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Abstract

We introduce the use of Fourier analysis on lattices as an integral part of a lattice based

construction. The tools we develop provide an elegant description of certain Gaussian distribu-

tions around lattice points. Our results include two cryptographic constructions that are based

on the worst-case hardness of the unique shortest vector problem. The main result is a new

public key cryptosystem whose security guarantee is considerably stronger than previous results

(O(n1.5) instead of O(n7)). This provides the first alternative to Ajtai and Dwork’s original

1996 cryptosystem. Our second result is a family of collision resistant hash functions with an

improved security guarantee in terms of the unique shortest vector problem. Surprisingly, both

results are derived from one theorem that presents two indistinguishable distributions on the

segment [0, 1). It seems that this theorem can have further applications; as an example, we use

it to solve an open problem in quantum computation related to the dihedral hidden subgroup

problem.

1 Introduction

Cryptographic constructions based on lattices have attracted considerable interest in recent years.

The main reason is that, unlike many other cryptographic constructions, lattice based constructions

can be based on the worst-case hardness of a problem. That is, breaking them would imply a

solution to any instance of a certain lattice problem. In this paper we will be interested in the

unique shortest vector problem (uSVP), a lattice problem that is believed to be hard. For a constant

c, the nc-uSVP is defined as follows: we are asked to find the shortest non-zero vector in an n-

dimensional lattice with the promise that it is shorter by a factor of nc than all other non-parallel

vectors. Hence, the problem becomes harder as c decreases. The results in this field can be divided

into two types. The first includes public key cryptosystems and the second includes families of

collision resistant hash functions.

The only previously known public key cryptosystem based on a worst-case lattice problem is the

one due to Ajtai and Dwork [2], which appeared in 1996. They presented a public key cryptosystem

based on the worst-case hardness of O(n8)-uSVP. Then, in [10], Goldreich, Goldwasser and Halevi

showed how to eliminate decryption errors that existed in the original scheme. They also improved

the security to O(n7)-uSVP. Although there are other lattice based cryptosystems (see, e.g., [11,

∗Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Most of this work was done while

the author was at the Institute for Advanced Study, Princeton, NJ. Work supported by the Army Research Office

grant DAAD19-03-1-0082 and NSF grant CCR-9987845.

1



15, 20]), none of them is based on the worst-case hardness of a lattice problem. Our main result is

a new public key cryptosystem whose security is based on O(n1.5)-uSVP.

In [1], Ajtai presented a family of one-way hash functions based on the worst-case hardness of

several lattice problems. In terms of the uSVP, it was based on the hardness of O(nc)-uSVP. The

constant c was not explicitly specified but later it was noted to be c = 19 [4]. In [9], it was shown

that under the same assumptions one can obtain a family of collision resistant hash functions.

This is a stronger primitive than a one-way function with many uses in cryptography. Cai and

Nerurkar [5] improved the exponent to c = 9 + ε and later, by providing an improved analysis, Cai

[4] obtained c = 4 + ε. These papers also showed how to base the security of the hash function on

other lattice problems that are potentially harder than uSVP (such as the shortest vector problem

and the shortest independent vectors problem). In [22], Micciancio constructed a family of hash

functions with the best known constant c for several important lattice problems (but not for uSVP).

In another related paper [21], Micciancio improved the efficiency of the hash function by using cyclic

lattices.

Our contribution

The main contribution of this paper is the introduction of Fourier analysis on lattices as an inte-

gral part of a lattice based construction. Fourier analysis was previously used indirectly through

transference theorems, i.e., theorems that relate properties of a lattice and its dual (see, e.g., [4]).

Our constructions are the first to use Fourier analysis directly.

Our main theorem is a reduction from the O(n1.5)-uSVP to the problem of distinguishing be-

tween two types of distributions on the segment [0, 1). We believe that this theorem will find other

uses in the future.

Using the main theorem, we present three results. The main one is a new public key cryptosys-

tem that is based on the worst-case hardness of O(n1.5)-uSVP. This is a major improvement to the

1996 cryptosystem by Ajtai and Dwork. Its description is surprising in that it essentially consists

only of numbers modulo some large number N .

