Tel Aviv University, Spring 2006 Lecture 2 Lecturer: Oded Regev
Quantum Computation  Witness-preserving Amplification of QMA Scribe: N. Aharon

In the previous class, we have defined the cl@b$A, which can be seen as the quantum analogue of
NP. We have also shown how to amplify its acceptance probabilities to be exponentially dicsedd (the
proof can be found in3]). The basic idea was to apply the original verifier several times and then take the
majority vote among the answers. Since the (quantum) witness is potentially ruined after a measurement,
we had to supply the new verifier with several copies of the original witness.

In this lecture we will show an alternative approach to amplify@idA, due to Marriott and Watrous
[4]. The advantage of this approach is that the witness remains the same. In other words, only one copy
of the original witness is enough. In addition to being an interesting result by its own right, such ‘witness-
preserving amplification’ has several applications, such as the one we’ll see at the end of this lecture. More-
over, a similar approach was recently used in a result of Watrous on zero knowledge against quantum attacks
[8].

Let us recall the definition of the cla@MA. We start with the well-known classical clad®. We say
that a family indexed byo0, 1}* is uniformly generatedf there exists an algorithm that given a bit string
generates the corresponding element of the family in time polynomial in the lengthToen the claslP
can be defined as follows.

DEerFINITION 1 The classNP consists of all languagesd C {0,1}* for which there exists a uniformly
generated family of classical, deterministic, poly-size circ{ifs : x € {0,1}*} and a polynomiain, such
that:

1. For all =z € L there exists amn(|x|)-bit witnessw such thatl, (w) = 1;

2. Forall x ¢ L and for allm(|z|)-bit withessw, V,(w) = 0.

By allowing randomization in the verification process, we obtain a class knoM#fas

DEFINITION 2 The classMA consists of all languages C {0, 1}* for which there exists a uniformly
generated family of classical, randomized, poly-size circiiifs: x € {0,1}*} and a polynomiain, such
that:

1. Forall z € L, there exists am:(|z|)-bit witnessw such thatPr(V, (w) = 1) > 2/3,;

2. Forall = ¢ L and for allm(|x|)-bit withessw, Pr(V,(w) =1) < 1/3.

Finally, by allowing a quantum witness and a quantum verifier, we obtain the Qlist#s (which is
sometimes calleBQNP). See Figurd.
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Figure 1:A QMA verifier

DEFINITION 3 The classQMA consists of all languages C {0, 1}* for which there exists a uniformly
generated family of quantum poly-size circuitg, : = € {0,1}*} and polynomialsn, k, where each/,,
hasm(|z|) input qubits k(]z|) auxiliary qubits and its output is given by the first output qubit, such that:



1. For all x € L there exists am:(|z|)-qubit witnesgq) such thatPr(V, acceptsy)) > 2/3;

2. Forall = ¢ L and for allm(|x|)-qubit withesgv), Pr(V,, acceptdy)) < 1/3.

Two comments about this definition are in place. First, let us dendf@M#(a, b) the class of languages
as in the definition above witty 3 and1/3 replaced by: andb respectively. Then, by tt@MA amplification
we saw in the last lectur@MA(2/3,1/3) = QMA(1 —2-Polv(Iz)) 9—poly(l2))y and so we can say th@MA
is robust with respects to these parameters. Second, we considpuoadyateg). Allowing mixed states
would result in the same class, since the maximum acceptance probability of a verifier is always obtained
by a pure state.

The choice 0ofQMA asthe quantum analogue MNP is not entirely obvious. Let us mention two other
possible definitions:

¢ In the definition ofQMA we take both the witness and the verifier to be quantum. If instead we take
the verifier to be quantum but keep the witness classical, we obtain a class kn@@M. Not
much is known about this class beyond the obvious containnidhts MA € QCMA C QMA.

e An alternative way to defin@&lP is as the class of languagésfor which there exists a family of
randomized, uniformly generated, circu{tg, : = € {0,1}*} such that: € L iff the probability that
V. outputsl is nonzero. Now, by considering quantum circuits instead of randomized ones, we obtain
another quantum analogue P known asNQP. It turns out thalNQP is equal to a known classical
complexity class calledoC_P, which is very powerful.

There are only a few problems known to b&JMA that are not known to be iINP. One notable example
is the Group Non-Membership problem. Another important example are problems thainapéetefor
QMA, such as the Local Hamiltonian problem. We will discuss these problems in a later class.

1 A Tale of Two Subspaces

As we all know, for any two lines ifR™ that go through the origin (i.e., one-dimensional subspaces), one
can define thenglebetween them. If we take a line and a plane, we can again define the angle between
them in a natural way. But what happens if we take two planes? Here our three-dimensional intuition is
no longer good enough. Indeed, in three-dimensions, two two-dimensional subspaces always intersect in
a line, and orthogonal to that line we find the angle between the two subspaces. This is no longer true in
higher dimensions: Starting from four dimensions, two two-dimensional subspaces generally have a trivial
intersection, and instead of forming an angle, they formangles!

In more generality, the question we consider in this section is how two subspaces interact. This ques-
tion turns out to have a very elegant answer, as we shall soon see. This answer, which was first given in a
remarkable paper of C. Jordan in 1875, was since rediscovered many times by mathematicians, statisticians,
physicists, and computer scientists. In addition to being a crucial component in withess-preserving amplifi-
cation ofQMA, this question also plays an important role in many recent results in quantum computation,
often in an implicit way (see, e.g4[8,5,(7,1,16]). This topic is also covered in Chapter VII of the book by
Bhatia P].

In our analysis below, we describe a subspace byptbgctoron the subspace. This is very convenient
since a projector is independent of the choice of basis of the subspace. To recall, a projector is a Hermitian
matrix satisfyingll> = II, i.e., all its eigenvalues are eith@ror 1. The eigenspace corresponding to the
eigenvaluel is the subspace on whidh projects.

So the question we are trying to answer is: given two projediigrandIl,, what can we say about how
they interact? We will show that one can find an orthogonal decomposition of space into one-dimensional



and two-dimensional subspaces such that hbtrandIl; are block-diagonal in this decomposition. An
example of this is shown in Figui2 There, two random 5-dimensional subspaces were chosen in 11-
dimensional space. Based on these two subspaces, a decomposition of the 11-dimensional space into five
two-dimensional subspaces and one one-dimensional subspace was computed. Then, a basis was chosen
inside each two-dimensional subspace so Ihats diagonal. The figure shows the two projectors in this

basis. We remark that the upper matrix has a nicer form just because of the way we chose the basis inside
each two-dimensional subspace.
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0.957739 0.201185 O 0 0 0 0 0 0 0 0
0.201185 0.0422613 O 0 0 0 0 0 0 0 0
0 0 0.782673 0.412427 O 0 0 0 0 0 0
0 0 0.412427 0.217327 O 0 0 0 0 0 0
0 0 0 0 0. 31525 -0.464615 O 0 0 0 0
0 0 0 0 -0.464615 0.68475 0 0 0 0 0
0 0 0 0 0 0 0.0819297 -0.274258 O 0 0
0 0 0 0 0 0 -0.274258 0.91807 0 0 0
0 0 0 0 0 0 0 0 0.00684302 -0.082439 0
0 0 0 0 0 0 0 0 -0.082439 0.993157 O
0 0 0 0 0 0 0 0 0 0 0

Figure 2:Two randomly chosen rank-5 projectors in 11-dimensional space

LEMMA 1 For any two projector$ly, 11, there exists an orthogonal decomposition of the Hilbert space
into one-dimensional and two-dimensional subspaces that are invariant undér, batiaII,. Moreover,
inside each two-dimensional subspdde,andll, are rank-one projectors (in other words, inside each two-
dimensional subspace there are two unit vedtorand|w) such thatl, projects orjv) andll, projects on

|w)).

PrRoOOF. Consider the matriXl; + II,. Clearly, this is a Hermitian matrix, and as such it has a complete set
of eigenvectors. We show that this set of vectors can be partitioned into sets of size either one or two, and
that each set spans an invariant subspace as in the lemma.

Let |p) be an eigenvector dil; + II,, normalized to be of unit length, and letbe the corresponding
eigenvalue. Then by definition,

1]p) + Ialp) = Alg). (1)

Assume first thall, |¢) is in span(|e)). By (1), we also have thdis|y) is in span(|¢)). Hence, we obtain
thatspan(|p)) is a one-dimensional invariant subspace of HéthandIl,. We remark that since boffi;
andlIl, are projectors, we in fact have tHat|y) is either0 or |¢) and similarlyIlz|p) is 0 or |p).

So assume now that, |¢) is not inspan(|y)) and consider the two-dimensional spatspanned by
|p) andIl;|e). Then this space is invariant by, since for anyx and g,

i (ale) + A p)) = (o + B)Ip) € S.

It is also invariant byll; since
Halp) = Alp) — i|p) € S
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by (1) and
oIli|@) = T2 (M) — 2fp)) = (A = DIlz|p) € S

where the containment holds by the previous step. Being invariant bylbondIl,, S is clearly also
invariant byIl; + II,. Hence, the vector orthogonal fip) in S is another eigenvector @f; + II,, and so
S is spanned by two eigenvectorslaf + I1», as promised. Finally, it follows easily frord)(that insideS,
II; andII; are rank-one projectors]

This lemma gives us a very good picture of the interaction betweeandIl,. Let us consider the
two-dimensional subspacés, S, . . . (the one-dimensional subspaces are in some sense trivial and won't
matter for our applications). Inside each subspégell; is the projector|v;)(v;| for some unit vec-
tor |v;) and similarlyIly is the projectorw;){w;| for some unit vectofw;) (see Figure3). The angles
0; = arccos(|(vi|w;)|) € [0,7/2] are essentially what is known as thencipal anglesbetween the two
subspaces. For convenience, we set the phage; pko that(v;|w;) is a non-negative real. For instance,
this implies thafll,|v;) = cos 0;|w;) andIl;|w;) = cos 0;|v;).

Alot)
|w)
A
Vi
Ve gp_J \‘ |U>
)

Figure 3:11; andll; inside a two-dimensional invariant space

Let us introduce some extra notation that will be useful in the next section. We gefiagos? 6, =
|(vilw;)|2. We also letjv;-) and |w;-) be unit vectors inS; orthogonal tojv;) and |w;) respectively, with
phases chosen so that we have

lwi) = \/pilvi) + \/1—7pi|vf>
vi) = /pilwi) + /1 — pilwi™).

This immediately implies that

[0it) = /1 = pilwi) — /pilwy)
wit) = /1= pilvi) = /pilvi").
The lemma allows us to easily answer questions regarding matrices obtained from combinatigns of

andIl,. For instance, what can we say abbiyf1»11, ? Itis clearly block-diagonal in thg; decomposition,
and inside eacly;, it is

|vs) (Wi [wi) (wil [vi) (vi] = [{vilwi)|? - [vi) (vi] = pi - [vi) (il

i.e., itis a projector ofw;) multiplied by the squared cosine of the angle betwiegnand|w;).



2 Witness-preserving Amplification of QMA

We now prove the main result of this lecture.

THEOREM2 For any witness sizen = m(|z|) € poly, anya,b : N — [0, 1] such thatu(n) — b(n) >
1/poly(n) and anyr = poly(n),

QMA,,.(a,b) CQMA,, (1 —27",27")
where the subscript indicates the witness size.

PROOF. Let L € QMA,,,(a,b) and let{V,, : = € {0,1}*} be the corresponding family of quantum verifiers.
Without loss of generality, we can assume that for any witness the acceptance probabilitis atrictly
smaller thanl and strictly bigger than. This follows by a simple modification to the circuit: for instance,
start by tossing a fair three-sided dice; depending on the result, either accept, reject, or run the original
verifier.

To prove the theorem, we shall construct a new verifigithat expects the same witnessigsand
whose acceptance probabilities are exponentially closeatwl1. The verifierV, repeats the following two
stepsN times (see Figurd):*

1. Apply V.., measure if the output qubit is 1, and then ad@fy
2. Measure if all auxiliary qubits are 0.

It then writes down alRN measurement results as, as, ...,aan € {Y,N} and counts the number of
times thaiu; = a;1. For example, if it observes the resif§ NYNNYNNN, the count is 4. If this number

is at IeastaT*b(QN — 1), it accepts; otherwise it rejects. We remark that there are several alternative ways to
construct an amplified verifidr,, and an example of such a construction appears in the homework.
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Figure 4:The newQMA verifier

We now analyze the verifier. Defird@, as the projector on the auxiliary qubits being zero, Badas
TAV, whereA is the projector on the output qubit beibhgWe first notice that the maximum acceptance
probability of the original verifie#/,, is given by the largest eigenvalueldfII,11; .2 To see that, notice first
that the subspace of all states with auxiliary qubits orthogonii*pis an eigenspace with eigenvalOe
(because ofl;). In the orthogonal space (spanned by states whose auxiliary qubjts gre

(MMM |¢) = ($|VIAV,|¢) = |AV,[)]?

which is the acceptance probability of the witn¢ss. Hence the maximum acceptance probability is the
maximum eigenvalue dfl; II,IT; and the corresponding eigenvector is the witness that achieves it.

We now apply the analysis of the previous sectiomltoandIl,, and consider the resulting decompo-
sition. Using the notation of the previous section, we have two-dimensional subsfhaées. . . with two
unit vectorsjv;), |w;) inside each subspace, and= | (v;|w;)|?.

1This verifier can also be implemented without any intermediate measurements in a standard way.
2This observation is already used in the analysis of @A amplification.



First we notice thall; (or, to be precise, the subspace on which it projects) is spannied)bjvs), . . ..
To see that, notice that in each one-dimensional subsphcejust be zero, since otherwise we obtain a
vector inIl; (i.e., a legal witness) whose acceptance probability is eiitogrl (depending on whethéis
is 0 or 1 in that subspace), contradicting our assumptior/pnSo from now on we only need to consider
the two-dimensional subspaces.

As we have seen in the previous section, the maisik;II; can be written as

ILILIL = Z pi - |vi) (vil.
i=12,...

In particular, we see that the maximum eigenvalug gl I1;, which is the maximum acceptance probabil-
ity of V,, ismax; p;.

We now go back to analyzing the new verifigf. We can think of it as performing a sequence of
projective measurements, alternating between the measuréhiert—II,} and the measuremefil;, / —
IT1;}. Let us analyze its behavior when given one of the vedtgsas input (see FigurB). In the first
measurement, with probabilityv;|w;)|?> = p; we obtainY and otherwise we obtaiN. The resulting state
is either|w;) in case ofY or |w;") in case ofN. If the result wasy, then in the second measurement we
obtainY with probability | (w;|v;)|> = p; and|vj-) otherwise. Similarly, if the result was;-), then in the
second measurement we obtaimith probability |(w;-|v;)|> = 1 — p; andN otherwise. To summarize, we
see that the probability of a transition frorto Y or from N to N is exactlyp;.
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Figure 5:Transition probabilities iV,

The most important point to notice here is that we never go out of the two-dimensional$gpddas
is the key idea that makes the construction work. In a sense, even though we perform measurements, the
original statdv;) is not lost. For instance, whenever we meagdiiyewe’re back to the original state;).

From the above we can easily prove the correctnes§ of the case that € L. In this case, the largest
eigenvalue oflI;II,11; is at leasts. Hence there exists arsuch thaip; > a. If we give |v;) as a witness
to V/, then by the above analysis, we see ffiaessentially perform8N — 1 independent coin flips with
biasp;. By a standard Chernoff bound, the probability that the fraction of heads is afi@@asan be made
greater thari — 27" by choosingV to be a large enough polynomial.

It remains to handle the case thag L. Here we know that the largest eigenvaluédlgfI,II; is at most
b and hence for all, p; < b. Our goal is to show that for any possible witn¢g$ € I1,, V! accepts with
probability at mosR~". In casely) happens to be one of the eigenvecter$, the analysis is essentially
the same as in the previous case: each measurement is an independent coin toss with bids Blemost
by choosingV to be a large enough polynomial, we can make sure that foo;allthe probability that’,
accepts is at mot".

For the general case, one can simply write an arbitrary with@sas a linear combination of tHe;)’s
and perform an analysis similar to the one above on such combinations. It can be shown that at each step
the probability of a transitioW — N orY — Y is at mosth, no matter what the current state is. A more
elegant way to argue this is the following. Consider the quantum operation that measures thehtdrae



block S; and traceg out. This operation can be described by the super-operator
P — Z HSZ-PHSi .
7

Since all the measurements performed/fyare block-diagonal in th8; decomposition, this super-operator
commutes with all of them. Hence, we can apply it before we $tantithout changing the behavior of the
verifier. But now the input td’] is a mixture of stateg;), and we already know thaf/ accepts any such
witness with probability at mot~". [

3 One Application of Witness-preserving Amplification

In this section we show that witnesses of logarithmic size do not help. Let’s start with the classical case,
where the goal is to show thitA,,, = BPP. The idea is to simply guess a random witness. Since there

is only a polynomial number of them, we have a good chance of hitting the correct one. To make sure we
don’t have too many false positives, we first amplify the probabilities.

THEOREM 3 For any logarithmien = m(|z|), MA,(3, ) = BPP.
PROOF. The containmenBPP C MAm(g, 1) follows from the definitions. For the other direction, lebe
alanguage itMA,, (2, 1). By (classical) amplification, we have thate MA,, (2, 227™). Let{V,} be the
corresponding family of verifiers. Consider tBEP machine that on input appliesV,, to a withess chosen
uniformly from all2™ possible witnesses, and accepts if and only,ificcepts.

If z € L then there is a witness thatV,, accepts with probability at Iea%t Thus, ourBPP machine
accepts with probability at Ieaétz—m. If z ¢ L, then for any witnessy/, accepts with probability at most
%2*’”. Hence, the probability that oBPP machine accepts is also at mé@rm. The difference between

327™and32~™ is inverse polynomial, and hence this is inde€@RP machine [J

Notice that in the above proof it is crucial that the amplification process does not increase the size of
the witness (or at least not too much). This will also be crucial in the proof below, where we show that
QMA,,, = BQP. Unlike the classical case, it is not immediately clear how to choose a random witness.
First of all, there is an infinite number of them. So instead we can try to take a finite set of witnesses
that well-approximates all possible witnesses. This is indeed possible; however, since the witness is on a
logarithmic number of qubits, it lives in a space of polynomial dimension, which implies that such a finite
set must be of exponential size! Luckily, as we will see below, there is a very easy solution: use as a witness
the completely mixed state.

THEOREM4 For any logarithmien = m(|z|), QMA,, (2, 1) = BQP.

ProoFE The containmenBQP C QMAm(g, %) follows from the definitions. For the other direction,
let L be a language iIQMAm(%, %). According to witness-preserving amplification, we have that
QMAm(%, iQ*m), and let{V,} be the corresponding family of quantum verifiers. ConsiderBQ
machine that applieB, with the witness being a completely mixed stateremubits (i.e., having density
matrix [ /2"), and accepts if and only If,, accepts. An equivalent description is that we choose a random
m-bit (classical) string, and use it as a witnes$to

For the analysis, define

Q= (In ® (O )WV AV, (I @ [0)")



where A is the projector on the output qubit being Then the probability thal, accepts anm-qubit
witness|y) can be written agp|Q.|¢). The acceptance probability of tB€P machine is thus

1 . . 1
om Z <Z|Qx\z>:2—mtr(Q$).

1€{0,1}m
Another way to see that is to notice that

S r(Q2) = (A V(27" |05 (04 V)
and the right hand side is the exactly the probability to measumethe output qubit of the state obtained
by applyingV, to 27™1,,, @ |0%)(0¥|.

If x € L then there is a witnegg)) that is accepted by, with probability at Ieast% and so we have
(¥|Qz|v) > 3. In particular, this implies that(Q,.) > % and hence the acceptance probability of BiGgP
machine is at Ieas:} -27™_ 0On the other hand, if ¢ L thenV, accepts any witness with probability at
most%Q‘m. This implies thatr(Q,) < i and the acceptance probability of tBQP machine is at most
% - 27" The difference between these two probabilities is inverse polynomial and hence this is indeed a
BQP machine
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