. a < N .

Similarly, the integral
∫
RN\BN (0,1)

1
∥x∥b dx exactly when b > N . ■

But, let’s say you were really, really curious about what αN is. How would we go about
finding it?

The key idea is that our formula (∗) works for any 0 ≤ a ≤ b ≤ ∞ and any f that we
plug into it. Why don’t we try taking a = 0, b = 1, and f = 1? Then we’d get∫

BN (0,1)

1 dx = αN

∫ 1

0

rN−1 dr,

or

LN(BN(0, 1)) = αN · 1

N
.

Thus αN = N · LN(BN(0, 1)) .
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4 Cantor Ruins the Day

If a measurable set (in the Lebesgue sense) has positive measure, then it must be un-
countable (why?). But the converse is not true! There is a set that is uncountable and yet
has zero measure, called the Cantor Set.

4.1 Ternary Construction

Definition 4.1

The Cantor set C is the set of all real numbers in [0, 1] that has a ternary representation
using only 0’s and 2’s.

• I write “a” ternary representation because some numbers have multiple! (Think about
how 0.9 = 1...)

• 2/3 ∈ C because 2/3 = 0.23 has no 1’s.

• 1/3 ∈ C because 1/3 = 0.13 = 0.02222 . . . has no 1’s.

• 1/2 ̸∈ C. This is because 1/3 < 1/2 < 2/3 which forces the first digit of 1/2 to be a 1.

In general, suppose that the first n−1 digits of x are known to be d1, d2, · · · , dn−1. Then
x is somewhere in the range

[
0.d1d2 . . . dn−1, 0.d1d2 . . . dm−1 +

1
3n−1

]
. Moreover, dn = 1 is

forced exactly when

x ∈
(
0.d1d2 . . . dm−1 +

1

3n
, 0.d1d2 . . . dm−1 +

2

3n

)
.

Taking the union over all possible digits d1, · · · , dn−1, we see that for x ∈ [0, 1], its nth
digit in every ternary representation of x is forced to be 1 exactly when

x ∈
⋃

d1,d2,··· ,dn−1

(
0.d1d2 . . . dn−1 +

1

3n
, 0.d1d2 . . . dn−1 +

2

3n

)

=
3n−1−1⋃
k=0

(
k

3n−1
+

1

3n
,

k

3n−1
+

2

3n

)
Taking the union over all n, we see that some digit of x is forced to be 1 (i.e. x ∈ [0, 1] \ C)
exactly when

x ∈
∞⋃
n=1

3n−1−1⋃
k=0

(
k

3n−1
+

1

3n
,

k

3n−1
+

2

3n

)
.
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It follows that

C = [0, 1] \
∞⋃
n=1

3n−1−1⋃
k=0

(
k

3n−1
+

1

3n
,

k

3n−1
+

2

3n

)
.

4.2 ”Middle Thirds” Construction

(Just google this lol)

4.3 Properties

1. C is compact. (It is closed by the explicit construction.)

2. C is Borel (...thus it is Lebesgue measurable).

3. C◦ = ∅

4. acc C = C. (Sketch: Take x ∈ C. Flip some digit from a 0 to 2 or vice versa. If the
digit is “sufficiently far” then the change is < ε.)

5. C is self-similar, and is thus a fractal. In particular:

C/3 ⊆ C

2

3
+ C/3 ⊆ C

C =

(
C
3

)
∪
(
2

3
+

C
3

)
(Motto: “x has no 1’s iff the first digit is either 0 or 2, and the rest of the digits have
no 1’s”)

6. L1(C) = 0

Proof. From the previous property, we have that

L1(C) = L1(C)/3 + L1(C)/3.

The only solutions to this are L1(C) = 0 and L1(C) = +∞. We can easily toss the
latter. □

7. C is uncountably infinite. (There are uncountably many ternary strings with only 0’s
and 2’s!)
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4.4 The Devil’s Staircase

Also called the “Cantor Function”, but it doesn’t sound as cool.

Definition 4.2 (Devil’s Staircase)

Consider the function f : [0, 1] \ C → [0, 1] defined as follows: For x ∈ [0, 1] \ C, let dn
be the first digit that is 1, so that 1, 2, · · · , dn−1 ∈ {0, 2} and dn = 1. Then:

f (x) :=
n−1∑
k=1

d′k
2k

+
1

2n
,

where

d′k =

{
0, dk = 0

1, dk = 2
. (∗)

Essentially, we replace every 2 with a 1, and then read the first n digits as binary. For
example,

(0.0200202021020020 . . .)3 maps to

(0.0100101011)2.

It can be shown that f is increasing and continuous (and also, if one writes [0, 1] \ C
as a countable union of disjoint open intervals, then f is constant on each interval!).
It follows that f has a unique continuous extension to all of [0, 1], and we call this the
Devil’s Staircase. An explicit formula for f(x) when x ∈ C is given as

f(x = (0.d1d2d3d4 . . .)3) := (0.d′1d
′
2d

′
3d

′
4 . . .)3,

where d′k is defined as in (∗).

Some properties:

1. f is continuous and increasing.

2. f is constant over every
(

k
3n−1 +

1
3n
, k
3n−1 +

2
3n

)
.

3. f ′(x) = 0 for almost every x ∈ [0, 1].

4. As a corollary,

1 = f(1)− f(0) ̸=
∫ 1

0

f ′(x) dx = 0.

Thus the Fundamental Theorem of Calculus has been broken. The necessary (and
sufficient!) fix is to enforce that f is not only continuous, but absolutely continuous.
At some point, lecture will focus a lot on absolute continuity, and it’s very important!
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5. (For the probability nerds) Let X be a random variable whose CDF is given by f .
Then the CDF of X is continuous but X is not a continuous random variable, because
X does not admit a density.

6. (For the time travelers) f ∈ C0,log2 3([0, 1]) (i.e. f is Hölder continuous with exponent
log2 3). It follows that f is uniformly continuous. At some point we will probably talk
about what all this means in recitation.
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5 We Stan Domination

Theorem 5.1 (Lebesgue Domination)

Suppose fn : E → R is such that fn → f almost everywhere, and moreover |fn| ≤ g
for g ∈ L1(E) (i.e.

∫
E
g dx < ∞). Then

lim
n→∞

∫
E

fn dx =

∫
E

lim
n→∞

fn dx.

This is the most important theorem in all of real analysis.

5.1 Some Example Applications

Example 5.1: Compute the limit

lim
n→∞

∫ 2

0

(2x− x2)n dx.

Solution. Let fn(x) = (2x− x2)n dx. We recognize that 0 < 2x− x2 < 1 for all x ∈ (0, 1),
thus

lim
n→∞

fn(x) = 0

for all x ∈ (0, 2). Thus fn → f pointwise, where f ≡ 0. We now must show that the
functions {fn}n are dominated by some integrable function g. Indeed, we can just take
g(x) = 1, which is integrable over (0, 2). So we may swap the limit and integral to get

lim
n→∞

∫ 2

0

(2x− x2)n dx =

∫ 2

0

lim
n→∞

(2x− x2)n dx =

∫ 2

0

0 dx = 0.

■

Example 5.2: Compute the limit

lim
n→∞

n

∫ 1

0

cos(x)

1 + n2x2
.

Solution. We first change variables with u = nx to rewrite the integral as

n

∫ 1

0

cos(x)

1 + n2x2
=

∫ n

0

cos(u/n)

1 + u2
du =

∫ ∞

0

cos(u/n)

1 + u2
· 1[0,n](u) du.

Letting fn(u) := cos(u/n)
1+u2 · 1[0,n](u), it is clear that fn → f pointwise, where f(u) := 1

1+u2 .
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Moreover, the {fn}n are dominated by g(u) := f(u). It follows that

lim
n→∞

∫ ∞

0

cos(u/n)

1 + u2
· 1[0,n](u) du =

∫ ∞

0

1

1 + u2
du =

π

2
.

■

5.2 Regularity of the Gamma function

Recall the definition of the Gamma function:

Γ(x) :=

∫ ∞

0

tx−1e−t dt ∀x > 0

Theorem 5.2

Γ is continuous.

Proof. Note: This example ended up being more convoluted than I thought because there
is some fussiness involved with t > 1 vs. t < 1...

Fix x0 > 0. We would like to show that limx→0 Γ(x) = Γ(x0). It suffices to prove that
for any xn → x0 we have limn→∞ Γ(xn) = Γ(x0). That is,

lim
n→∞

∫ ∞

0

txn−1e−t dt
?
=

∫ ∞

0

tx0−1e−t dt.

We want to try and apply dominated convergence! Let fn(t) := txn−1e−t and f(t) := tx0−1e−t.
It is clear that fn → f pointwise in (0,∞). We now just need to dominate {fn}n.

Since xn → x0, we have in particular that {xn}n is bounded from above by some M > 0
and bounded from below by some δ > 0 (why?). We claim that the function

g(t) :=

{
tM−1e−t, t ≥ 1

tδ−1e−t, 0 < t < 1

dominates!

By taking cases on whether whether t ≥ 1 or t < 1, we can show that |fn| ≤ g for all n
(note that x 7→ tx is decreasing if t < 1, and increasing if t > 1), so we need only show that
g is integrable.

• On one hand, we have that∫ 1

0

tδ−1e−t dt ≤
∫ 1

0

tδ−1 dt < ∞

because δ − 1 > −1.
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• On the other hand, you can show that∫ ∞

1

tM−1e−t dt < ∞,

which should be believable since this is less than Γ(M), which should be finite. If you
want an actual proof, try using the fact that tM−1e−t ≤ e−t/2 for all t large enough
(say, t ≥ T ).

This concludes the proof of continuity! □

Next let’s prove that the Gamma function is differentiable.

Theorem 5.3

Γ is differentiable, with

Γ′(x) =

∫ ∞

0

log(t)tx−1e−t dt.

Proof. Take x0 > 0. We wish to prove that the limit

lim
x→x0

Γ(x)− Γ(x0)

x− x0

=

∫ ∞

0

tx−1 − tx0−1

x− x0

e−t dt

exists, and is equal to the claimed derivative.

It suffices to prove that

lim
n→∞

∫ ∞

0

txn−1 − tx0−1

xn − x0

e−t dt =

∫ ∞

0

log(t)tx0−1e−t dt

for an arbitrary sequence xn → x0.

It’s clear by definition of derivative that we have convergence of the integrands pointwise.
So, we just need to dominate the integrands.

By the MVT (applied to the function x 7→ tx−1, whose derivative is log(t)tx−1) there
exists cn between xn and x0 such that

txn−1 − tx0−1

x− x0

e−t = log(t)tcn−1e−t.

Since xn → x0, we must have cn → x0, so in particular {cn} is bounded so that we can
obtain bounds δ ≤ cn ≤ M for some M, δ > 0. It follows that when t ≥ 1 we have the upper
bound

| log(t)tcn−1e−t| ≤ log(t)tM−1e−t,
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and when 0 < t < 1 we have the upper bound

| log(t)tcn−1e−t| ≤ | log(t)|tδ−1e−t.

(Remember that we have absolute values because we want to write |fn| ≤ g!)

We have finally arrived at an upper bound∣∣∣∣txn−1 − tx0−1

xn − x0

e−t

∣∣∣∣ = | log(t)tcn−1e−t| ≤ g(t) :=

{
| log(t)|tM−1e−t, t ≥ 1

| log(t)|tδ−1e−t, 0 < t < 1

that is independent of n, and it remains to show that this is integrable.

Similarly to the previous proof, we can abuse the asymptotics pertaining to the fact that
e−t decays much faster that tk and log t to show that

∫∞
1

| log(t)|tM−1e−t dt < ∞. Then,

we may make the bound
∫ 1

0
| log(t)|tδ−1e−t dt ≤

∫ 1

0
| log(t)|tδ−1 dt, and then, perhaps by

integration by parts, we may show that this is finite. □

5.3 wtf

Example 5.3: Evaluate the integral∫ 1

0

x17 − 1

log x
dx.

Solution. Define the function I : R+ → R via

I(t) :=

∫ 1

0

xt − 1

log x
dx.

We claim that I(t) is differentiable for all t > 0. To see this, let t0 > 0 and let hn → 0 be an
arbitrary sequence. Then

I(t0 + hn)− I(t0)

hn

=

∫ 1

0

xt0

log x
· x

hn − 1

hn

dx.

By the MVT, there exists cn between hn and 0 for which∫ 1

0

xt0

log x
· (log(x)xcn) dx =

∫ 1

0

xt0+cn dx,

and from here it is not hard to find a dominating function for the integrand (say, g(x) =
xt0+infn cn . Or... even g(x) = 1 if you squint). So by domination it follows that

I ′(t0) = lim
n→∞

I(t0 + hn)− I(t0)

hn

=

∫ 1

0

lim
n→∞

xt0+cn dx =

∫ 1

0

xt0 dx =
1

1 + t0
.
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As t0 was arbitrary, we deduce that

I ′(t) =
1

1 + t

for all t > 0. I is sufficiently regular, so we may integrate and apply the FTC to obtain

I(t) = I(0) + log(1 + t) = log(1 + t).

Thus the answer is I(17) = log(18) . ■

5.4 thomas go to sleep it’s 3 am

Example 5.4: Evaluate the integral∫ ∞

−∞
e−x2

cos(2x) dx.