Our second result is a family of collision resistant hash functions whose security is based on

the worst-case hardness of O(n1.5)-uSVP. In terms of the uSVP, this improves all the previous

results mentioned above. However, we should mention that previous results were not based only on

uSVP and are therefore incomparable with our result. The hash function that we consider is simple

and is known as the modular subset sum function1. This function already appeared in previous

papers; for example, one of the results in [16] is an average-case to average-case reduction for the

function. Finally, let us mention that a recent paper [24] greatly improves on our result as well as

on all previous results. There, a family of collision resistant hash functions is shown whose security

is based on the worst-case hardness of three important lattice problems (shortest vector problem,

shortest independent vectors problem, and covering radius problem) all with an approximation

factor of Õ(n) (i.e., linear up to logarithmic terms). The proof of this strong result is based on

ideas from this paper. Our third result is related to an open question in quantum computation and

will be discussed in Section 7.
1Previous constructions of hash functions were usually presented as functions on random lattices. However, most

of these results can be easily extended to the modular subset sum function. This was already noted in Ajtai’s original

paper ([1]).
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Intuitive overview

In the following we provide an informal overview of the results in this paper. Many of the details

are omitted for the sake of clarity.

Main theorem: Our main theorem is a reduction from n-dimensional instances of n1.5-uSVP

(and in general, nc-uSVP) to the problem of distinguishing between two types of distributions on

[0, 1). One distribution is the uniform distribution U while the other, Th, is concentrated around

integer multiples of 1/h for some unknown large integer h ≤ 2O(n2). Notice that if we knew h, we

could easily distinguish between the two by multiplying by h and checking if the result is close to an

integer. The sharpness of the concentration in this ‘wavy’ distribution depends on the exponent c

in the nc-uSVP problem. For example, n1.5-uSVP translates to a concentration of around 1/n, that

is, the difference between two adjacent peaks is roughly n times the width of a peak (see Figure 1).

The reduction is a Cook reduction. It works by producing distributions that are known to be

either U or Th for some h and then it uses the oracle to find out which of the two is the case. The

value h in the Th distributions produced by the reduction depends on the shortest vector in the

lattice; this explains why h is unknown. Still, we can guarantee that h is not greater than 2O(n2)

(this is done by working with an LLL-reduced basis).

Notice that the reduction is to a worst-case problem in the sense that one has to distinguish

between U and Th for all values h ≤ 2O(n2). Nevertheless, Th has the property that if one can

distinguish it from uniform for some non-negligible fraction of all possible h in some range then one

can also distinguish it from uniform for all values of h. This average-case to worst-case property

will be described in more detail later. In the following we describe four reductions that together

form the proof of the main theorem.

The first reduction is from the search problem n1.5-uSVP to a certain decision problem on

lattices. The input to the decision problem is an n1.5-unique lattice given by a basis v1, . . . , vn.

Assume that the shortest vector is
∑n

i=1 aivi where ai ∈ Z. The decision problem asks whether

p | ai where p is some prime number chosen to be slightly more than n1.5. The reduction is a Cook

reduction and the idea is to make the lattice sparser and sparser without losing the shortest vector.

At the end, the lattice is so sparse that we can easily find the shortest vector. For example, if we

find some i such that p | ai then we can replace vi with p ·vi without losing the shortest vector. We

also need to handle the case where for all i, p - ai. Here we perform a slightly more complicated

procedure. The idea is to add a multiple of one basis vector to another in such a way that p | ai

for some i and then, as before, we can replace vi with p · vi.

The second reduction is from the above decision problem to a promise problem. In this promise

problem, we are given a lattice that either has one short vector of length 1/n and all other non-

parallel vectors are of length more than
√

n, or all vectors are of length more than
√

n. The goal

is to distinguish between these two cases with the promise that one of them is the case. The input

to the reduction is a n1.5-unique lattice and we should decide whether p | ai. We do this by first

scaling the lattice so that the length of the shortest vector is 1/n and therefore all non-parallel

vectors are of length more than n1.5/n =
√

n. We then replace the basis vector vi with pvi and

call the oracle for the promise problem with the resulting lattice. If p | ai then the shortest vector

remains in the lattice and therefore we end up with a lattice whose shortest vector is of length 1/n

and all other non-parallel vectors are of length more than
√

n. If p - ai then the shortest vector
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disappears and so do all of its multiples up to the pth multiple. Since p > n1.5, all the vectors in the

resulting lattice are of length more than
√

n. Therefore, we managed to solve the decision problem

by one call to the oracle for the promise problem. Let us mention that the idea of multiplying a

basis vector by a prime was already used by [12] in a different context.

The third reduction is the core of the proof. Here, we reduce the above promise problem to

a problem of distinguishing between two n-dimensional distributions. Namely, one distribution is

UL∗ , an n-dimensional uniform distribution, and the other is TL∗ , an n-dimensional distribution

that has the form of fuzzy n − 1-dimensional hyperplanes (see Figure 3 for a two-dimensional

illustration). The reason we have L∗ in the subscript should become clear later in the paper. The

main intuitive idea in this reduction is the following. Imagine looking at a grid of points with your

vision blurred – see the left image in Figure 2 for an illustration. If the grid is dense enough then

all the blurs merge together and the picture you see is uniform. In other words, by adding noise to

a lattice, we can essentially ‘erase’ its fine structure. This is also the underlying idea in the work

of Ajtai and Dwork [2].

The reduction itself is as follows: given an input lattice L, the output distribution is obtained

by choosing a ‘random’ lattice point from the dual lattice L∗ and perturbing it by a Gaussian of

radius
√

n. We analyze this reduction by applying an important lemma of Banaszczyk [3]. This

lemma makes precise the intuitive idea mentioned above. It says that the distribution obtained

in the reduction can be closely approximated by a function that depends only on points in L (the

primal lattice) that are within distance
√

n of the origin. Using this lemma, we can now prove the

correctness of the reduction. First consider the case that all nonzero vectors in L are of length

more than
√

n. Intuitively, since L has no short vectors, L∗ is quite dense. Indeed, in this case the

only vector in L that is within distance
√

n of the origin is the origin itself and the lemma tells us

that the distribution given by the reduction is very close to UL∗ , i.e., the n-dimensional uniform

distribution. Now consider the case that L is a lattice with one short vector u of length 1/n and

all other non-parallel vectors of length more than
√

n. By the definition of the dual lattice, L∗

is aligned on n − 1-dimensional hyperplanes orthogonal to u. The orthogonal distance between

two adjacent hyperplanes is 1/‖u‖ = n and the structure of L∗ on each hyperplane is quite dense.

Intuitively, we would expect the distribution given by the reduction to be concentrated around

these hyperplanes and uniform on them. This is the distribution TL∗ mentioned above. As we will

see later, this is exactly what Banaszczyk’s lemma gives us.

The fourth and final reduction transforms the n-dimensional distributions described above into

one-dimensional distributions. The reduction is based on a mapping from the support of our n-

dimensional distributions to the segment [0, 1). The mapping has the property that UL∗ is mapped

to U , the uniform distribution on [0, 1), and that TL∗ is mapped to Th, a wavy distribution on

[0, 1), for some h that depends on the hyperplane structure (and hence on the shortest vector in

the original lattice). The mapping is performed by partitioning the support of our n-dimensional

distributions, which turns out to be a parallelepiped, into W parallelepipeds for some very large W .

Each of these parallelepipeds is ‘tall and narrow’, i.e., it is long in one dimension and very short in

all other dimensions. Consider our n-dimensional distributions restricted to such a parallelepiped.

The crucial observation is that since it is so narrow, the distribution that we see is essentially a

one-dimensional cross section of the n-dimensional distribution: either uniform in the case of UL∗ or

wavy in the case of TL∗ . This leaves us with W one-dimensional distributions – one for each narrow
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parallelepiped. We then describe a certain ordering of these narrow parallelepipeds. Consider the

distribution on [0, 1) obtained by concatenating all the one-dimensional distributions together. In

other words, the ith parallelepiped is assigned to the segment [(i− 1)/W, i/W ). In case we started

with UL∗ , the resulting distribution is clearly uniform. In case we started with TL∗ , we show that

our ordering is such that the individual distributions glue together nicely and that the resulting

distribution is Th. This completes the description of the main theorem.

Worst-case to average-case: The problem shown hard by the main theorem is, in a way, a

worst-case problem: to solve all instances of n1.5-uSVP, we need to distinguish between U and Th

for all h. We therefore provide another theorem that shows that even the average-case problem is

hard. This theorem will be used in the proof of security of the public key cryptosystem. We prove

the theorem by showing that a distinguisher between U and Th for some non-negligible fraction

of all possible values for h in some range leads to a distinguisher between U and Th for all h

(and hence to a solution to n1.5-uSVP). The idea of this proof is the following. Assume we can

distinguish between U and T2h. Let us show how to distinguish between U and Th. We sample

a value x ∈ [0, 1) from the unknown distribution. We then let y be either x/2 or (1 + x)/2 with

equal probability. Notice that if the unknown distribution is uniform, then y is also uniform. If

the unknown distribution is Th then y is distributed according to T2h. Notice that we did not use

the (unknown) value of h. Hence, this operation transforms any Th into T2h. We can extend this

idea and transform Th into Tηh for any η ≥ 1. Now, given a distinguisher that works for some

non-negligible fraction of all possible values for h we construct a distinguisher that works for any

h. This is done by applying the above transformation with many random values η. With high

probability, in one of these attempts, ηh will be such that the given distinguisher can distinguish

between U and Tηh. Hence, with high probability, we can distinguish between U and Th.

Public key cryptosystem: Let N be some large integer. The private key consists of a single

integer h chosen randomly in the range (say) [
√

N, 2
√

N). The public key consists of m = O(log N)

numbers a1, . . . , am in {0, 1, . . . , N − 1} that are ‘close’ to integer multiples of N/h (notice that h

doesn’t necessarily divide N). We also include in the public key an index i0 ∈ [m] such that ai0

is close to an odd multiple of N/h. We encrypt one bit at a time. An encryption of the bit 0 is

the sum of a random subset of {a1, . . . , am} modulo N . An encryption of the bit 1 is done in the

same way except we add bai0/2c to the result. On receiving an encrypted word w we consider its

remainder on division by N/h. If it is small, we decrypt 0 and otherwise we decrypt 1. Correctness

is established as follows. Since a1, . . . , am are all close to integer multiples of N/h, any sum of a

subset of them is also close to a multiple of N/h and hence encryptions of 0 are decrypted correctly.

Similarly, since bai0/2c is far from a multiple of N/h, encryptions of 1 are also far from multiples

of N/h and the decryption is 1.

The following is a rough description of how we establish the security of the cryptosystem.

Assume that there exists a distinguisher A that given the public key can distinguish encryptions of

0 from encryptions of 1. In other words, the difference between the acceptance probabilities p0 on

encryptions of 0 and the acceptance probability p1 on encryptions of 1 is non-negligible. Therefore,

if pu is the acceptance probability on random words w, it must be the case that either |pu − p0| or

|pu − p1| is non-negligible. Assume that the former case holds (the latter case is similar). Then we

construct a distinguisher between the distributions U and Th. Let R be the unknown distribution
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on [0, 1). We choose m values from R, multiply them by N and round the result. Let a1, . . . , am

be the result. We then estimate A’s acceptance probability when the public key a1, . . . , am (for

simplicity we ignore i0) is fixed and the word w is chosen randomly as an encryption of 0. This

is done by simply calling A many times, each time with a new w computed according to the

encryption algorithm. We also estimate A’s acceptance probability when w is chosen uniformly

from {0, 1, . . . , N − 1} and not according to the encryption algorithm. If there is a non-negligible

difference between the two estimates, we decide that R is Th and otherwise we say that R is U .

We claim that this distinguishes between U and Th. If R is U then a1, . . . , am are uniform in

{0, 1, . . . , N − 1}. One can show that this implies that the distribution of encryptions of 0 is very

close to the uniform distribution and therefore A (as well as any other algorithm) cannot have

different acceptance probabilities for the two distributions. Otherwise, R is Th and the distribution

that we obtain on a1, . . . , am is the same one that is used in the public key algorithm. Therefore,

according to our hypothesis, A should have a non-negligible difference between the two cases.

A family of collision resistant hash functions: We choose m = O(log N) random numbers

a1, . . . , am uniformly from {0, 1, . . . , N − 1} and define the hash function f(b) =
∑m

i=1 biai mod N

where b ∈ {0, 1}m. A collision finding algorithm in this case means an algorithm A that given

random a1, . . . , am finds with non-negligible probability a nonzero vector b ∈ {−1, 0, 1}m such that∑
biai ≡ 0(mod N). Using A we show how to build a distinguisher between U and Th. By trying

many values of the form (1+1/poly(m))i we can have an estimate h̃ of h up to some small 1/poly(m)

error. We would like to use h̃ to check if the distribution is concentrated around multiples of 1/h.

Sampling values from the unknown distribution R and reducing modulo 1/h̃ does not help because

the difference between i/h and i/h̃ is much larger than 1/h̃ for almost all 0 ≤ i < h, since h is

exponential in m. The idea is to use the collision finding algorithm to create from Th a distribution

that is also concentrated around the peaks i/h but only for small i, namely i ≤ m.

The distinguisher first samples m values x1, . . . , xm from the unknown distribution R. We then

add small perturbations y1, . . . , ym chosen uniformly in [0, 1/h̃) to each x1, . . . , xm respectively. We

denote the result by z1, . . . , zm. We now call A with bN · z1c, . . . , bN · zmc and we get a subset

S such that
∑

i∈S zi mod 1 is very close to zero. For simplicity assume that it is exactly zero.

If
∑

i∈S xi mod 1 = −∑i∈S yi mod 1 is close to an integer multiple of 1/h̃ we say that R is Th;

otherwise, we say that R is U .

An important aspect of the analysis is that we condition on any values of z1, . . . , zm, S and

analyze the remaining randomness in x1, . . . , xm and y1, . . . , ym. Intuitively, this allows us to argue

that our distinguisher works no matter what the collision finding algorithm does. If R is the uniform

distribution on [0, 1) then conditioned on any values of z1, . . . , zm the distribution of y1, . . . , ym is

still uniform in [0, 1/h̃) and hence, with high probability,
∑

i∈S yi is not close to an integer multiple

of 1/h̃. If R is Th then conditioned on any values of z1, . . . , zm, each xi is distributed on the interval

(zi − 1/h̃, zi]. More precisely, its distribution is the one obtained by restricting Th to (zi − 1/h̃, zi].

This distribution can be closely approximated by the distribution obtained by restricting Th to

(zi − 1/h, zi]. Because the length of this interval is 1/h, this distribution includes exactly one peak

of Th. Hence, xi is distributed around some i/h. Therefore,
∑

i∈S xi mod 1 is close to a multiple

of 1/h. Moreover, since the yi’s are at most 1/h̃,
∑

i∈S yi is at most m/h̃. Since the estimate h̃

satisfies that for 1 ≤ i ≤ m, i/h is very close to i/h̃,
∑

i∈S xi mod 1 is close to a multiple of 1/h̃

and the distinguisher decides that R is Th, as required.
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One last issue that we have to address is that A might not find collisions on inputs of the form

bN · z1c, . . . , bN · zmc when R is not the uniform distribution. This is because our assumption was

that A finds collisions on inputs chosen uniformly. But if A does not find collisions we know that

R has to be Th and hence we can still distinguish between U and Th.

Outline

In Section 2 we list several definitions and some properties of lattices that will be needed in this

paper (for an introduction to lattices see [23]). The distributions that appear in our main theorem

are defined in Section 2.1. The main theorem is developed in Section 3. In Section 4 we obtain an

average-case version of the main theorem. This version is then used in Section 5 where we describe

the public key cryptosystem and its analysis. The hash function and its analysis are given in

Section 6. In Section 7 we present a solution to an open problem related to quantum computation.

Sections 5, 6 and 7 are independent. The average-case formulation of Section 4 is used only in

Section 5.

2 Preliminaries

A lattice in Rn is defined as the set of all integer combinations of n linearly independent vectors.

This set of vectors is known as a basis of the lattice and is not unique. Given a basis (v1, . . . , vn)

of a lattice L, the fundamental parallelepiped is defined as

P(v1, . . . , vn) =

{
n∑

i=1

xivi

∣∣∣∣∣ xi ∈ [0, 1)

}

.

When the basis is clear from the context we will use the notation P(L) instead of P(v1, . . . , vn).

Note that a lattice has a different fundamental parallelepiped for each possible basis. We denote

by d(L) the volume of the fundamental parallelepiped of L or equivalently, the determinant of the

matrix whose columns are the basis vectors of the lattice. The point x ∈ Rn reduced modulo the

parallelepiped P(v1, . . . , vn) is the unique point y ∈ P(v1, . . . , vn) such that y − x is an integer

combination of v1, . . . , vn. The dual of a lattice L in Rn, denoted L∗, is the set of all vectors y ∈ Rn

such that 〈x, y〉 ∈ Z for all vectors x ∈ L. Similarly, given a basis (v1, . . . , vn) of a lattice, we define

the dual basis as the set of vectors (v∗1 , . . . , v∗n) such that
〈
vi, v

∗
j

〉
= δij for all i, j ∈ [n] where δij

denotes the Kronecker delta, i.e., 1 if i = j and 0 otherwise. Note that if B = (v1, . . . , vn) is the

n × n matrix whose columns are the basis vectors then the columns of (BT )−1 are the vectors of

the dual basis. From this it follows that d(L∗) = 1/d(L).

We say that a lattice is unique if its shortest (nonzero) vector is strictly shorter than all other

non-parallel vectors. Moreover, a lattice is f(n)-unique if its shortest vector is shorter than all

other non-parallel vectors by a factor of more than f(n). In the shortest vector problem we are

interested in finding the shortest vector in a lattice. In this paper we will be interested in the f(n)-

unique shortest vector problem (f(n)-uSVP) where in addition, we are promised that the lattice is

f(n)-unique. Let λ(L) denote the length of the shortest nonzero vector in the lattice L. We also

denote the shortest vector (or one of the shortest vectors) by τ(L). Most of the lattices that appear

is this paper are unique lattices and in these cases τ(L) is unique up to sign.

7



One particularly useful type of basis is an LLL-reduced basis. Such a basis can be found in

polynomial time [19]. Hence, we will often assume without loss of generality that lattices are given

by an LLL-reduced basis. The properties of LLL-reduced bases that we use are summarized in

Lemma 3.2.

We define a negligible amount in n as an amount that is asymptotically smaller than n−c for any

constant c > 0. The parameter n will indicate the input size. Similarly, a non-negligible amount is

one which is at least n−c for some c > 0. Finally, exponentially small in n means an expression that

is at most 2−Ω(n). We say that an algorithm A with oracle access is a distinguisher between two

distributions if its acceptance probability when the oracle outputs samples of the first distribution

and its acceptance probability when the oracle outputs samples of the second distribution differ by

a non-negligible amount. In addition, an algorithm A is said to distinguish between the distribution

T and the set of distributions T if for any distribution T ′ ∈ T , A distinguishes between T and T ′.
For two continuous random variables X and Y having values in [0, 1) with density functions T1

and T2 respectively we define their statistical distance as

∆(X,Y ) =
1

2

∫ 1

0
|T1(r) − T2(r)|dr.

A similar definition holds for discrete random variables. One important fact that we use is that

the statistical distance cannot increase by applying a (possibly randomized) function f , i.e.,

∆(f(X), f(Y )) ≤ ∆(X,Y ), (1)

see, e.g., [23]. In particular, this implies that the acceptance probability of any algorithm on inputs

from X differs from its acceptance probability on inputs from Y by at most ∆(X,Y ).

The set {1, 2, . . . , n} is denoted by [n]. All logarithms are of base 2 unless otherwise specified.

We use c̃ to denote an unspecified constant. That is, whenever c̃ appears we can replace it with

some universal constant. For example, the expression c̃ + 7 = c̃ is true because we can substitute 1

and 8 for the constants. Other constants will be denoted by c with a letter as the subscript, e.g.,

cm.

For two real numbers x and y > 0 we define x mod y as x−bx/ycy. For x ∈ R we define bxe as

the integer nearest to x or, in case two such integers exist, the smaller of the two. We also use the

notation frc (x) := |x − bxe|, i.e., the distance of a real x to the nearest integer. Notice that for all

x, y ∈ R, 0 ≤ frc (x) ≤ 1
2 , frc (x) ≤ |x| and frc (x + y) ≤ frc (x) + frc (y).

Recall that the normal distribution with mean 0 and variance σ2 is the distribution on R given

by the density function 1√
2π·σ exp

(
−1

2(x
σ )2
)

where exp (y) denotes ey. Also recall that the sum of

two independent normal variables with mean 0 and variances σ2
1 and σ2

2 is a normal variable with

mean 0 and variance σ2
1 + σ2

2 . We define the standard Gaussian distribution as the distribution on

Rn in which each coordinate is an independent normal random variables with mean 0 and standard

deviation 1/
√

2π. In other words, a standard Gaussian distribution is given by the density function

exp
(
−π‖x‖2

)
on Rn.

For clarity, we present some of our reductions in a model that allows operations on real numbers.

It is possible to modify them in a straightforward way so that they operate in a model that

approximates real numbers up to an error of 2−nc
for arbitrary large constant c in time polynomial

in n. Therefore, if we say that two continuous distributions on [0, 1) are indistinguishable (in the
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real model) then for any c > 0 discretizing the distributions up to error 2−nc
for any c yields two

indistinguishable distributions.

2.1 Several Distributions

We define several useful distributions on the segment [0, 1). The distribution U is simply the

uniform distribution with the density function U(r) = 1. For β ∈ R+ the distribution Qβ is a

normal distribution with mean 0 and variance β
2π reduced modulo 1 (i.e., a periodization of the

normal distribution):

Qβ(r) :=

∞∑

k=−∞

1√
β
· exp

(
−π

β
(r − k)2

)
.

The 2π factor helps to simplify notation later in the paper. Note that the standard deviation of Qβ

is proportional to
√

β. Clearly, one can efficiently sample from Qβ by sampling a normal variable

and reducing the result modulo 1. Another distribution is Th,β where h ∈ N and β ∈ R+ (see

Figure 1). Its density function is defined as

Th,β(r) := Qβ(rh mod 1) =

∞∑

k=−∞

1√
β
· exp

(
−π

β
(rh − k)2

)
.

We can efficiently sample a value z ∈ [0, 1) according to Th,β as follows. First choose a value

x ∈ {0, 1, . . . , h − 1} uniformly at random and then choose a value y according to Qβ. The result

is (x + y)/h.
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3

4
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4
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6
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Figure 1: T4,0.05, T7,0.05 and T4,0.02

We also define the following set of distributions:

Tn,g :=

{
Th,β

∣∣∣∣ h ∈ N, h ≤ 24n2
, β ∈

[
n

g2
,
4n

g2

)}
.

The reason for this choice of parameter is our main theorem, which we explain next.

3 Main Theorem

In this section we present a reduction from g(n)-uSVP to the problem of distinguishing between

two types of distributions on [0, 1). The proof is obtained by combining the four reductions shown

later in this section.
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Theorem 3.1 Let g(n) be any function such that 4
√

n ≤ g(n) ≤ poly(n). If there exists a distin-

guisher between U and Tn,g(n) then there exists a solution to g(n)-uSVP.

Proof: Let p(n) be a prime larger than g(n) and at most (say) 2g(n). We can now apply Lemmas

3.5, 3.7, 3.15 and 3.17 in order to obtain the theorem.

The following technical lemma provides some rough bounds on numbers arising from LLL-

reduced bases: the coefficients of the shortest vector are not too big, the length of the shortest

vector is known to be in a certain range, and the vectors in the dual basis are not too long. These

properties will be used in the proof of Theorem 3.1.

Lemma 3.2 Let (v1, . . . , vn) be an LLL-reduced basis of a lattice L and let
∑n

i=1 aivi be its shortest

vector. Then |ai| ≤ 22n for all i ∈ [n] and λ(L) ≤ ‖v1‖ ≤ 2nλ(L). Moreover, if (v∗1 , . . . , v∗n) is the

dual basis, then ