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In the previous class, we have defined the classQMA, which can be seen as the quantum analogue of
NP. We have also shown how to amplify its acceptance probabilities to be exponentially close to0 and1 (the
proof can be found in [3]). The basic idea was to apply the original verifier several times and then take the
majority vote among the answers. Since the (quantum) witness is potentially ruined after a measurement,
we had to supply the new verifier with several copies of the original witness.

In this lecture we will show an alternative approach to amplifyingQMA, due to Marriott and Watrous
[4]. The advantage of this approach is that the witness remains the same. In other words, only one copy
of the original witness is enough. In addition to being an interesting result by its own right, such ‘witness-
preserving amplification’ has several applications, such as the one we’ll see at the end of this lecture. More-
over, a similar approach was recently used in a result of Watrous on zero knowledge against quantum attacks
[8].

Let us recall the definition of the classQMA. We start with the well-known classical classNP. We say
that a family indexed by{0, 1}∗ is uniformly generated, if there exists an algorithm that given a bit stringx,
generates the corresponding element of the family in time polynomial in the length ofx. Then the classNP
can be defined as follows.

DEFINITION 1 The classNP consists of all languagesL ⊆ {0, 1}∗ for which there exists a uniformly
generated family of classical, deterministic, poly-size circuits{Vx : x ∈ {0, 1}∗} and a polynomialm, such
that:

1. For all x ∈ L there exists anm(|x|)-bit witnessw such thatVx(w) = 1;

2. For all x /∈ L and for allm(|x|)-bit witnessw, Vx(w) = 0.

By allowing randomization in the verification process, we obtain a class known asMA.

DEFINITION 2 The classMA consists of all languagesL ⊆ {0, 1}∗ for which there exists a uniformly
generated family of classical, randomized, poly-size circuits{Vx : x ∈ {0, 1}∗} and a polynomialm, such
that:

1. For all x ∈ L, there exists anm(|x|)-bit witnessw such thatPr(Vx(w) = 1) ≥ 2/3;

2. For all x /∈ L and for allm(|x|)-bit witnessw, Pr(Vx(w) = 1) ≤ 1/3.

Finally, by allowing a quantum witness and a quantum verifier, we obtain the classQMA (which is
sometimes calledBQNP). See Figure1.

Vx

|0k〉

|ψ〉

Figure 1:A QMA verifier

DEFINITION 3 The classQMA consists of all languagesL ⊆ {0, 1}∗ for which there exists a uniformly
generated family of quantum poly-size circuits{Vx : x ∈ {0, 1}∗} and polynomialsm, k, where eachVx

hasm(|x|) input qubits,k(|x|) auxiliary qubits and its output is given by the first output qubit, such that:
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1. For all x ∈ L there exists anm(|x|)-qubit witness|ψ〉 such thatPr(Vx accepts|ψ〉) ≥ 2/3;

2. For all x /∈ L and for allm(|x|)-qubit witness|ψ〉, Pr(Vx accepts|ψ〉) ≤ 1/3.

Two comments about this definition are in place. First, let us denote byQMA(a, b) the class of languages
as in the definition above with2/3 and1/3 replaced bya andb respectively. Then, by theQMA amplification
we saw in the last lecture,QMA(2/3, 1/3) = QMA(1−2−poly(|x|), 2−poly(|x|)) and so we can say thatQMA
is robust with respects to these parameters. Second, we consider onlypurestates|ψ〉. Allowing mixed states
would result in the same class, since the maximum acceptance probability of a verifier is always obtained
by a pure state.

The choice ofQMA asthequantum analogue ofNP is not entirely obvious. Let us mention two other
possible definitions:

• In the definition ofQMA we take both the witness and the verifier to be quantum. If instead we take
the verifier to be quantum but keep the witness classical, we obtain a class known asQCMA. Not
much is known about this class beyond the obvious containmentsNP ⊆ MA ⊆ QCMA ⊆ QMA.

• An alternative way to defineNP is as the class of languagesL for which there exists a family of
randomized, uniformly generated, circuits{Vx : x ∈ {0, 1}∗} such thatx ∈ L iff the probability that
Vx outputs1 is nonzero. Now, by considering quantum circuits instead of randomized ones, we obtain
another quantum analogue ofNP known asNQP. It turns out thatNQP is equal to a known classical
complexity class calledcoC=P, which is very powerful.

There are only a few problems known to be inQMA that are not known to be inNP. One notable example
is the Group Non-Membership problem. Another important example are problems that arecompletefor
QMA, such as the Local Hamiltonian problem. We will discuss these problems in a later class.

1 A Tale of Two Subspaces

As we all know, for any two lines inRn that go through the origin (i.e., one-dimensional subspaces), one
can define theanglebetween them. If we take a line and a plane, we can again define the angle between
them in a natural way. But what happens if we take two planes? Here our three-dimensional intuition is
no longer good enough. Indeed, in three-dimensions, two two-dimensional subspaces always intersect in
a line, and orthogonal to that line we find the angle between the two subspaces. This is no longer true in
higher dimensions: Starting from four dimensions, two two-dimensional subspaces generally have a trivial
intersection, and instead of forming an angle, they formtwoangles!

In more generality, the question we consider in this section is how two subspaces interact. This ques-
tion turns out to have a very elegant answer, as we shall soon see. This answer, which was first given in a
remarkable paper of C. Jordan in 1875, was since rediscovered many times by mathematicians, statisticians,
physicists, and computer scientists. In addition to being a crucial component in witness-preserving amplifi-
cation ofQMA, this question also plays an important role in many recent results in quantum computation,
often in an implicit way (see, e.g., [4, 8, 5, 7, 1, 6]). This topic is also covered in Chapter VII of the book by
Bhatia [2].

In our analysis below, we describe a subspace by theprojectoron the subspace. This is very convenient
since a projector is independent of the choice of basis of the subspace. To recall, a projector is a Hermitian
matrix satisfyingΠ2 = Π, i.e., all its eigenvalues are either0 or 1. The eigenspace corresponding to the
eigenvalue1 is the subspace on whichΠ projects.

So the question we are trying to answer is: given two projectorsΠ1 andΠ2, what can we say about how
they interact? We will show that one can find an orthogonal decomposition of space into one-dimensional
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and two-dimensional subspaces such that bothΠ1 andΠ2 are block-diagonal in this decomposition. An
example of this is shown in Figure2. There, two random 5-dimensional subspaces were chosen in 11-
dimensional space. Based on these two subspaces, a decomposition of the 11-dimensional space into five
two-dimensional subspaces and one one-dimensional subspace was computed. Then, a basis was chosen
inside each two-dimensional subspace so thatΠ1 is diagonal. The figure shows the two projectors in this
basis. We remark that the upper matrix has a nicer form just because of the way we chose the basis inside
each two-dimensional subspace.
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Figure 2:Two randomly chosen rank-5 projectors in 11-dimensional space

LEMMA 1 For any two projectorsΠ1, Π2 there exists an orthogonal decomposition of the Hilbert space
into one-dimensional and two-dimensional subspaces that are invariant under bothΠ1 andΠ2. Moreover,
inside each two-dimensional subspace,Π1 andΠ2 are rank-one projectors (in other words, inside each two-
dimensional subspace there are two unit vectors|v〉 and|w〉 such thatΠ1 projects on|v〉 andΠ2 projects on
|w〉).

PROOF: Consider the matrixΠ1 + Π2. Clearly, this is a Hermitian matrix, and as such it has a complete set
of eigenvectors. We show that this set of vectors can be partitioned into sets of size either one or two, and
that each set spans an invariant subspace as in the lemma.

Let |ϕ〉 be an eigenvector ofΠ1 + Π2, normalized to be of unit length, and letλ be the corresponding
eigenvalue. Then by definition,

Π1|ϕ〉+ Π2|ϕ〉 = λ|ϕ〉. (1)

Assume first thatΠ1|ϕ〉 is in span(|ϕ〉). By (1), we also have thatΠ2|ϕ〉 is in span(|ϕ〉). Hence, we obtain
that span(|ϕ〉) is a one-dimensional invariant subspace of bothΠ1 andΠ2. We remark that since bothΠ1

andΠ2 are projectors, we in fact have thatΠ1|ϕ〉 is either0 or |ϕ〉 and similarlyΠ2|ϕ〉 is 0 or |ϕ〉.
So assume now thatΠ1|ϕ〉 is not in span(|ϕ〉) and consider the two-dimensional spaceS spanned by

|ϕ〉 andΠ1|ϕ〉. Then this space is invariant byΠ1 since for anyα andβ,

Π1(α|ϕ〉+ βΠ1|ϕ〉) = (α + β)Π1|ϕ〉 ∈ S.

It is also invariant byΠ2 since
Π2|ϕ〉 = λ|ϕ〉 −Π1|ϕ〉 ∈ S
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by (1) and
Π2Π1|ϕ〉 = Π2(λ|ϕ〉 −Π2|ϕ〉) = (λ− 1)Π2|ϕ〉 ∈ S

where the containment holds by the previous step. Being invariant by bothΠ1 andΠ2, S is clearly also
invariant byΠ1 + Π2. Hence, the vector orthogonal to|ϕ〉 in S is another eigenvector ofΠ1 + Π2, and so
S is spanned by two eigenvectors ofΠ1 + Π2, as promised. Finally, it follows easily from (1) that insideS,
Π1 andΠ2 are rank-one projectors.¤

This lemma gives us a very good picture of the interaction betweenΠ1 andΠ2. Let us consider the
two-dimensional subspacesS1, S2, . . . (the one-dimensional subspaces are in some sense trivial and won’t
matter for our applications). Inside each subspaceSi, Π1 is the projector|vi〉〈vi| for some unit vec-
tor |vi〉 and similarlyΠ2 is the projector|wi〉〈wi| for some unit vector|wi〉 (see Figure3). The angles
θi = arccos(|〈vi|wi〉|) ∈ [0, π/2] are essentially what is known as theprincipal anglesbetween the two
subspaces. For convenience, we set the phase of|wi〉 so that〈vi|wi〉 is a non-negative real. For instance,
this implies thatΠ2|vi〉 = cos θi|wi〉 andΠ1|wi〉 = cos θi|vi〉.

|v〉

|w〉
|v⊥〉

|w⊥〉

√
p

θ
p

Figure 3:Π1 andΠ2 inside a two-dimensional invariant space

Let us introduce some extra notation that will be useful in the next section. We definepi = cos2 θi =
|〈vi|wi〉|2. We also let|v⊥i 〉 and |w⊥i 〉 be unit vectors inSi orthogonal to|vi〉 and |wi〉 respectively, with
phases chosen so that we have

|wi〉 =
√

pi|vi〉+
√

1− pi|vi
⊥〉

|vi〉 =
√

pi|wi〉+
√

1− pi|wi
⊥〉.

This immediately implies that

|vi
⊥〉 =

√
1− pi|wi〉 − √pi|w⊥i 〉

|wi
⊥〉 =

√
1− pi|vi〉 − √pi|v⊥i 〉.

The lemma allows us to easily answer questions regarding matrices obtained from combinations ofΠ1

andΠ2. For instance, what can we say aboutΠ1Π2Π1? It is clearly block-diagonal in theSi decomposition,
and inside eachSi, it is

|vi〉〈vi||wi〉〈wi||vi〉〈vi| = |〈vi|wi〉|2 · |vi〉〈vi| = pi · |vi〉〈vi|,

i.e., it is a projector on|vi〉 multiplied by the squared cosine of the angle between|vi〉 and|wi〉.
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2 Witness-preserving Amplification of QMA

We now prove the main result of this lecture.

THEOREM 2 For any witness sizem = m(|x|) ∈ poly, anya, b : N → [0, 1] such thata(n) − b(n) ≥
1/poly(n) and anyr = poly(n),

QMAm(a, b) ⊆ QMAm(1− 2−r, 2−r)

where the subscript indicates the witness size.

PROOF: Let L ∈ QMAm(a, b) and let{Vx : x ∈ {0, 1}∗} be the corresponding family of quantum verifiers.
Without loss of generality, we can assume that for any witness the acceptance probability ofVx is strictly
smaller than1 and strictly bigger than0. This follows by a simple modification to the circuit: for instance,
start by tossing a fair three-sided dice; depending on the result, either accept, reject, or run the original
verifier.

To prove the theorem, we shall construct a new verifierV ′
x that expects the same witness asVx and

whose acceptance probabilities are exponentially close to0 and1. The verifierV ′
x repeats the following two

stepsN times (see Figure4):1

1. Apply Vx, measure if the output qubit is 1, and then applyV †
x ;

2. Measure if all auxiliary qubits are 0.

It then writes down all2N measurement results asa1, a2, . . . , a2N ∈ {Y, N} and counts the number of
times thatai = ai+1. For example, if it observes the resultsYYNYNNYNNN, the count is 4. If this number
is at leasta+b

2 (2N − 1), it accepts; otherwise it rejects. We remark that there are several alternative ways to
construct an amplified verifierV ′

x, and an example of such a construction appears in the homework.

Vx

|0k〉

|ψ〉
V †

x Vx
V †

x Vx
V †

x

· · ·

· · ·

Figure 4:The newQMA verifier

We now analyze the verifier. DefineΠ1 as the projector on the auxiliary qubits being zero, andΠ2 as
V †

x ∆Vx where∆ is the projector on the output qubit being1. We first notice that the maximum acceptance
probability of the original verifierVx is given by the largest eigenvalue ofΠ1Π2Π1.2 To see that, notice first
that the subspace of all states with auxiliary qubits orthogonal to|0k〉 is an eigenspace with eigenvalue0
(because ofΠ1). In the orthogonal space (spanned by states whose auxiliary qubits are|0k〉),

〈ψ|Π1Π2Π1|ψ〉 = 〈ψ|V †
x ∆Vx|ψ〉 = ‖∆Vx|ψ〉‖2

which is the acceptance probability of the witness|ψ〉. Hence the maximum acceptance probability is the
maximum eigenvalue ofΠ1Π2Π1 and the corresponding eigenvector is the witness that achieves it.

We now apply the analysis of the previous section toΠ1 andΠ2, and consider the resulting decompo-
sition. Using the notation of the previous section, we have two-dimensional subspacesS1, S2, . . . with two
unit vectors|vi〉, |wi〉 inside each subspace, andpi = |〈vi|wi〉|2.

1This verifier can also be implemented without any intermediate measurements in a standard way.
2This observation is already used in the analysis of plainQMA amplification.
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First we notice thatΠ1 (or, to be precise, the subspace on which it projects) is spanned by|v1〉, |v2〉, . . ..
To see that, notice that in each one-dimensional subspace,Π1 must be zero, since otherwise we obtain a
vector inΠ1 (i.e., a legal witness) whose acceptance probability is either0 or 1 (depending on whetherΠ2

is 0 or 1 in that subspace), contradicting our assumption onVx. So from now on we only need to consider
the two-dimensional subspaces.

As we have seen in the previous section, the matrixΠ1Π2Π1 can be written as

Π1Π2Π1 =
∑

i=1,2,...

pi · |vi〉〈vi|.

In particular, we see that the maximum eigenvalue ofΠ1Π2Π1, which is the maximum acceptance probabil-
ity of Vx, is maxi pi.

We now go back to analyzing the new verifierV ′
x. We can think of it as performing a sequence of

projective measurements, alternating between the measurement{Π2, I−Π2} and the measurement{Π1, I−
Π1}. Let us analyze its behavior when given one of the vectors|vi〉 as input (see Figure5). In the first
measurement, with probability|〈vi|wi〉|2 = pi we obtainY and otherwise we obtainN. The resulting state
is either|wi〉 in case ofY or |w⊥i 〉 in case ofN. If the result wasY, then in the second measurement we
obtainY with probability |〈wi|vi〉|2 = pi and|v⊥i 〉 otherwise. Similarly, if the result was|w⊥i 〉, then in the
second measurement we obtainY with probability|〈w⊥i |vi〉|2 = 1− pi andN otherwise. To summarize, we
see that the probability of a transition fromY to Y or fromN to N is exactlypi.

|vi〉

|v⊥

i
〉

|wi〉

|w⊥

i
〉

Y, pi

N, pi

N, 1-pi

Y, 1-pi

|vi〉

|v⊥

i
〉

|wi〉

|w⊥

i
〉

Y, pi

N, pi

N, 1-pi

Y, 1-pi

Y, pi

N, pi

N, 1-pi

Y, 1-pi

Figure 5:Transition probabilities inV ′
x

The most important point to notice here is that we never go out of the two-dimensional spaceSi. This
is the key idea that makes the construction work. In a sense, even though we perform measurements, the
original state|vi〉 is not lost. For instance, whenever we measureΠ1, we’re back to the original state|vi〉.

From the above we can easily prove the correctness ofV ′
x in the case thatx ∈ L. In this case, the largest

eigenvalue ofΠ1Π2Π1 is at leasta. Hence there exists ani such thatpi ≥ a. If we give |vi〉 as a witness
to V ′

x, then by the above analysis, we see thatV ′
x essentially performs2N − 1 independent coin flips with

biaspi. By a standard Chernoff bound, the probability that the fraction of heads is at leasta+b
2 can be made

greater than1− 2−r by choosingN to be a large enough polynomial.
It remains to handle the case thatx /∈ L. Here we know that the largest eigenvalue ofΠ1Π2Π1 is at most

b and hence for alli, pi ≤ b. Our goal is to show that for any possible witness|ψ〉 ∈ Π1, V ′
x accepts with

probability at most2−r. In case|ψ〉 happens to be one of the eigenvectors|vi〉, the analysis is essentially
the same as in the previous case: each measurement is an independent coin toss with bias at mostb. Hence
by choosingN to be a large enough polynomial, we can make sure that for all|vi〉, the probability thatV ′

x

accepts is at most2−r.
For the general case, one can simply write an arbitrary witness|ψ〉 as a linear combination of the|vi〉’s

and perform an analysis similar to the one above on such combinations. It can be shown that at each step
the probability of a transitionN → N or Y → Y is at mostb, no matter what the current state is. A more
elegant way to argue this is the following. Consider the quantum operation that measures the namei of the
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blockSi and tracesi out. This operation can be described by the super-operator

ρ →
∑

i

ΠSiρΠSi .

Since all the measurements performed byV ′
x are block-diagonal in theSi decomposition, this super-operator

commutes with all of them. Hence, we can apply it before we startV ′
x without changing the behavior of the

verifier. But now the input toV ′
x is a mixture of states|vi〉, and we already know thatV ′

x accepts any such
witness with probability at most2−r. ¤

3 One Application of Witness-preserving Amplification

In this section we show that witnesses of logarithmic size do not help. Let’s start with the classical case,
where the goal is to show thatMAlog = BPP. The idea is to simply guess a random witness. Since there
is only a polynomial number of them, we have a good chance of hitting the correct one. To make sure we
don’t have too many false positives, we first amplify the probabilities.

THEOREM 3 For any logarithmicm = m(|x|), MAm(2
3 , 1

3) = BPP.

PROOF: The containmentBPP ⊆ MAm(2
3 , 1

3) follows from the definitions. For the other direction, letL be
a language inMAm(2

3 , 1
3). By (classical) amplification, we have thatL ∈ MAm(3

4 , 1
42−m). Let {Vx} be the

corresponding family of verifiers. Consider theBPP machine that on inputx appliesVx to a witness chosen
uniformly from all2m possible witnesses, and accepts if and only ifVx accepts.

If x ∈ L then there is a witnessw thatVx accepts with probability at least3
4 . Thus, ourBPP machine

accepts with probability at least3
42−m. If x /∈ L, then for any witness,Vx accepts with probability at most

1
42−m. Hence, the probability that ourBPP machine accepts is also at most1

42−m. The difference between
1
42−m and 3

42−m is inverse polynomial, and hence this is indeed aBPP machine.¤
Notice that in the above proof it is crucial that the amplification process does not increase the size of

the witness (or at least not too much). This will also be crucial in the proof below, where we show that
QMAlog = BQP. Unlike the classical case, it is not immediately clear how to choose a random witness.
First of all, there is an infinite number of them. So instead we can try to take a finite set of witnesses
that well-approximates all possible witnesses. This is indeed possible; however, since the witness is on a
logarithmic number of qubits, it lives in a space of polynomial dimension, which implies that such a finite
set must be of exponential size! Luckily, as we will see below, there is a very easy solution: use as a witness
the completely mixed state.

THEOREM 4 For any logarithmicm = m(|x|), QMAm(2
3 , 1

3) = BQP.

PROOF: The containmentBQP ⊆ QMAm(2
3 , 1

3) follows from the definitions. For the other direction,
let L be a language inQMAm(2

3 , 1
3). According to witness-preserving amplification, we have thatL ∈

QMAm(3
4 , 1

42−m), and let{Vx} be the corresponding family of quantum verifiers. Consider theBQP
machine that appliesVx with the witness being a completely mixed state onm qubits (i.e., having density
matrix I/2m), and accepts if and only ifVx accepts. An equivalent description is that we choose a random
m-bit (classical) string, and use it as a witness toVx.

For the analysis, define
Qx = (Im ⊗ 〈0|k)V †

x ∆Vx(Im ⊗ |0〉k)
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where∆ is the projector on the output qubit being1. Then the probability thatVx accepts anm-qubit
witness|ϕ〉 can be written as〈ϕ|Qx|ϕ〉. The acceptance probability of theBQP machine is thus

1
2m

∑

i∈{0,1}m

〈i|Qx|i〉 =
1

2m
tr(Qx).

Another way to see that is to notice that

1
2m

tr(Qx) = tr(∆ · Vx(2−mIm ⊗ |0k〉〈0k|)V †
x )

and the right hand side is the exactly the probability to measure1 in the output qubit of the state obtained
by applyingVx to 2−mIm ⊗ |0k〉〈0k|.

If x ∈ L then there is a witness|ψ〉 that is accepted byVx with probability at least34 and so we have
〈ψ|Qx|ψ〉 ≥ 3

4 . In particular, this implies thattr(Qx) ≥ 3
4 and hence the acceptance probability of theBQP

machine is at least34 · 2−m. On the other hand, ifx /∈ L thenVx accepts any witness with probability at
most 1

42−m. This implies thattr(Qx) ≤ 1
4 and the acceptance probability of theBQP machine is at most

1
4 · 2−m. The difference between these two probabilities is inverse polynomial and hence this is indeed a
BQP machine.¤
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