Solution. With no motivation whatsoever, let’s define

I(t) =

∫ ∞

−∞
e−x2

cos(2tx) dx.

We now compute the derivative of I. We have

I(t+ hn)− I(hn)

hn

=

∫ ∞

−∞
e−x2 · cos(2xt+ 2xhn)− cos(2xt)

hn

dx

=

∫ ∞

−∞
2xe−x2 · cos(2xt+ 2xhn)− cos(2xt)

2xhn

dx.

By the MVT, we have for some cn between 2xt and 2xhn that this is equal to

=

∫ ∞

−∞
2xe−x2 · (− sin(cn)) dx.

Note that by choice of cn, we have that cn → 2xt.

We now claim that the integrands are dominated. Indeed, we have that∣∣∣2xe−x2 · (− sin(cn))
∣∣∣ ≤ 2|x|e−x2

,

and since 2|x|e−x2
is integrable (Hint: Integrate over x > 0, and take u = x2), we may take

this as the dominating function. Thus we can pass the limit through to get

I ′(t) = lim
n→∞

∫ ∞

−∞
2xe−x2 · (− sin(cn)) dx =

∫ ∞

−∞
2xe−x2 · (− sin(2xt)) dx.
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Let us now integrate by parts.

I ′(t) =

(
−e−x2 · (− sin(2xt))

∣∣∣∞
x=−∞

)
−
∫ ∞

−∞
e−x2

2t cos(2xt) dx

=

∫ ∞

−∞
−2te−x2

cos(2xt) = −2tI(t).

Since I(0) =
√
π, we have obtained the initial value problem{

I ′(t) = −2tI(t)

I(0) =
√
π

.

To solve this, we note that
I ′(t) + 2tI(t) = 0,

so that
I ′(t)et

2

+ 2tI(t)et
2

= 0.

By magic, this may be written as

d

dt

[
I(t)et

2
]
= 0,

and thus by applying the FTC we may obtain

I(t)et
2 − I(0)e0

2

= 0.

This gives the form I(t) =
√
πe−t2 . Our answer is thus I(1) =

√
π

e
. ■

The following exercise may be good practice for whoever is reading this.

Example 5.5: Let

I(t) :=

∫ ∞

0

sinx

x
e−tx dx.

1. (Maybe a bit tricky?) Find the set E of all t ∈ R for which I(t) is well-defined.
(In particular, does the integral converge for t = 0...?)

2. Show that I(t) is differentiable in E, and compute said derivative.

3. Using tricks, find a closed form for I ′(t).

4. Deduce the value of the integral∫ ∞

0

sinx

x
e−x dx.
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6 Continuity and Friends!

6.1 Meet the Family

There are a bunch of notions of continuity!

Definition 6.1 (Continuous)

Let f : (X, dX) → (Y, dY ).
f is continuous if for each x0, we have for all ε > 0 that there exists δ > 0 for which

dY (f(x), f(x0)) < ε

for all x with dX(x, x0) < δ.
We write f ∈ C0(X;Y ).

Definition 6.2 (Uniform)

Let f : (X, dX) → (Y, dY ).
f is uniformly continuous if for all ε > 0 there exists δ > 0 for which

dY (f(x), f(y)) < ε

for all x, y with dX(x, x0) < δ.

Motto: “There is no dependence on where you are. We’re “just as continuous” every-
where. For each ε > 0, the same δ > 0 works everywhere.”

Definition 6.3 (Lipschitz)

Let f : (X, dX) → (Y, dY ).
f is Lipschitz continuous if there exists L > 0 for which

dY (f(x), f(y)) ≤ L · dX(x, y)

for all x, y.
We write f ∈ C0,1(X;Y ).
On the real line, this looks like

|f(x)− f(y)| ≤ L|x− y|.

You can try and visualize this if you want (imagine drawing an “X” through each point
on the “graph”...), though in general I consider this to be a nice property that gives “nice
ways to estimate differences”. Often used in differential equations.
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Definition 6.4 (Hölder)

Let f : (X, dX) → (Y, dY ). Let α > 0.
f is α-Hölder continuous if there exists H > 0 for which

dY (f(x)− f(y)) ≤ H · dX(x, y)α

for all x, y.
We write f ∈ C0,α(X;Y ).
On the real line, this looks like

|f(x)− f(y)| ≤ H|x− y|α.

Motto: Hölder got jealous and copied Lipschitz.

I defined it on metric spaces, but you pretty much only see Hölder continuity used on
RN .

The next notion of continuity is only really sane on R.

Definition 6.5 (Absolutely Continuous)

Let I ⊆ R be an interval, f : I → R. f is absolutely continuous if for any ε > 0 we
can find δ > 0 such that the following holds:
Whenever we have pairwise disjoint intervals {(ai, bi)}ni=1 for some n, whose lengths
sum to at most δ (i.e.

∑n
i=1 bi − ai < δ), we have that

n∑
i=1

|f(bi)− f(ai)| < ε.

This is incredibly important, and a big portion of this course will be spent studying this
notion of continuity.
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6.2 Hierarchy

Theorem 6.1

Let 0 < α < 1, we have the following hierarchy:

AC

Lipschitz Uniform Continuous

α-Holder

• Putting AC on the diagram only make sense when f : I → R. In any case we
have the implication Lipschitz =⇒ Uniform.

• The dashed arrow holds only when f is bounded. (If f need not be bounded,
then f(x) = x for x ∈ R is a counterexample!)

Proof. I will assume that f : I → R because I’m too lazy to write metric stuff.

Lipschitz implies AC

Suppose |f(x)− f(y)| ≤ L|x− y|. Fix ε > 0. Take δ = ε/L.

Then for any {(ai, bi)}ni=1 with
∑n

i=1 bi − ai < δ, we have that

n∑
i=1

|f(bi)− f(ai)| ≤
n∑

i=1

L|bi − ai| ≤ L · δ = ε.

AC implies Uniform

Take n = 1 lmfao.

Lipschitz implies Uniform

This isn’t immediate from the first two implications if we’re in a general metric space,
but no matter the case, this is easy.

Lipschitz implies Hölder when f is bounded

Suppose f is Lipschitz with Lipschitz constant L, so |f(x)− f(y)| ≤ L|x− y|.

Take x, y ∈ I.
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• If |x− y| < 1, then
|f(x)− f(y)| ≤ L|x− y| ≤ L|x− y|α

because α ∈ (0, 1).

• If |x− y| ≥ 1, then
|f(x)− f(y)| ≤ 2M ≤ 2M |x− y|.

So f is α-Hölder continuous with Hölder constant H := max(2M,L).

Hölder implies Uniform

This is easy.

Uniform implies Continuous

I mean, duh. □

The next natural question to ask is if all these implications are strict. I won’t do all of
them, here are some of the more interesting/instructive ones.

6.2.1 Function that is Continuous but not Uniformly Continuous

f : R → R with f(x) = x2 works. Notice that since x2 gets “steeper and steeper”, we
can reason that “the same δ cannot work everywhere”.

In general, any f : R → R that is uniformly continuous must be sublinear.

Another example is given f : (−1, 0) ∪ (0, 1) → R with

f(x) := sin

(
1

x

)
.

This is technically continuous, but the high oscillatory nature near x = 0 is what prevents
f from being uniformly continuous.

6.2.2 Function that is Uniformly Continuous but not Absolutely Continuous

The Devil’s Staircase works.

On one hand, the Devil’s staircase is uniformly continuous because it is continuous on
a compact set (a property that we will prove). On the other hand, it can be reasoned that
the Devil’s staircase could not be AC. This is because it fails the Fundamental Theorem of
Calculus (which is in a sense equivalent to AC, as you will see later in the semester!).
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6.2.3 Function that is α-Hölder but not Absolutely Continuous

The Devil’s Staircase again!

It’s not just uniformly continuous. It’s also Hölder continuous of exponent log3 2.

6.2.4 Function that is Absolutely Continuous but not Lipschitz

f(x) :=
√
x on [0, 1] works.

Proof that f is AC

We use the following inequality: For 0 ≤ z ≤ x ≤ y, we have
√
x−√

y ≤
√
x− z−

√
y − z.

(Proof: Square both sides and move things around until you believe me.)

Intuitively, if we “shift” the interval (x, y) to the left, then the value of
√
y − x can only

increase.

Now for any {(ai, bi)}ni=1 pairwise disjoint, we “shift” each interval to the left until all the
n intervals are next to each other, starting at 0. This gives

n∑
i=1

√
bi −

√
ai ≤

√√√√ n∑
i=1

bi − ai −
√
0.

From here, the finish is easy. When ε > 0, then we can take δ =
√
ε, so that if

∑n
i=1 bi−ai < δ

then
n∑

i=1

√
bi −

√
ai ≤

√
δ −

√
0 = ε.

Proof that f is not Lipschitz

If it were, then there is L > 0 such that
√
x ≤ Lx for all x ∈ [0, 1]. Dividing, it follows

that 1√
x
≤ L for all x ∈ (0, 1]. Sending x → 0+ gives a contradiction.

6.2.5 Function that is Uniformly Continuous but not α-Hölder, or α-Hölder but
not Lipschitz

A general statement that can be made here: Let β ∈ (0, 1), and define f(x) := xβ for all
x ∈ [0, 1]. Then:

• f is uniformly continuous. (Even better: It’s absolutely continuous!)
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• f is α-Hölder continuous exactly when 0 < α ≤ β.

The proof methodology is similar to the methods used in the previous two counterexam-
ples.

6.3 Properties of Lipschitz Continuity

Here is a natural criterion for ascertaining that a differentiable function is Lipschitz.

Theorem 6.2

Let E ⊆ RN be convex, and f : E → R be differentiable. Suppose there exists M > 0

such that
∣∣∣ ∂f∂xi

(x)
∣∣∣ ≤ M for all x ∈ E and all 1 ≤ i ≤ N . Then f is Lipschitz.

Proof. The uniform bound on the partial derivatives implies that there exists some con-
stant L > 0 such that ∥∇u(x)∥ ≤ L for all x ∈ E.

Now take any x, y ∈ E. Let g : [0, 1] → R be defined as g(t) := f((1 − t)x + ty). (Here
we need the convexity of E for this to be well-defined.)

Then, by applying the Mean Value Theorem, we get

g(1)− g(0) = g′(c)

for some c ∈ (0, 1). It follows that

f(y)− f(x) = ∇f((1− c)x+ cy) · (y − x),

and now by Cauchy Schwarz we obtain the bound

∥f(y)− f(x)∥ ≤ ∥∇f((1− c)x+ cy)∥ · ∥y − x∥ ≤ L∥y − x∥.

□

In fact...

Theorem 6.3

Let K ⊆ RN be compact and convex, and f : K → R be of class C1. Then f is
Lipschitz.

Proof. The function ∇f : K → RN is continuous, and in particular ∥∇f(·)∥ : K → R is
continuous. Thus by the extreme value theorem, there exists L > 0 such that ∥∇f(x)∥ ≤ L
for all x ∈ K. We may conclude that f is Lipschitz by the previous theorem. □

Remarks:
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• You can generalize both theorems to account for a range of RM instead of R. It’s just
tedious.

• In both theorems, it is possible to remove the requirement that the domain be convex.
We might cover how to do that next semester.

6.4 Properties of Hölder Continuity

Y’know how we keep requiring that α ∈ (0, 1)? Well here’s why.

Theorem 6.4

Let I ⊆ R be an interval. Any f : I → R that is α-Hölder continuous, where α > 1,
is constant.

Proof. Fun exercise. (I can think of two nice ways to go about this...) □

6.5 Properties of Uniform Continuity

Theorem 6.5

Let K be compact and f : K → R be continuous. Then f is uniformly continuous (!).

Proof. Heads up: We take a bunch of weird “· · · /2” ’s in order to make things work here.

Fix ε > 0. Then for each x ∈ K there exists δx > 0 for which

dY (f(x), f(y)) < ε/2

for all y ∈ B(x, δx).

Since {B(x, δx
2
)}x∈K covers K, we have by compactness that there exists x1, x2, · · · , xn

for which {B(xk,
δxk
2
}1≤k≤n covers K.

Now we take δ = min
1≤k≤n

δxk

2
. We claim this works.

Indeed, consider x, y ∈ K for which dX(x, y) < δ. Find k for which x ∈ B(xk, δxk
/2).

Then
dX(y, xk) ≤ dX(y, x) + dX(x, xk) ≤ δ + δxk

/2 ≤ δxk
/2 + δxk

/2 = δxk
.

Since dX(x, xk) < δ ≤ δxk
it follows that both dY (f(x), f(xk)) < ε/2 and dY (f(xk), f(y)) <

ε/2, hence dY (f(x), f(y)) < ε. □
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(Remark: Jacob mentioned a less messy proof, but it requires a notion of sequential
compactness. We’ll talk about it next semester.)

The next theorem is arguably the most important property of uniformly continuous
functions, but unfortunately we do not currently have the technology necessary to prove it
or exploit it in full.

Theorem 6.6 (Extension of Uniformly Continuous Functions)

Let E ⊆ RN and f : E → RM be uniformly continuous. Then f can be continuously
extended to all accumulation points of E!
That is, we can define a value f(x) at each point x ∈ E\E so that f is still continuous!
Also this extension is unique.

Proof. Hard. We’ll talk about it next semester, probably! □

Remark: The same is true for f : E → Y , where E ⊆ X, X, Y are metric spaces, and Y
is complete. Again, we’ll cover that next semester.

Theorem 6.7 (Sublinear Growth)

Let f : R → R be uniformly continuous. Then there exists a, b ∈ R for which

|f(x)| ≤ a|x|+ b

for all x ∈ R.

Proof. Exercise. ;) □
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7 Absolute Continuity

Absolute continuity is the most important continuity (...in my opinion)!

7.1 Closure properties

Theorem 7.1 (AC closed under linear combinations or whatever)

Suppose f, g : I → R are AC. Then f + g is AC. Also tf is AC for any t ∈ R.

Proof. tRiViAl □

But it is not true that the product of AC functions is AC. Consider, e.g. f(x) = x and
g(x) = x over R. These are both AC, but (fg)(x) = x2 is not.

Theorem 7.2 (Products)

Suppose f, g : I → R are AC and bounded. Then fg is AC.

Proof. We do pranks.

Let’s instead prove that if h : I → R is AC and bounded, then h2 is AC.

Let M = supI |h| < ∞. Fix ε > 0. Find δ > 0 such that if
∑

bi − ai < δ then∑
|h(bi)− h(ai)| < ε/(2M). Then for all {(ai, bi)} with

∑
bi − ai < δ we may write

n∑
i=1

|h(bi)2−h(ai)
2| ≤

n∑
i=1

|h(bi)−h(ai)|·|h(bi)+h(ai)| ≤ 2M
n∑

i=1

|h(bi)−h(ai)| ≤ 2M · ε

2M
= ε.

So h2 is indeed AC.

To finish the prank, apply the intermediate result on f + g to see that f 2 + 2fg + g2 is
AC. But applying the result on f and g independently shows that f 2 and g2 are AC. Hence
f 2 + 2fg + g2 − f 2 − g2 is AC, so 2fg is AC. Hence fg is AC. □

We’re now interested in whether quotients are AC. Obviously, not necessarily (e.g. f(x) =
1, g(x) = x are AC over (0, 1), but not (f/g)(x) = 1/x). Here we should simply ensure that
the denominator stays away from 0.

Theorem 7.3

Suppose f, g : I → R are AC, such that f is bounded and 0 is not an accumulation
point of the range of g (i.e. g(I)). Then f/g is AC.
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Proof. Since g is continuous, we may argue that |g(x)| ≥ a for some a > 0 (why?). Hence
1/g is bounded and so by the previous theorem it suffices to show that 1/g is AC. But upon
writing

n∑
i=1

∣∣∣∣ 1

g(bi)
− 1

g(ai)

∣∣∣∣ = n∑
i=1

|g(bi)− g(ai)|
|g(ai)g(bi)|

≤
n∑

i=1

1

a2
|g(bi)− g(ai)|,

we see that this is clear. □

As a corollary, we have all of the following properties for functions on compact intervals.

Corollary 7.1

Let f, g : [a, b] → R be AC. Then

• tf is AC,

• f ± g is AC,

• fg is AC, and

• f/g is AC provided that g has no zeroes.

The next question is, what about composition? It is not true that the composition of
AC functions is AC. One weird example is given by f(x) = x2| sin(1/x)| and g(x) =

√
x,

both over [0, 1]. These are both AC (why?), but the function x| sin(1/
√
x)| is not. Hence a

stronger assumption is necessary.

Theorem 7.4 (Composition)

Let f : R → R and g : I → R be such that f is Lipschitz and g is AC. Then f ◦ g is
AC.

Proof. Let L be a Lipschitz constant for f , and fix ε > 0. Take δ such whenever
∑

bi−ai <
δ (pairwise disjoint blah blah) we have

∑
|g(bi)−g(ai)| < ε/L. Then for all pairwise disjoint

intervals {(ai, bi)} with
∑

bi − ai < δ/L, we have that

n∑
i=1

|f(g(bi))− f(g(ai))| ≤
n∑

i=1

L|g(bi)− g(ai)| < L · ε/L = ε.

□

7.2 Other Properties

Do the intervals need to be pairwise disjoint? Then answer is yes. Consider f(x) =
√
x

over [0, 1]. This is AC. But note that given any δ > 0, the n intervals (0, δ/n), (0, δ/n), · · · , (0, δ/n)
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have total length at most δ, and
∑n

i=1

√
δ/n −

√
0 =

√
nδ, which can exceed any ε > 0 by

choosing n large enough.

Fortunately, there are some valid ways to fudge the definition of AC.

Theorem 7.5

In the definition of AC, we make allow taking n = ∞.

Proof. Suppose f is AC. Fix ε > 0, and take a δ that witnesses the absolute continuity
of f suppose that pairwise disjoint blah blah

∑∞
i=1 bi − ai < δ. Then for all n, we have∑n

i=1 bi − ai < δ, so
n∑

i=1

|f(bi)− f(ai)| < ε.

As n was arbitrary, we can send n → +∞ to obtain
∑n

i=1 |f(bi)− f(ai)| ≤ ε, which is good
enough. □

This next “property” is really boring. I had no plans to do it in recitation and honestly
I have no idea why I even decided to write it. what is wrong with me.. whatever i already
wrote it and im too lazy to erase it so here you go

Theorem 7.6

Call a function f : I → R clearly continuous (not an actual term) if for all ε > 0 we
can find δ > 0 such that whenever blah blah pairwise disjoint

∑n
i=1 bi − ai < δ, we

have ∣∣∣∣∣
n∑

i=1

f(bi)− f(ai)

∣∣∣∣∣ < ε.

(The difference is where the absolute value bars are...)
A function f is clearly continuous if and only if it is absolutely continuous.

Proof. The triangle inequality shows that if f is absolutely continuous then it is clearly
continuous. For the converse, suppose that f is clearly continuous.

Fix ε > 0. Take δ such that whenever blah blah pairwise disjoint
∑

bi − ai < δ, we have
that |

∑
f(bi)− f(ai)| < ε/2.

Now consider pairwise disjoint intervals {(ai, bi)}ni=1. Split it up into two sets of intervals
{(a′i, b′i) : 1 ≤ i ≤ n′} ⊔ {(a′′i , b′′i ) : 1 ≤ i ≤ n′′}, such that f(b′i) > f(a′i) and f(b′′i ) ≤ f(a′′i ).
Then since

∑
b′i − a′i < δ and

∑
b′′i − a′′i < δ, we have

n′∑
i=1

f(b′i)− f(a′i) < ε/2,
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n′∑
i=1

f(a′i)− f(b′i) < ε/2.

Since these summands are all non-negative, they are equal to their absolute values, so

n∑
i=1

|f(bi)− f(ai)| =
n′∑
i=1

|f(b′i)− f(a′i)|+
n′∑
i=1

|f(b′′i )− f(a′′i )|

=
n′∑
i=1

f(b′i)− f(a′i) +
n′∑
i=1

f(a′′i )− f(b′′i ) < ε.

Hence f is absolutely continuous. □

Ok one last thing. This characterization is actually pretty cute. I’m not going to prove
it because it’s really hard, and hence I won’t let you cite it (though I sense that you’ll have
a tough time using it...). However, it might give you a better sense of how to tell whether
something is AC, from an intuitive standpoint.

Theorem 7.7

A function f : I → R is AC if and only if the following conditions hold:

1. f is continuous

2. f has bounded pointwise variation

3. f satisfies the Lusin-N property. That is, f sends measure-zero sets to measure-
zero sets, i.e. for any E ⊆ I with L1(E) = 0, we have that L1(f(E)) = 0.

Proof. idk □
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8 Manifolds

Lemma 8.1 (Totally Not Suspicious Linear Algebra Warmup)

Let P ≤ N , A be an M × N matrix, B be an N × P matrix, and AB = C. If
rankC = P . Then rankA ≥ P .

Proof. Since P ≤ N and C is full rank, we have that the columns of C are lin-
early independent. Viewing B as a matrix of vectors [v1, v2, · · · , vP ] in RN , we see that
{Av1, Av2, · · · , AvP} are precisely the columns of C, and thus are linearly independent.

It follows that the row space of A has dimension at least P , which is what we wanted to
show. □

8.1 Stupid Example

Example 8.1: Show that {(x1, x2, x3) ∈ R3 : x1 = x2} is a C∞ manifold of rank 2.

Proof. We take φ(y1, y2) := (y1, y1, y2). An inverse is given by (x1, x2, x3) 7→ (x1, x3) which
is continuous (we also could have used (x2, x3). It’s the same map when restricted to φ(R2)).
So φ is a homeomorphism.

Now

Dφ(y1, y2) =

[
1 1 0
0 0 1

]
which is full rank because there exists a 2× 2 matrix which is invertible. □

8.2 The Torus

8.2.1 That Weird Trick That Edward Showed Me Like Half an Hour Before
Recitation

I totally sped through this in recitation so let’s take the time to understand this essential
component: Given the values of cos θ and sin θ, how can we recover θ in a nice way? In other
words, can we find a nice expression for the inverse of f : θ 7→ (cos θ, sin θ) over θ ∈ (−π, π)?
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One alright way to do this is via

f−1(x, y) :=


cos−1(x), y > 0

0, y = 0

− cos−1(x), y < 0

.

This isn’t continuous if you interpret as a function on like all of R2 or something, but it is
if you’re restricting it to the unit circle.

A cleaner but more black-magic-y way uses high school geometry. Draw the x and y-
segments...

y

x
θ

KEY POINT: We’d like to do tan−1(y/x) to try and recover the angle θ. But this
doesn’t work because tan−1 only spits out values in the interval (−π/2, π/2), whereas θ
lives in (−π, π). The trick here is to instead use the tan−1 to compute θ/2. Where is θ/2 in
the diagram? Right here!

y

x
θθ/2

1

Now tan−1
(

y
1+x

)
spits out θ/2, and so 2 tan−1

(
y

1 + x

)
spits out θ. No piecewise stuff

needed! It just uses more brain than I currently possess.

Compare the two methodologies here: https://www.math3d.org/7QVsHD1cL
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8.2.2 ok let the pain begin

Example 8.2: Let 0 < R2 < R1. Let

T :=

{
(x, y, z) ∈ R3 :

∥∥∥∥∥(x, y, z)− R2(x, y, 0)√
x2 + y2

∥∥∥∥∥ = R1

}
.

Let’s make two “cuts” into T to get T̃ . In particular let T̃ = T \ ({(x, 0, z) : x <
0} ∪ {(x, y, 0) : ∥(x, y, 0)∥ = R1}). Prove that T̃ is a C∞ manifold of dimension 2.

Notice the two cuts: one along a small circle on the left, and one along the inner ring.

(You can play with this here: https: // www. math3d. org/ BsJCbfpqk )

Proof. It’s a good idea to do this in “steps” so that it’s easier to digest.

Step 1: First Curl

Let’s start with a sheet of paper U := (−π, π)× (−π, π). We’ll now curl it up like so:

φ1 : (α, β) 7→ (cos β, α, sin β)
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Now the curled-up paper φ1(U) looks like a cylinder whose circular faces are aligned with
the y-axis. There’s also a slight slit in the cylinder along the “leftmost segment” of the curvy
side.

Let’s show that this is a homeomorphism. Clearly φ1 is continuous, so we need to
construct an inverse and show that it is continuous over φ1(U). By that weird trick, one
such inverse is given by

(x′, y′, z′) 7→
(
y′, 2 tan−1

(
z′

1 + x′

))
,

and this is clearly continuous.

Step 2: Reposition and Dilate (to prep for the next step)

I now want to consider a transformation so that the middle circle of the cylinder φ1(U)
becomes the circle at the “angle 0” cross-section of the torus, i.e. {(x, 0, z) : (x−R1)

2+y2 =
R2

2}.

I need to start by stretching the circle so that its radius becomes R2. This is given by
the map (x, y, z) 7→ (R2x, y, R2z) (the circle is in the xz-plane, so I don’t want to stretch in
the y direction).

Now that the circle is the correct size, I just need to shift it over by R1. This is given by
the map (x, y, z) 7→ (R1 + x, y, z).

Combining these two maps, I get the affine transformation

φ2 : (x, y, z) 7→ (R1 +R2x, y, R2z).

It’s clear that this map is infinitely nice, being a homeomorphism and everything, and
particularly its 100% nice when restricted to the cylinder φ1(U). Yay.

Step 3: Second Curl

The intuition now is that, given a point (x, y, z) on the repositioned cylinder (φ2◦φ1)(U),
we can view (x, 0, z) as “a point on a circle” and the y-component as “how much to rotate”.
(If you trace back, recall that y is essentially just α, so it lives in the interval (−π, π).)

The way we do the second-curling is then clear: We send a point (x, y, z) ∈ (φ2 ◦ φ1)(U)
to the point (x, 0, z) rotated y-radians about the z-axis. If you squint, this is literally just
given by

φ3 : (x, y, z) 7→ (x cos y, x sin y, z).

Tada! This has all the “slits” or “cuts” in the right places too.

For the last time, let’s show that this is a homeomorphism. Clearly φ3 is continuous.
For the inverse, suppose we are given the values of x′ = x cos y, y′ = x sin y, and z′ = z. We
need to recover x, y, z.
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Well, z is just z′. To get x, we can compute
√
(x′)2 + (y′)2. Lastly to get y, we can

use that weird trick again because we know the values of cos y = x′√
(x′)2+(y′)2

and sin y =

y′√
(x′)2+(y′)2

, so an inverse is given by

(x′, y′, z′) 7→

(√
(x′)2 + (y′)2, 2 tan−1

(
y′√

(x′)2 + (y′)2 + x′

)
, z′

)
.

This is continuous, so we’re done.

Yay we win

Since φ1, φ2, φ3 are all homeomorphisms, their composition φ := φ3 ◦ φ2 ◦ φ1 is a
parametrization φ : U 7→ R3 for T̃ , and must be a homeomorpism because the composi-
tion of homeomorphisms is a homeomorphism (why?). Great!

Gathering everything up, the formula for φ is given by

φ(α, β) = ((R1 +R2 cos β) cosα, (R1 +R2 cos β) sinα,R2 sin β)

To actually complete the proof that T̃ = φ(U) is a manifold, we now need to show that
the Jacobian is rank 2. The Jacobian is

Dφ(r, θ) =

[
−(R1 +R2 cos β) sinα (R1 +R2 cos β) cosα 0

−R2 sin β cosα −R2 sin β sinα R2 cos β

]
.

There are two cases.

• If cos β ̸= 0, then for this to be rank 2 we just need something non-zero in the top row.
Since 0 < R2 < R1, the R1+R2 cos β and −R2 factors are always non-zero. And, sinα
and cosα can’t both be 0, so we’re good here.

• If cos β = 0, then we need the first 2× 2 submatrix to be invertible, which is[
−R1 sinα R1 cosα
±R2 cosα ±R2 sinα

]
.

This is invertible because its determinant is ±R1R2, which is non-zero!!!

Lastly, φ is C∞ because the composition and product of smooth maps is smooth. □
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8.3 The Surface of the N-Ball

QUESTION: Why not use those spherical coordinates that we learned a num-
ber of recitations ago?

ANSWER: There is a pretty severe issue of uniqueness. Back then, it was fine for
changing variables because the spherical coordinates are an injection almost everywhere.
The “problematic” points are just negligible.

Here though, we’re going to try and parametrize all of ∂BN(0, 1) with one chart. It turns
out that this is impossible, which is why we’re going to poke a hole at it at the north pole.
That is, we’ll parametrize BN(0, 1) \ (0, 0, · · · , 1). Doing this is still a pretty useful exercise.

Now it’s possible to parameterize this punctured surface with only one chart! But the
spherical coordinates still won’t cut it. We’ll use a different way to parameterize it called a
stereographic projection (Google this term for some dank pics!). It’s really cool.

Though, even once we get a parameterization, how are we ever going to prove that it’s
Jacobian is full rank? That sounds like a recipe for a disaster. This is where the following
theorem that I came up with on Sunday comes into play.

Theorem 8.1

Let M ≤ N , U ⊆ RM , φ : U → RN . Suppose that φ is a bijection, and both φ and
φ−1 are differentiable. Then Dφ has full rank, and moreover φ(U) is a differentiable
manifold of dimension M .

Proof. Let V = φ(U). We know that φ−1◦φ = idU , thus we have that D(φ−1◦φ) = IM×M .
By the chain rule,

(Dφ)((Dφ−1) ◦ φ) = IM×M .

(You’re probably unfamiliar with this form of chain rule. It actually follows from the normal
chain rule you’re used to. If you need convincing, expand it out!)

We have that Dφ is M ×N . By the warm-up (!!!), we see that Dφ has rank at least
M . But M ≤ N , so rankDφ ≤ min(M,N) = M . So in fact Dφ has rank M , and is thus
full rank.

Since clearly φ is a homeomorphism (differentiability implies continuity for both φ and
φ−1) we are done. □

At last, we can get to the point.
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Example 8.3: Prove that the surface of the unit N -ball, minus the point
(0, 0, · · · , 1), is a C∞ manifold.

In what follows, I will use Leoni’s “abuse of notation” to denote each point in RN by the
tuple (x′, xN), where x′ ∈ RN−1 and xN ∈ R. For example, (0, 1) denotes the point at the
north pole that we are excluding.

Proof. Take y := (y1, · · · , yN−1). We get a corresponding point as follows: Consider
(y, 0) ∈ RN and connect it to (0, 1) with a line. The line is parametrized by

t(y, 0) + (1− t)(0, 1) = (ty, 1− t),

and this intersects the surface when t is such that t2∥y∥2 + (1 − t)2 = 1. Solving, we get
t = 2

1+∥y∥2 . At this value of t we have

(ty, 1− t) =

(
2y

1 + ∥y∥2
,
∥y∥2 − 1

∥y∥2 + 1

)
.

We take

φ(y) :=

(
2y

1 + ∥y∥2
,
∥y∥2 − 1

∥y∥2 + 1

)
.

To see that this is a homeomorphism, we must construct an explicit inverse. For x =
(x′, xN) ∈ RN , we send this to the {xN = 0} plane using the same projection idea. The line
connecting x with (0, 1) is parametrized as t(x′, xN) + (1− t)(0, 1) = (tx′, txN + 1− t), and
this is exactly at the {xN = 0} plane when txN + 1− t = 0, or t = 1

1−xN
. So we claim that

an inverse map is given by

φ−1 : (x′, xN) 7→
1

1− xN

x′.

If we’ve followed our intuition correctly then this better be correct. To verify, we compose it
with φ to see that

φ−1

(
2y

1 + ∥y∥2
,
∥y∥2 − 1

∥y∥2 + 1

)
=

1

1− ∥y∥2−1
∥y∥2+1

(
2y

1 + ∥y∥2

)
= y.

Yay! It’s clear φ−1 is continuous, so φ is a homeomorphism. Next, φ−1 is differentiable, so
Dφ is full rank. Lastly, φ itself is C∞ because if f, g are smooth (with g non-zero) then so
is f/g, So we’re done. □
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9 Surface Integrals

9.1 Other Notations for the Surface Integral

Leoni uses dHk. This is good because it’s like, literally the most correct possible notation,
being literally an integral with respect to the Hausdorff measure.

Most commonly, you see dS being used. This is usually paired with using like dV instead
of d(x, y, z). Blegh.

Other notations include dΣ, dσ, and dA.

9.2 Generic Example

Before we do anything, here is a very useful tool for computing Jacobians by hand:

Theorem 9.1 (Cauchy-Binet Formula)

Let A be an N ×M matrix, where M ≤ N . Then the determinant of ATA is the sum
of the squares of the determinants of all M ×M submatrices of A.
For example, if

A =

a b
c d
e f

 ,

then

det(ATA) =

∣∣∣∣a b
c d

∣∣∣∣2 + ∣∣∣∣a b
e f

∣∣∣∣2 + ∣∣∣∣c d
e f

∣∣∣∣2
Proof. idk □

Example 9.1: Let f : R3 → R be defined as f(x, y, z) = x2 + yz. Compute the
surface integral

∫
C
f dH2, where C is the curved surface of the upside-down circular

cone with base B2(0, 1)× {1} and vertex (0, 0, 0).

Solution. Let’s parameterize C with the chart φ : (0, 1) × (0, 2π) given by φ(r, θ) :=
(r cos θ, r sin θ, r). Then∫

C

f dH2 =

∫ 1

0

∫ 2π

0

f(r cos θ, r sin θ, r)|||φ(r, θ)||| dθ dr.
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We now compute the Jacobian |||φ(r, θ)|||. First we note that

Dφ(r, θ) =

cos θ −r sin θ
sin θ r cos θ
1 0

 ,

so by the Cauchy-Binet formula we see that

det(Dφ(y)TDφ(y)) =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣2 + ∣∣∣∣cos θ −r sin θ
1 0

∣∣∣∣2 + ∣∣∣∣sin θ r cos θ
1 0

∣∣∣∣2
= r2 + r2 sin2 θ + r2 cos2 θ = 2r2,

thus
|||φ(r, θ)||| =

√
det(Dφ(y)TDφ(y)) =

√
2r.

It follows that∫
C

f dH2 =

∫ 1

0

∫ 2π

0

(r2 cos2 θ + r2 sin θ) ·
√
2r dθ dr =

√
2

∫ 1

0

πr3 dr =

√
2π

4
.

■

9.3 Integrating over the Surface of a Graph

Lemma 9.1 (Sylvester’s Determinant Identity)

Let A be m× n and B be n×m. Then

det(Im + AB) = det(In +BA).

Proof. Consider the block-form (m+ n)× (m+ n) matrix(
Im A
−B In

)
.

We evaluate the determinant of this matrix in two different ways. Using “row reduction”,
we have on one hand that

det

(
Im A
−B In

)
= det

(
Im A

−B +BIm In +BA

)
= det

(
Im A
0 In +BA

)
= det(In +BA).

On the other hand, we can use “column reduction” to get that

det

(
Im A
−B In

)
= det

(
Im + AB A
−B + InB In

)
= det

(
Im + AB A

0 In

)
= det(Im + AB).

□
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Theorem 9.2 (Integration over a Graph)

Let U ⊆ RN be open, and g : U → R differentible and of class Ck for some k ≥ 0.
Then the set M := {(x, g(x)) : x ∈ U} is a manifold of dimension N and of class Ck,
and for f : M → R HN -measurable such that either f is integrable or has a sign, we
have the formula ∫

M

f HN =

∫
U

f(x, g(x))
√

1 + ∥∇f(x)∥2 dx.

Proof. A parameterization for M is easily given by φ : x 7→ (x, g(x)). This is continuous,
and in particular of class Ck, and an inverse is given by (x′, y′) 7→ x′ which is obviously
continuous. Moreover

Dφ =

(
IN
∇gT

)
which has full rank because the identity submatrix is invertible, which confirms that M is a
manifold of dimension N .

Now by the surface integral formula,∫
M

f HN =

∫
U

f(φ(x))
√

det(Dφ(x)TDφ(x)) dx

=

∫
U

f(x, g(x))

√
det

[(
IN ∇g(x)

)( IN
∇g(x)T

)]
=

∫
U

f(x, g(x))
√
det
(
IN +∇g(x)∇g(x)T

)
.

Now we can apply Sylvester’s Determinant Identity (!!!) to write this as

=

∫
U

f(x, g(x))
√
det(I1 +∇g(x)T∇g(x))

=

∫
U

f(x, g(x))
√

1 + ∥∇g(x)∥2).

□

Example 9.2: Solve Example 9.1 again!

Solution. The cone C is the graph of g(x, y) := ∥(x, y)∥ over B(0, 1) (and this is smooth
over B(0, 1) \ {0} so this is fine). Thus∫

C

f dH2 =

∫
B(0,1)

f(x, y, ∥(x, y)∥)
√

1 + ∥∇g(x, y)∥2 d(x, y).
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If you work it out, ∇g(x, y) = (x,y)
∥(x,y)∥ , so in fact, ∥∇g(x, y)∥ = 1, hence∫

C

f dH2 =
√
2

∫
B(0,1)

x2 + y∥(x, y)∥ d(x, y).

Changing to polar coordinates, this is

=
√
2

∫ 1

0

∫ 2π

0

r2 cos2 θ + r2 sin θ dθ dr,

which is what we had before. ■

9.4 Spherical Coordinates Revisited

The circumference of a circle is 2πr, and its area is πr2. The surface area of a sphere is
4πr2, and its volume is 4

3
πr3. Why is it the case that the derivative of N -dimensional volume

of the N -ball gives its surface measure? Is it a coincidence?

Here we will demystify this and, in fact, prove something more general.

Theorem 9.3 (Spherical Coordinates)

Let f : BN(0, R) → R be either integrable or signed. Then∫
BN (0,R)

f dx =

∫ R

0

∫
∂BN (0,r)

f dHN−1 dr.

We start with a lemma.

Lemma 9.2

Let U ⊆ RM , and φ : U → ∂BN(0, 1) be any differentiable function. Then ∂φ
∂yi

(y) ·
φ(y) = 0 for all i = 1, · · · ,M . In particular, Dφ(y)Tφ(y) = 0.

Proof. Since ∥φ(y)∥2 = 1 for all y ∈ U , and ∇∥ · ∥2 = 2(·), we have that

0 =
∂

∂yi
∥φ(y)∥2 = 2(φ(y)) · ∂φ

∂yi
(y)

for all i. □

We now turn to the proof of the theorem.

Proof.

57



Thomas Lam 21-235 Recitation 9 11/3/2022

Let φ : U → ∂BN(0, 1) be a parameterization whose range covers ∂BN(0, 1) up to a set
of measure zero. (For example, one can take φ to be the spherical change of variables, or
even the stereographic projection.)

We now may consider the change of variables g : (0, R) × U given by g(r, y) = rφ(y).
Then ∫

BN (0,R)

f dx =

∫ R

0

∫
U

f(rφ(y))| detDg(r, y)| dy.

Let’s compute the Jacobian determinant. Since ∂g
∂r
(r, y) = φ(y) we have that

Dg(r, y) =
(
φ(y) rDφ(y)

)
.

Computing the determinant of this would be a disaster. But we can do this weird trick (view
r as a constant or scalar in these computations):

(detDg)2 = (detDg)(detDg) = (det(Dg)T )(det(Dg))

= det
(
DgTDg

)
= det

[(
φT

rDφT

)(
φ rDφ

)]
= det

(
∥φ∥2 rφT (Dφ)

r(Dφ)Tφ r2(Dφ)TDφ

)
= det

(
1 0
0 r2(Dφ)TDφ

)
= det

(
r2(Dφ)TDφ

)
= det

(
[D(rφ)]T [D(rφ)]

)
Thus detDg(r, y) =

√
det (D(rφ)(y)TD(rφ)(y)) = |||rφ(y)|||. Holy shit. (Keep in mind

that the D in D(rφ) is the derivative of the function rφ in the y variable, so the r is viewed
as a constant here.)

Going back to the original integral, we now have that∫
BN (0,R)

f dx =

∫ R

0

∫
U

f(rφ(y)) · |||rφ(y)||| dy,

which, by the surface integral formula, is just

=

∫ R

0

∫
∂BN (0,r)

f(x) dHN−1(x)

because y 7→ rφ(y) parametrizes ∂BN(0, r). □

9.5 Surface Measure of the N-Ball

Theorem 9.4

HN−1(∂BN(0, 1)) = NLN(BN(0, 1))
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Proof. Taking f ≡ 1 and R = 1 in the previous theorem, we get that∫
BN (0,1)

dx =

∫ 1

0

∫
∂BN (0,r)

dHN−1 dr

LN(BN(0, 1)) =

∫ 1

0

HN−1(∂BN(0, r)) dr

LN(BN(0, 1)) =
1

N
HN−1(∂BN(0, 1)).

□
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10 More Surface Integrals

10.1 A Brief Remark on the Jacobian

• For a function f : RM → RN , its Jacobian Df(y0) has dimensions N ×M .

• Suppose f = (f1, f2, · · · , fN). We can view Df(y0) as the matrix
∇f1(y0)

T

∇f2(y0)
T

...
∇fN(y0)

T

 .

That is, the rows are given by the gradients of the components.

• However, we can also view Df(y0) as the matrix(
∂f
∂y1

(y0)
∂f
∂y2

(y0) · · · ∂f
∂yM

(y0)
)
.

That is, the columns are given by the directional derivatives of f .

10.2 Tangent Spaces and Normals

Let M be a differentiable manifold, and let x0 ∈ M . What does it mean for a vector v
to be “tangent” to M at x0? Intuitively, we think of this as meaning that if we start at x0

and move in the “v direction”, then we “just touch” M . This is a bit hard to formalize.

Fortunately there is a different way to imagine this by flipping things a bit: If we travel
along the manifold, and pass through x0, then the direction v that we’re currently moving
in when we’re at x0 is a tangent vector.

Definition 10.1 (Tangent Vector, Tangent Space)

Let M ⊆ RN be a differentiable k-dimensional manifold, and let x0 ∈ M . Then
a vector t ∈ RN is a tangent vector at x0 if there exists a differentiable function
h : (−δ, δ) → M (our “path” on M) such that

• h(0) = x0 (we pass through x0), and

• h′(0) = t (we’re moving in direction t when we’re at x0).

The space of all tangent vectors is denoted TM(x0).

The key property that we will prove in lecture:
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• TM(x0) is a k-dimensional vector space.

• Suppose that φ : U → M is a parameterization whose image contains x0, and let
y0 ∈ U be such that φ(y0) = x0. Then it turns out that a basis for TM(x0) is given b the
columns ofDφ(y0). Recall that these columns are given exactly by ∂φ

∂y1
(y0), · · · , ∂φ

∂yk
(y0),

where y1, · · · , yk form a basis for Rk.

This leads to a natural way to define normals to a surface, which intuitively are vectors
that are somehow “perpendicular to the surface”.

Definition 10.2 (Normals, Normal Space)

The normal space at a point x0 ∈ M is given by

NM(x0) := TM(x0)
⊥.

That is, it is the orthogonal complement of TM(x0), consisting of exactly those vectors
ν ∈ RN for which ν · t = 0 for all t ∈ TM(x0).

Note in particular that for a parameterization φ, we have that ν ∈ NM(x0) iffDφ(y0)
Tν =

0 ∈ Rk.

Example 10.1: For x0 ∈ ∂B(0, 1), compute the unit outward normal to ∂B(0, 1)
at x0.

Solution. Let φ : U → ∂B(0, 1) be a parametrization of some subset of ∂B(0, 1) that
contains x0. Let y0 ∈ U be such that φ(y0) = x0. The columns of Dφ(y0) form a basis
for the tangent space at x0, so a vector ν will be normal to the surface at x exactly when
Dφ(y0)

Tν = 0.

But in the last recitation, we showed that Dφ(y0)
Tφ(y0) = 0, so we may take ν = φ(y0) =

x0 to be a normal to ∂B(0, 1) at x0. It turns out that this choice of ν has unit norm and
points outward, so we’re done. ■

In general, if M ⊆ RN is an N − 1-dimensional differentiable manifold, then the normal
space at some x0 ∈ M is always dimension 1. For certain manifolds, called orientable
manifolds, we will have that there exists a notion of a normal vector to point “outward”, so
that at every point on M there exists a unique unit outward normal.

61



Thomas Lam 21-235 Recitation 10 11/10/2022

10.3 A Totally Not Suspicious Surface Integral

Example 10.2: Let R > 0. Let H ⊆ R3 be the hemisphere H := B3(0, R) ∩ {z >
0}. Let f : R3 → R3 be given by f(x, y, z) := (z2, y, 2x). Let ν : ∂H → R3 be the
unique unit outward normal vector at a given point on ∂H. Evaluate the surface
integral ∫

∂H

f(x, y, z) · ν(x, y, z) dH2.

Solution. We need to split the integral into two parts: One integral over the curved surface,
and another over the flat circular bottom.

Let’s get the easy one (the bottom side) out of the way, H0 := B2(0, R) × {0}. A
dumb chart for H0 is given by φ : B2(0, R) → R3 with φ(x, y) = (x, y, 0). The Jacobian
is, unsurprisingly, 1. And, at every point (x, y, z) ∈ H0, the normal vector is given by
ν(x, y, z) = (0, 0,−1).

Thus, the integral over H0, is given by∫
H0

f(x, y, z) · (0, 0,−1) dH2 =

∫
B2(0,R)

f(φ(x, y)) · (0, 0,−1) d(x, y)

=

∫
B2(0,R)

f(x, y, 0) · (0, 0,−1) d(x, y) =

∫
B2(0,R)

(02, y, 2x) · (0, 0,−1) d(x, y)

=

∫
B2(0,R)

−2x d(x, y).

Let’s leave this for now and start tackling the hard part, which is the curved surface ∂H∩{z >
0} = {(x, y, z) : x2 + y2 + z2 = R2, z > 0} =: H+.

We observe that H+ is the graph of the function g(x, y) :=
√
R2 − x2 − y2. Since

∇g(x, y) =

 −x√
R2−x2−y2

−y√
R2−x2−y2

 ,

we see that

√
1 + ∥∇g(x, y)∥2 =

√
1 +

x2

R2 − x2 − y2
+

y2

R2 − x2 − y2
=

R√
R2 − x2 − y2

.

Moreover the unit outward normal at (x, y, z) ∈ H+ is given by ν(x, y, z) = (x,y,z)
R

. Thus∫
H+

f(x, y, z)·ν(x, y, z) dH2 =

∫
B2(0,R)

f(x, y, g(x, y))·(x, y, g(x, y))
R

·
√

1 + ∥∇g(x, y)∥2 d(x, y)
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=

∫
B2(0,R)

(g(x, y)2, y, 2x) · (x, y, g(x, y)
R

· R√
R2 − x2 − y2

d(x, y)

=

∫
B2(0,R)

(
g(x, y)2x+ y2 + 2xg(x, y)

)
· 1√

R2 − x2 − y2
d(x, y)

=

∫
B2(0,R)

(
g(x, y)2x+ y2 + 2xg(x, y)

)
· 1√

R2 − x2 − y2
d(x, y)

=

∫
B2(0,R)

(R2 − x2 − y2)x+ y2 + 2x
√

R2 − x2 − y2√
R2 − x2 − y2

d(x, y)

=

∫
B2(0,R)

(R2 − x2 − y2)x+ y2 + 2x
√

R2 − x2 − y2√
R2 − x2 − y2

d(x, y)

=

∫
B2(0,R)

√
R2 − x2 − y2x+

y2√
R2 − x2 − y2

+ 2x d(x, y).

Let’s pause this computation. We’ll quickly bring the two integrals we got together to form
the integral over ∂H.∫

∂H

f(x, y, z) · ν(x, y, z) dH2 =

∫
H0

f(x, y, z) · ν(x, y, z) dH2 +

∫
H+

f(x, y, z) · ν(x, y, z) dH2

=

∫
B2(0,R)

−2x d(x, y) +

∫
B2(0,R)

√
R2 − x2 − y2x+

y2√
R2 − x2 − y2

+ 2x d(x, y)

=

∫
B2(0,R)

√
R2 − x2 − y2x d(x, y) +

∫
B2(0,R)

y2√
R2 − x2 − y2

d(x, y)

For the first integral, we can quickly observe that the change of variables (x, y) 7→ (−x, y)
just negates the integrand, so this symmetry implies that the first integral is equal to 0. It
hence remains to evaluate the second integral. By polar coordinates, we have that∫
B2(0,R)

y2√
R2 − x2 − y2

d(x, y) =

∫ R

0

∫ 2π

0

r3 sin2 θ√
R2 − r2

dθ dr =

∫ R

0

r3√
R2 − r2

dr ·
∫ 2π

0

sin2 θ dθ.

For the r integral, we make the substitution r =
√
R2 − u2, so that dr = −u√

R2−u2 du. Then∫ R

0

r3√
R2 − r2

dr =

∫ R

0

(R2 − u2)3/2

u
· u√

R2 − u2
du =

∫ R

0

R2 − u2 du =
2

3
R3.

For the θ integral, using the double-angle formula or something gives you
∫ 2π

0
sin2 θ dθ = π.

Therefore, ∫
∂H

f(x, y, z) · ν(x, y, z) dH2 =
2

3
πR3 .

■

...this just happens to be the volume of the hemisphere H. This is not a coincidence.
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10.4 Yet Another Not Sus At All Surface Integral

Example 10.3: Let R, h > 0. Consider the cone C := {(x, y, z) : x2 + y2 ≤
z2R2

h2 , 0 ≤ z ≤ h}, so that C is a circular cone with base radius R and height h. Let
M be the curved surface of C, and for each x ∈ M let ν(x, y, z) denote the unit
outward normal. Compute the surface integral∫

M

xν1(x, y, z) dH2,

where ν1 is the first component of ν = (ν1, ν2, ν3).

Solution. First let’s get a chart for the surface and compute its Jacobian. One chart is

given by φ : B2(0, R) → R3 with φ(x, y) := (x, y, g(x, y)), where g(x, y) :=
h
√

x2+y2

R
. Then

|||Dφ(x, y)||| =
√

1 + ∥∇g(x, y)∥2 =
√
1 +

h2

R2
=

√
R2 + h2

R
.

Now let’s compute the unit outward normal. We have that

Dφ(x, y) =

 1 0
0 1
hx

R
√

x2+y2
hy

R
√

x2+y2

 .

We need to find some vector that’s perpendicular to these two columns. One way to do this
is via the cross product

(
1, 0,

hx

R
√

x2 + y2

)
×

(
0, 1,

hy

R
√
x2 + y2

)
=

∣∣∣∣∣∣∣∣
1 0 hx

R
√

x2+y2

0 1 hy

R
√

x2+y2

î ĵ k̂

∣∣∣∣∣∣∣∣
=

(
− hx

R
√

x2 + y2
,− hy

R
√

x2 + y2
, 1

)
.

To make this point outward, we’ll have to negate all these components. To make this have

unit norm, we’ll also have to divide by the norm it currently has, which is
√

1 + h2

R2 =
√
R2+h2

R
.

Thus

ν(x, y, z) =
R√

R2 + h2

(
hx

R
√

x2 + y2
,

hy

R
√

x2 + y2
,−1

)
.

In particular, ν1(x, y, z) =
hx√

R2+h2·
√

x2+y2
.
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We are now able to compute the very random surface integral.∫
M

xν1(x, y, z)dH2 =

∫
B2(0,R)

xν1(x, y, g(x, y)) ·
√
R2 + h2

R
d(x, y)

=

∫
B2(0,R)

xν1(x, y, g(x, y)) ·
√
R2 + h2

R
d(x, y)

=

∫
B2(0,R)

hx2

√
R2 + h2

√
x2 + y2

·
√
R2 + h2

R
d(x, y)

=
h

R

∫
B2(0,R)

x2√
x2 + y2 d(x, y)

=
h

R

∫ R

0

∫ 2π

0

r2 cos2 θ

r
· r dθ dr

=
1

3
πR2h

...this just happens to be the volume of the cone. This is not a coincidence.

■
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11 The Divine Divergence Theorem

11.1 Stating the Theorem

Throughout analysis, we’ve often been focusing on real-valued functions, i.e. functions
RN → R. Here we will focus more on vector-valued functions of the form RN → RN . We
also call these vector fields.

Definition 11.1 (Vector Field)

A vector field is a function F : RN → RN .

...that’s literally the entire definition.

We can think of a vector field as an assignment to each point in RN a “direction” to
move in. The “expandiness” induced by a vector field at a certain point is measured by the
divergence.

Definition 11.2 (Divergence)

For a vector field F : RN → RN , its divergence at a point x ∈ RN is given by

divF (x) :=
N∑
i=1

∂Fi

∂xi

(x).

The notation ∇ · F is sometimes used instead of div, which is pretty sacrilegious but
whatever. (Do you see where this notation comes from?)

Example 11.1: Let F (x, y, z) := (3x+ 2y + z, y2, log log log x). Then

divF (x, y, z) = 3 + 2y + 0.

Example 11.2: Let F (x, y, z) := (99x, 99y, 99z). Then divF = 297, which makes
sense because it’s very expandy.

Example 11.3: If F (x, y) := (999y, 999x) then divF = 0. Intuitively this is
consistent with the “expandiness” view of divergence because alot of the “movement”
induced by F actually cancels out. For example, near (0.1, 0.1) we have that F is
pointing away from (0, 0). On the other hand, at (−0.1, 0.1), F is actually pointing
towards (0, 0).

Next, we need to define a notion of a boundary’s “regularity”. Intuitively, the boundary
of an open set such as B(0, 1) should be pretty smooth. But it’s weird to talk about regularity
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of a set, considering that sets aren’t functions. The workaround is to say that such boundaries
are “locally functions”.

Definition 11.3 (Regularity of Boundary)

Let Ω ⊆ RN be open and bounded. We say that ∂Ω is [some regularity class] if near
every point on the boundary, we can zoom in and rotate our perspective so that the
boundary looks like the graph of a function is [that regularity class].

To be more precise, for every x0 ∈ ∂Ω there exists r > 0 so small that T (B(x0, r)∩Ω)
is the supergraph of a [that regularity class] function for some rigid motion T .

The most typical choices for [some regularity class] are Ck and Lipschitz.

Example 11.4 (Regularity of ∂B(0, 1)): At every x0 ∈ ∂B(0, 1), the bound-
ary near x0 looks like the graph of y 7→

√
1− ∥y∥2, which is smooth. Hence the

boundary ∂B(0, 1) is of class C∞.

Example 11.5 (Regularity of Cubic Boundaries): Let Q = (0, 1)N ⊆ RN

be a cube. ∂Q is not of class Ck for any k ∈ N ∪ {∞}. This is because the graph
that ∂Q “looks like” near the point 0⃗ = (0, 0, · · · , 0) will always have a sharp,
non-differentiable bend.
This graph is, however, Lipschitz. Hence we may say that ∂Q is Lipschitz.

We are finally ready to state the Divergence Theorem.

Theorem 11.1 (Divergence Theorem)

Let Ω ⊆ RN be open and bounded such that ∂Ω is Lipschitz. Let F : Ω → RN be
Lipschitz. Then ∫

Ω

divF dx =

∫
∂Ω

F · ν dHN−1,

where ν(x) is understood to be the unit outward normal at x ∈ ∂Ω to the manifold
∂Ω.

This might sound like complete nonsense, but there is a way to think about the statement
that makes it actually seem pretty intuitive.

Imagine lowering a cage into a pool of water, and suppose we start pumping more water
into the cage (via a hose or something). The flow of water within the cage looks like a
“source”, with lots of water flowing “outwards” (i.e. “expandiness”, or “divergence”). The
amount of water added to the cage would just be the total “expandiness” of water. The
water can’t just keep accumulating in the cage though - a bunch of it has to escape the cage.
The total amount of water that passes through the boundary of the cage is the amount that
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we put in. That’s the divergence theorem.

11.2 Redoing the Previous Recitation

Example 11.6: Let R > 0. Let H ⊆ R3 be the hemisphere H := B3(0, R) ∩ {z >
0}. Let f : R3 → R3 be given by f(x, y, z) := (z2, y, 2x). Let ν : ∂H → R3 be the
unique unit outward normal vector at a given point on ∂H. Evaluate the surface
integral ∫

∂H

f(x, y, z) · ν(x, y, z) dH2.

Solution. Note that div f(x, y, z) = 1. Now apply the Divergence Theorem.∫
∂H

f · ν dH2 =

∫
H

div f dx =

∫
H

1 dx = L3(H) =
2

3
πR3

■

Example 11.7: Let R, h > 0. Consider the cone C := {(x, y, z) : x2 + y2 ≤
z2R2

h2 , 0 ≤ z ≤ h}, so that C is a circular cone with base radius R and height h. Let
M be the curved surface of C, and for each x ∈ M let ν(x, y, z) denote the unit
outward normal. Compute the surface integral∫

M

xν1(x, y, z) dH2,

where ν1 is the first component of ν = (ν1, ν2, ν3).

Solution. Apply the Divergence Theorem to the function (x, y, z) 7→ (x, 0, 0), whose diver-
gence is exactly 1. Then∫

M

xν1 dH2 =

∫
M

(x, 0, 0) · ν dH2 =

∫
C

1 dx = L3(C) =
1

3
πR2h .

■

11.3 Redoing the Previous Previous Recitation

By the Divergence Theorem applied to the identity function x⃗ 7→ x⃗ (vector arrows for
emphasis), we have that∫

BN (0,1)

div x⃗ dx⃗ =

∫
∂BN (0,1)

x⃗ · ν(x⃗) dHN−1.
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But div x⃗ = div(x1, x2, · · · , xN) =
∂x1

∂x1
+ · · · + ∂xN

∂xN
= 1 + · · · + 1 = N . Also, ν(x⃗) = x⃗, and

x⃗ · x⃗ = ∥x⃗∥2 = 1 for all x⃗ ∈ ∂B(0, 1). Thus the equation turns into∫
BN (0,1)

N dx⃗ =

∫
∂BN (0,1)

1 dx

or
NLN(B(0, 1)) = HN−1(∂B(0, 1)).

...well that was easy.

11.4 Line Integrals

A curve is essentially some continuous path in RN . Unsurprinsgly you can integrate over
these in the sense of integration with respect to H1. We call this a line integral.

Definition 11.4 (Line Integral of Real-Valued Functions)

For f : RN → R and a curve C ⊆ RN , the integral
∫
C
f dH1 is called a line integral.

...were you expecting something more?

To evaluate a line integral, you find a parameterization φ : [0, T ] → RN for the curve C,

and then the integral is just
∫ T

0
f(φ(t))∥φ′(t)∥ dt.

This is boring and we won’t care about this for this recitation. What we’re actually
interested in is a different notion of line integral: That of vector-valued functions (i.e. a
vector field RN → RN) instead.

Here, it is important to assign a direction for the curve (are you going one way, or the
other?) in order to get an oriented curve. A prototypical example is a circle: The orientation
of a circle is either counter-clockwise or clockwise.

Definition 11.5 (Line Integral of Vector-Valued Functions)

For F : RN → RN a vector field and C an oriented curve, the line integral of F over
C is given by ∫

C

F :=

∫ T

0

F (φ(t)) · φ′(t) dt.

where φ : [0, T ] → C is a parameterization of C respecting the chosen orientation for
C.

• If you choose the opposite orientation, then line integral will be negated.
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• The definition suggests that the line integral does not change if we choose a different
φ (that still respects the chosen orientation). This is indeed true.

• In a sense, the line integral of a vector field measures how much the vector field “agrees”
with your movement along the curve.

Take, for instance, the vector field F (x, y) := (−y, x). Let C be the unit circle ori-
ented counter-clockwise. Then C is parameterized by φ(t) := (cos t, sin t), and the line
integral is given by∫

C

F =

∫ 2π

0

(− sin t, cos t) · (− sin t, cos t) dt = 2π,

suggesting that F agrees alot with the counter-clockwise movement along C. This
makes perfect sense. In fact, this counter-clockwise movement literally follows the
vector field F .

What if we instead took the vector field G(x, y) := (x, y)? Then the vector field always
runs perpendicularly to our movement, so this should suggest not much agreement.
Indeed, ∫

C

G =

∫ 2π

0

(cos t, sin t) · (− sin t, cos t) dt =

∫ 2π

0

−2 sin t cos t dt = 0.

This discussion of “line integration measuring agreement” may suggest that we may write∫
C

F
?
=

∫
C

F · t dH1

where t(x) is understood to be a unit tangent vector at x pointing in the same direction
as the orientation of C. This is true, provided that C is nice enough. If C is an absolutely
continuous curve, then it turns out that we can move along C at a constant speed. That is,
we may find a parameterization φ : [0, T ] → C such that ∥φ′(s)∥ = 1 for all s. Then the
tangent vector t(x) at a point x ∈ C should be “the derivative of φ at x”, i.e. φ′(φ−1(x)).
This is indeed of unit length by choice of φ. Now,∫

C

F · φ′(φ−1) dH1 =

∫ T

0

F (φ(s))φ′(φ−1(φ(s)))∥φ′(s)∥ ds =
∫ T

0

F (φ(s))φ′(s) ds =

∫
C

F.

A brief remark on notation: You’ll often see∫
C

F =:

∫
C

F1 dx+ F2 dy.

I guess the logic behind this is that we can write∫
C

F =

∫ T

0

F1(φ(t))φ
′
1(t) + F2(φ(t))φ

′
2(t) dt,
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and so essentially we’re taking
∫
C
M dx :=

∫ T

0
M(φ(t))φ′

1(t) dt and
∫
C
N dx :=

∫ T

0
N(φ(t))φ′

2(t) dt.
You’re supposed to read “M dx” as “as we move along the curve, multiply M(my location)
by our change in x”, and likewise for “N dy”.

This kinda makes sense. We can view M dx+N dy as the “dot product” (M,n) ·(dx, dy).
Intuitively (dx, dy) is the direction you’re moving in, so we’re essentially measuring the
agreement between (−y, x) and the direction we’re moving, i.e. the line integral

∫
C
(M,N).

(There is a rigorous meaning behind writing M dx + N dy, but it is above my paygrade
and beyond my understanding.)

11.5 Green’s Theorem

I think I will basically never have Green’s Theorem memorized and I’ll be doomed to
forever keep rederiving it whenever I need it on an exam. And that’s ok. This section reflects
this sentiment by not stating Green’s Theorem until it is proven.

To remember Green’s Theorem, you essentially need to remember two things:

1. It’s something about relating a line integral in R2 to an integral of the enclosed region.

2. It’s a stupid consequence of the Divergence Theorem.

Alright, let Ω ⊆ R2 be open and bounded. ∂Ω is a curve, so let’s orient it counter-
clockwise (and let’s just assume the boundary is nice enough). Let F : R2 → R2 be a vector
field. Supposedly Green’s Theorem gives a way to simplify

∫
∂Ω

F .

To do it, we blindly use the Divergence Theorem on F . This gives∫
Ω

∂F1

∂x
(x, y) +

∂F2

∂y
(x, y) d(x, y) =

∫
∂Ω

F1(x, y)ν1(x, y) + F2(x, y)ν2(x, y) dH2. (∗)

We somehow want to turn the right side into a line integral. How? Well, from the discussion
in the previous section, we’d like to write it as

∫
∂Ω

F · t dH2, where t is the tangent vector
(“pointing counter-clockwise”). How can we get the tangent vector from the normal vector’s
components?

...we can just rotate it 90◦ can’t we? Observe that if (ν1, ν2) is the (unit outward) normal
vector, then (−ν2, ν1) is the normal vector rotated 90◦ counter-clockwise, and hence must be
the (unit) tangent vector oriented counter-clockwise.

This tells us exactly what we need to do now. In equation (∗), we just need to replace
the F2 with −F1, and replace the F1 with F2. That is, let’s instead apply the Divergence
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Theorem to (F2,−F1). This gives∫
Ω

∂F2

∂x
(x, y)− ∂F1

∂y
(x, y) d(x, y) =

∫
∂Ω

F2(x, y)ν1(x, y)− F1(x, y)ν2(x, y) dH2

=

∫
∂Ω

(F1, F2) · (−ν2, ν1) dH2 =

∫
∂Ω

F · t dH2 =

∫
∂Ω

F.

We have thus derived Green’s Theorem.

Theorem 11.2 (Green’s Theorem)

Let Ω ⊆ R2 be open and bounded with Lipschitz boundary. Let F : Ω → R2 be a
Lipschitz vector field. Then∫

∂Ω

F =

∫
Ω

∂F2

∂x
(x, y)− ∂F1

∂y
(x, y) d(x, y),

where ∂Ω is taken to have counter-clockwise orientation.

Written in alternative notation:∫
∂Ω

M dx+N dy =

∫
Ω

∂N

∂x
− ∂M

∂y
dA

By choosing F1, F2 in a dumb way, Green’s Theorem can be used to find area in an
incredibly dumb way.

Corollary 11.1

Let Ω ⊆ R2 be open and bounded with Lipschitz boundary. Then

L2(Ω) =

∫
∂Ω

(0, x)

(
=

∫
∂Ω

x dy

)
=

∫
∂Ω

(−y, 0)

(
=

∫
∂Ω

−y dx

)
=

∫
∂Ω

(
−y

2
,
x

2

) (
=

∫
∂Ω

−y

2
dx+

x

2
dy

)
where all line integrals are taken counter-clockwise.

Example 11.8 (Area of a Cartioid): Find the area of the region U enclosed
by the curve parameterized by{

x(θ) = (1− cos θ) cos θ,

y(θ) = (1− cos θ) sin θ,
θ ∈ [0, 2π].
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Solution. Let’s use the formula L2(U) =
∫
∂U

(0, x). The parameterization

φ(θ) := ((1− cos θ) cos θ, (1− cos θ) sin θ)

has been given to us on a silver platter, so it remains to compute.∫
∂U

(0, x) =

∫ 2π

0

(0, (1− cos θ) cos θ) · φ′(θ) dθ

=

∫ 2π

0

(1− cos θ) cos θφ′
2(θ) dθ

=

∫ 2π

0

(1− cos θ) cos θ
(
(1− cos θ) cos θ + sin θ sin θ

)
dθ

=

∫ 2π

0

cos θ − 3 cos3 θ + 2 cos4 θ dθ

=

∫ 2π

0

2 cos4 θ dθ

=
3π

2

■

11.6 Examples from the Math GRE

Example 11.9: What is the value of the flux of the vector field F (x, y, z) =
x2î− 2xyĵ + x2y2k̂ through the surface z =

√
4− x2 − y2 oriented upwards?

Solution. The main difficulty is understanding the terrible notation that the world has
decided to accept. The flux is just the surface integral dotted with some choice of normal
vectors over the surface. F (x, y, z) = x2î − 2xyĵ + x2y2k̂ literally just means F (x, y, z) =
(x2,−2xy, x2y2). By oriented upwards, we mean that we choose the normal vectors that
point upwards, i.e. outwards.

Let H be the obvious hemisphere, and let H0, H
+ be the bottom disk and curved surface

of H, respectively. The question is asking for
∫
H+ F · ν dH2. By the Divergence Theorem,∫

H+

F · ν dH2 +

∫
H0

F · ν dH2 =

∫
∂H

F · ν dH2 =

∫
H

divF d(x, y, z) = 0,

so the answer is whatever −
∫
H0

F · ν dH2 is. But over H0 we have that ν = (0, 0,−1), hence∫
H0

F · ν dH2 =

∫
H0

−x2y2 dH2 =

∫
B2(0,2)

−x2y2 d(x, y)
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=

∫ 2

0

∫ 2π

0

−r4 cos2 θ sin2 θ dr dθ =
−π

20
.

The final answer is
π

20
. ■

Example 11.10: Let C be the ellipse with center (0, 0), major axis of length 2a,
and minor axis of length 2b. What is the value of

∮
C
x dy − y dx?

(It didn’t say it on the test but surely we assume that this is oriented counter-
clockwise.)

Solution. The main difficulty is understanding the terrible notation that the world has
decided to accept. First of all,

∮
C
is just

∫
C
if you’re trying to look intelligent. Second, the

x dy − y dx is just representing the the line integral∫
C

(−y, x).

By Green’s Theorem, this is just∫
Ellipse

1− (−1) d(x, y) = 2L2(Ellipse) = 2abπ .

■

11.7 Integration by Parts

Let f, g : RN → R. Suppose we’re staring at an integral of the form∫
Ω

∂f

∂xi

g dx.

The goal here is to find a way to yeet the derivative over to the g, as in the integration by
parts theorem in one dimension.

If you ponder it, it’s quite natural to try applying the Divergence Theorem to the vector
field given by

F (x) := f(x)g(x)ei.

Then divF = ∂
∂xi

f(x)g(x) = ∂f
∂xi

(x)g(x) + f(x) ∂g
∂xi

(x). It follows that∫
Ω

∂f

∂xi

(x)g(x) + f(x)
∂g

∂xi

(x) dx =

∫
Ω

divF (x) dx

=

∫
∂Ω

F (x) · ν(x) dHN−1 =

∫
∂Ω

f(x)g(x)ν(x)ei dHN−1 =

∫
∂Ω

f(x)g(x)νi(x) dHN−1
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We have hence derived integration by parts.

Theorem 11.3 (Integration by Parts)

Suppose Ω ⊆ RN is open and bounded with Lipschitz boundary, and suppose f, g :
Ω → R are Lipschitz. Then∫

Ω

∂f

∂xi

g dx =

∫
∂Ω

fgνi dHN−1 −
∫
Ω

f
∂g

∂xi

dx.

Plugging in g = 1 gives the following corollary.

Corollary 11.2 ∫
Ω

∂f

∂xi

dx =

∫
∂Ω

fνi dHN−1

Plugging in a “test function” for g that vanishes on the boundary will give another
corollary.

Corollary 11.3

• We have that ∫
Ω

∂f

∂xi

φdx = −
∫
Ω

f
∂φ

∂xi

dx

where φ is a function that vanishes on the boundary, i.e. φ(x) = 0 for all x ∈ ∂Ω.

• Taking this further: For f : RN → R of class Ck and φ ∈ Ck
0 (Ω), i.e. φ is class

Ck and satisfies φ(x) = 0 for all x ∈ ∂Ω, we have the identity∫
Ω

∂kf

∂xk
i

φdx = (−1)k
∫
Ω

f
∂kφ

∂xk
i

dx.

• Taking this even further, we have that∫
Ω

∂αfφ dx = (−1)|α|
∫
Ω

f∂αφdx.

Here, α denotes a multi-index.

Proof. Induction. □

If you really really want to you can also write something like this.
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Corollary 11.4 (help what is a tensor)

For f : RN → R we have ∫
Ω

∇f dx =

∫
∂Ω

fν dHN−1.

For f : RN → Rd we have ∫
Ω

Df dx =

∫
∂Ω

f ⊗ ν dHN−1.

11.8 Divergence is Independent of Basis

It may seem strange that the divergence operator is so tied to the standard basis x1, · · · , xN .
How does accounting for “expandiness” in the {xi}i directions give us the general “expandi-
ness” in all the directions? This oddity would be explained if, by some miracle, choosing a
different set of basis vectors would not change the divergence. This happens to be true.

Theorem 11.4 (Divergence is Coordinate-Free)

Let {xi}Ni=1 and {yi}Ni=1 be bases for RN . Then for any F : RN → RN we have

N∑
i=1

∂Fi

∂xi

=
N∑
i=1

∂Fi

∂yi
.

Proof. The proof, in short, is:

1. The divergence is the trace of the Jacobian matrix.

2. Trace is independent of choice of basis.

Let the N ×N matrix DF be the Jacobian matrix with respect to the {xi} basis. Then
the Jacobian matrix with respect to the {yi} basis is A−1(DF )A, where A is the a matrix
that sends the {xi} basis to the {yi} basis.

(If you’re skeptical, try going back to the definition of differentiability + the Jacobian ma-
trix in order to show that the differential of the function x 7→ A−1F (Ax) is just A−1(DF )A.)

But now
N∑
i=1

∂Fi

∂yi
= tr(A−1(DF )A) = tr((DF )AA−1) = trDF =

N∑
i=1

∂Fi

∂xi

.

□
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12 Special Vector Fields

12.1 Conservative vs. Irrotational

Definition 12.1 (Conservative)

1. A vector field F : Ω → RN is conservative if it is a gradient. That is, there exists
f : Ω → R such that

F = ∇f.

2. An equivalent property is that ∫
C

F = 0

for every (Lipschitz) closed curve C.

3. A (trivially...?) equivalent property is that for any x, y ∈ Ω, and any two (Lips-
chitz) paths γ1, γ2 from x to y, we have that∫

γ1

F =

∫
γ2

F.

Example 12.1: The vector field F (x, y, z) = (y2z3, 2xyz3, 3xy2z2) is conservative
because F = ∇f where f(x, y, z) = xy2z3.
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Example 12.2: The force of gravity is conservative. For a point mass x0 ∈ RN

with mass M , we may construct a vector field Fg : RN \ {x0} → RN representing
the gravitational pull on a mass m induced by x0 via

Fg(x) :=
GMm

∥x− x0∥2
· − x− x0

∥x− x0∥
=

−GMm(x− x0)

∥x− x0∥3
,

where G is the universal gravitational constant. To see that Fg is a conservative
vector field, we must find −Ug : R2 \ {x0} → R for which ∇(−UG) = Fg. Indeed,
we can take

−Ug(x) :=
GMm

∥x− x0∥
.

To convince yourself that ∇(−Ug) = Fg, you can either just manually compute the
patital derivatives or use some v e c t o r c a l c u l u s via the chain rule.

∇(−Ug) =

(
−GMm

∥x− x0∥2

)
∇(∥x− x0∥) =

−Gm

∥x− x0∥2
· x− x0

∥x− x0∥

Thankfully this is consistent with our understanding of physics: Ug(x) =
−GMm
∥x−x0∥ is

the gravitational potential energy.

Two intuitions for conservative vector fields:

1. A conservative vector field F must be able to represent the “upward slope”-ness of
some function f : Ω → R. This is what it means for F to be the gradient of f , after
all. As in the gravity example, you can imagine Fg to be a bunch of arrows pointing
towards the mass x0, and indeed these arrows are all pointing “upward” when placed
on a “mountain” whose peak is at x0. This mountain is the graph of −Ug.

(We take −Ug because in physics/nature, things like to go down in energy, rather than
up.)

2. You can think of a conservative F as a force, where if I move along any loop, there
must be moments in which I move against the force and moments where I move with
the force. As with gravity, “what goes up must come down”.

This thinking leads to an easy example of a non-conservative vector field: Take F (x, y) :=
(−y, x). Then if I move around the unit circle counter-clockwise, I’m always moving
with the force, which would not be possible if F were conservative.
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Definition 12.2 (Irrotational)

A vector field F : Ω → RN is irrotational or curl-free if

∂Fi

∂xj

=
∂Fj

∂xi

for all i, j.

To see why we call this “curl-free”, let’s define a notion of curl.

Definition 12.3 (Curl)

For a vector field F on R2, its curl is a scalar function given by

curlF :=
∂F2

∂x1

− ∂F1

∂x2

.

For a vector field F on R3, its curl is a vector field given by

curlF :=

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
.

For higher dimensions it’s some kind of unholy garbage.

(Ominous Foreshadowing: Isn’t curlF for N = 2 the expression you see in Green’s
Theorem? Hmm...)

Now it’s clear: For N = 2, 3, it is evident that a vector field F is curl-free exactly when
curlF = 0. Just don’t ask me what happens in higher dimensions.

In the interest of memorizing the N = 3 formula, we note that curlF may be “written”
as the “determinant”

curlF =

∣∣∣∣∣∣
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

î ĵ k̂

∣∣∣∣∣∣
where î = (1, 0, 0), et cetera. The word “determinant” is in quotes because this isn’t actually
a determinant (algebraically speaking, the elements of a matrix should come from a common
field!).

If you’re having trouble remembering the order of the rows in this “determinant”, we
note that sometimes, due to this “determinant” form, the notation

∇× F := curlF

is used for the curl. Indeed, the “determinant” does kinda look like a cross product between
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“differentiating” and “the vector field F”. So as long as you know how to take a cross
product, you can memorize this easily, more or less.

The intuition for curl is that it measures “rotatiness” around a point. A good way to
visualize curlF (x0) is to place a fixed, physical spinning ball centered at x0 and let F , as
a force, act on this ball, where the ball is free to rotate but cannot move otherwise. If
curlF (x0) = 0 then the ball is still. Otherwise it rotates in a way dictated by the value
of curlF (x0). See https://mathinsight.org/curl_components for pretty pictures and a
better explanation.

An important property is as follows.

Theorem 12.1 (Conservative Implies Irrotational)

Every C1 conservative vector field is irrotational.

Proof. Basically the C1 property allows us to swap derivatives.

If F is conservative then F = ∇f for some f . Note then that Fi =
∂f
∂xi

. Since F is C1, f

is C2, so
∂Fi

∂xj

=
∂2f

∂xi∂xj

=
∂2f

∂xj∂xi

=
∂Fj

∂xi

.

□

So being conservative is a stronger property than being irrotational, provided that the
vector field is nice enough.

(Remark: This property is often written as “curl∇F = 0” or “∇× (∇F ) = 0”. Do you
see why?)

We also have the other direction (!) provided that the domain is nice enough!

Theorem 12.2 (Irrotational Implies Conservative)

A C1 irrotational vector field F : Ω → RN is conservative, provided that Ω is
simply connected .

“Simply connected” is a new term. Roughly speaking, an open set is simply connected
if it is in one piece (i.e. connected) and it has no holes. For example, a donut is connected
but not simply connected.

Here is a slightly more precise definition.
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Definition 12.4 (Simply Connected)

A connected set U is simply connected if the following property holds: For any loop
we draw inside U , we can continuously shrink the loop until it becomes a point.

(Note that consequently, the punctured disk B2(0, 1) \ {(0, 0)} is not simply connected,
witnessed by drawing a loop around (0, 0) and trying to shrink it. However, the punctured
sphere B3(0, 1) \ {(0, 0, 0)} is simply connected.)

The following example shows that simply-connectedness is crucial.

Example 12.3: Consider the vector field F : R2 \ {(0, 0)} → R2 defined as

F (x, y) :=

(
−y

x2 + y2
,

x

x2 + y2

)
.

Intuitively, the vector field F is made by drawing a unit direction vector “counter-
clockwise” at every point.
To verify that F is irrotational, we need only show that curlF = 0. Indeed,

curlF (x, y) =
∂F1

∂y
(x, y)− ∂F2

∂x
(x, y)

=
−(x2 + y2)− (−y)(2y)

(x2 + y2)2
− (x2 + y2)− x(2x)

(x2 + y2)2
= 0.

However, F is not conservative! Intuitively this is because going around the origin
can be done without every moving against the force F . If you want to do the math,
we can. Let C be the unit circle oriented clockwise. Then we may compute∫

C

F =

∫ 2π

0

F (cos t, sin t) · (− sin t, cos t) dt

=

∫ 2π

0

(− sin t, cos t) · (− sin t, cos t) dt = 2π ̸= 0.

An interesting observation is that (−y, x) has curl, but
(

−y
x2+y2

, x
x2+y2

)
does not. The

rescaling is crucial to eliminate curl. The “rotating ball” may help you visualize why that is
(though, note that the division by x2 + y2 doesn’t actually make the norm exactly 1...).
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13 Wrap-Up

13.1 Some Things We Skipped

• Divergence does not depend on basis

• GRE problem on Divergence Theorem

• Finding the potential function

13.2 Finding the Potential Function

Example 13.1: Let F : R2 → R2 be defined via

F (x, y) = (yex + sin y, ex + x cos y).

Is F conservative? If so, find its gradient potential, i.e. a function f : R2 → R for
which ∇f = F .

Solution. ∂F1

∂y
(x, y) = ex + cos y and ∂F2

∂x
(x, y) = ex + cos y, so F is irrotational. Since R2

is simply connected and F is C1, we may conclude that F is conservative. But this doesn’t
tell us what f is.

To figure that out, we suppose that F = ∇f = (∂f
∂x
, ∂f
∂y
). Then we have the system of

equations:
∂f

∂x
(x, y) = yex + sin y

∂f

∂y
(x, y) = ex + x cos y

None of the following manipulations are necessarily rigorous. Remember, we just need to
propose a correct f in order to win. The way we arrive at the answer doesn’t really matter.
To wit, let us start by applying FTC to the first equation to get

f(x, y)− f(0, y) =

∫ x

0

yex + sin y dx = yex + x sin y − y.

We just need to figure out what f(0, y) is. To do this we differentiate with respect to y to
get

∂f

∂y
(x, y)− ∂f

∂y
(0, y) = ex + x cos y − 1.

But we know what ∂f
∂y
(x, y) is! So

ex + x cos y − ∂f

∂y
(0, y) = ex + x cos y − 1
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and hence ∂f
∂y
(0, y) = 1. By the FTC yet again, f(0, y) = y + f(0, 0). Therefore

f(x, y) = f(0, y) + yex + x sin y − y = yex + x sin y + f(0, 0) .

f(0, 0) can be anything we want it to be, which makes sense because the potential function
is unique only up to a constant. So we can e.g. just take f(0, 0) to be 0. ■

Example 13.2: Define a vector field F : R2 \ {(0, 0)} → R2 via

F (x, y) :=

(
2xy

x4 + y2
,

−x2

x4 + y2

)
.

Is F conservative?

Solution. As a first attempt, let’s check if F is irrotational. If it isn’t then we can immedi-
ately say “no” because F is C1, so conservative must imply irrotational.

...drat. ∂F1

∂y
= ∂F2

∂x
, so F is irrotational. This doesn’t necessarily tell us that F is conser-

vative, because the domain isn’t simply connected!

Fine. We’ll have to do this the hard way. We will find f : R2 \ {0} → R satisfying the
following system of differential equations:

∂f

∂x
(x, y) =

2xy

x4 + y2

∂f

∂y
(x, y) =

−x2

x4 + y2

It’s probably easier to integrate the second equality here. I’ll do the first one instead to
highlight a possible error. We have

f(x, y) = f(0, y) +

∫ x

0

2ty

t4 + y2
dt = f(0, y) + tan−1

(
x2

y

)
.

(Boring u-substitutions omitted.) Now we need to find f(0, y). We differentiate with respect
to y to obtain

−x2

x4 + y2
=

∂f

∂y
(x, y) =

∂f

∂y
(0, y)− x2

x4 + y2
,

so ∂f
∂y
(0, y) = 0 and hence f(0, y) is constant in y.

...or is it? Actually, note that the domain of y 7→ f(0, y) is (−∞, 0) ∪ (0,∞), so f(0, y)
isn’t necessarily constant. We can only say that it is piece-wise constant. Choosing the
correct constant values for f(0, y) is not too bad, so I’ll just spoil the fun and say that we
can take

f(x, y) =


tan−1

(
x2

y

)
− π

2
, y > 0

0, y = 0

tan−1
(

x2

y

)
− π

2
, y < 0

.
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If we instead started by integrating the second equality, we would have gotten something
that looks more like

f(x, y) = − tan−1
( y

x2

)
,

and it turns out that this is the same function (!).

Of course, now that we have what the potential has to be provided that it exists, you
should verify that it actually works. ■

We do one last example.

Example 13.3: Consider the vector field

F (x, y, z) = (2z4 − 2y − y3, z − 2x− 3xy2, 6 + y + 8xz3).

Is F conservative? If so, find its gradient potential.

Solution. After some boring computation we see that indeed curlF = 0, so F is irrotational,
and since F is C1 and R3 is simply-connected, we have that F is conservative. Brilliant.

Now we want to actually find the gradient potential f . We need to solve a system of
three differential equations:

∂f

∂x
(x, y, z) = 2z4 − 2y − y3

∂f

∂y
(x, y, z) = z − 2x− 3xy2

∂f

∂z
(x, y, z) = 6 + y + 8xz3

Welp. Let’s just start by integrating the z equation I guess.

f(x, y, z) = f(x, y, 0) + 6z + yz + 2xz4 (∗)

On one hand, if we differentiate (∗) with respect to x, we get

2z4 − 2y − y3 =
∂f

∂x
(x, y, 0) + 2x4

so that ∂f
∂x
(x, y, 0) = −2y − y3. On the other hand, if we differentiate (∗) with respect to y,

we get

z − 2x− 3xy2 =
∂f

∂y
(x, y, 0) + z

so that ∂f
∂y
(x, y, 0) = −2x− 3xy2.

Hey wait a minute, now the equations

∂f

∂x
(x, y, 0) = −2y − y3
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∂f

∂y
(x, y, 0) = −2x− 3xy2

form a system of equations for finding the gradient potential for the vector field (−2y −
y3,−2x− 3xy2)! And we know how to do this. Let’s integrate the y equation.

f(x, y, 0) = f(x, 0, 0)− 2xy − xy3

Now differentiate with respect to x.

−2y − y3 =
∂f

∂x
(x, 0, 0)− 2y − y3

Oh wow, so ∂f
∂x
(x, 0, 0) = 0 and f(x, 0, 0) is just a constant, so let’s just take it to be 0. Then

f(x, y, 0) = −2xy − xy3

and so

f(x, y, z) = f(x, y, 0) + 6z + yz + 2xz4 = −2xy − xy3 + 6z + yz + 2xz4 .

(This time I don’t think we need to actually verify this works, because we know F is con-
servative so there has to be a gradient potential, and if there exists a gradient potential, it
must be this one.) ■

Note: If you’re reading this I just realized that this process can be streamlined slightly.
But I have a headache so I don’t feel like deleting half the page.
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14 (Appendix) Stoke’s Theorem

In a previous recitation, we derived Green’s Theorem, which states that∫
Ω

∂F2

∂x
− ∂F1

∂y
d(x, y) =

∫
∂Ω

F.

This can also be viewed as the identity∫
Ω

curlF d(x, y) =

∫
∂Ω

F.

Hence, we may view Green’s Theorem has a statement that “the total swirliness inside the
set is equal to the swirly along the outside”.

Stoke’s Theorem says that this is still true, even if the set isn’t completely flat (i.e. ⊆ R2).
That is, this “swirly equation” still holds if the set in question is only locally flat, i.e. a 2D
manifold.

Making this statement rigorous requires us to answer an essential question however:
What does it mean to integrate along the “boundary of a manifold”? Heck, what even is
the “boundary” of a manifold?

14.1 Manifolds with Boundary

Recall the definition of a differentiable manifold.

Definition 14.1 (Manifold)

A set M ⊆ RN is a k-dimensional manifold of class Cm if for every x0 ∈ M there exists
a Cm homeomorphism φ : V → M ∩ U where V ⊆ Rk is open and U ⊆ RN is open
and contains x0, such that Dφ has rank k.

Essentially V is “where we are charting out a map of M”. It is required that V is open,
it can’t have an edge. A manifold with boundary, however, relaxes this requirement on V ,
allowing it to have an edge.

Definition 14.2 (Manifold with Boundary)

A set M ⊆ RN is a k-dimensional manifold of class Cm if for every x0 ∈ M there exists
a Cm homeomorphism φ : V → M ∩ U where V ⊆ Rk

+ is relatively open in Rk
+ and

U ⊆ RN is open and contains x0, such that Dφ has rank k.

Here, Rk
+ = {(x⃗, x) ∈ Rk : x ≥ 0}, where we view Rk as (Rk−1 × R).
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Example 14.1: The hemisphere {(x, y, z) : x2 + y2 + z2 = 1, z > 0} is a manifold.
But it does not have boundary.
The “closed” hemisphere {(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0} is a manifold with
boundary. This is because if I stand on the “edge” of the hemisphere, i.e. at a point
(x, y, 0) with x2+y2 = 1, then the part of the manifold near me looks like the upper

part of a plane, i.e. R2
+.

The definition leads to a natural notion of the boundary a manifold with boundary.

Definition 14.3 (Boundary)

Let M be a manifold with boundary, let x0 ∈ M and find an appropriate chart
φ : V → U ∩M for which x0 ∈ U . Let y0 ∈ V be such that φ(y0) = x0. If y0 = (y⃗, 0)

(i.e. y0 lies on the “edge” of the set Rk
+) then we say that x0 is a boundary point of M .

The set of M ’s boundary points is denoted by ∂M , and is called the boundary of M .

An exercise is to prove that the definition of a boundary point doesn’t depend on which
chart we use.

In Stoke’s Theorem, we ultimately want to integrate over the boundary of a manifold M .
A priori, this isn’t very well-defined. We can be at ease with the following theorem, though!

Theorem 14.1 (Boundary of a Manifold is a Manifold)

Let k ≥ 2. Let M ⊆ RN be a k-dimensional differentiable manifold with boundary.
Then ∂M is a k − 1-dimensional differentiable manifold.
Moreover, if M is orientable then so is ∂M .

In particular, when N = 3, then ∂M is a 1-dimensional manifold, i.e. a path in R3. In
fact it will be a looping path. When M is orientable, then ∂M will be orientable, so we can
view ∂M as going in one of two directions.

Now we can state Stoke’s.
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Theorem 14.2 (Stoke’s Theorem)

Let M ⊆ R3 be a compact C1 manifold with boundary. Then∫
M

curlF · ν dH2 =

∫
∂M

F,

where

• F : Ω → R3 is a C1 vector field defined on an open set Ω containing M ,

• ∂M is an oriented curve, and

• the continuous unit outward normal ν is chosen such that, if we view ν(y) as
pointing “up”, then the orientation of ∂M is such that ∂M is “travelling counter-
clockwise” around ν(y).

Ensuring that the directions we choose for ν and ∂M are compatible is crucial.

Example 14.2: Let M = {(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0} be a manifold with
boundary. Consider the vector field F (x, y, z) := (xy, yz, xz). What is∫

M

curlF · ν dH2,

where ν is the normal pointing up or outward, i.e. ν(x, y, z) = (x, y, z)?

Solution. We want to apply Stoke’s. Because ν is pointing up, the direction we want to
assign the boundary ∂M = {(x, y, 0) : x2+y2 = 1} is the counter-clockwise one, given by the
parameterization φ(t) := (cos t, sin t, 0). (If instead ν were pointing down, i.e. ν(x, y, z) =
(−x,−y,−z), then we would have to choose the clockwise orientation.)

By Stoke’s we just need to compute the line integral
∫
∂M

F . This is given by∫ 2π

0

F (φ(t)) · φ′(t) dt =

∫ 2π

0

(cos t sin t, 0, 0) · (− sin t, cos t, 0) dt = 0.

■

Some other notes on Stoke’s:

• Why do we take M to be compact? That’s to make sure that there is a boundary that
we’re not just “ignoring”. For example, the “open” hemisphere does not technically
have a boundary. However, we can’t plug it into Stoke’s because it’s not compact. By
closing the hemisphere to include the circular perimeter of its base, we are forced to
include the boundary. The compactness condition also ensures that the boundary will
be a nice loop, and not something weird that shoots off to infinity.
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• A fascinating observation is that the value of
∫
M
curlF · ν dH2 does not depend on

which manifold M we choose, as long as its boundary is the same. For example, as
in the example above, we still would get

∫
M
curlF · ν dH2 = 0 if we chose M to look

really wacky, like a cactus or something, but still with that circular boundary at the
bottom (and as long as ν still points “up”).

• Consider M = ∂B3(0, 1). Let F be any C1 vector field. Then
∫
M
curlF · ν dH2 =

0. This is because M is a (compact!) manifold with boundary, and specifically its
boundary is the empty set. The same identity holds for any M that “encloses” a
region.

• As suggested at the beginning of these notes, Stoke’s Theorem generalizes Green’s
Theorem. A nice understanding check is to demonstrate this.
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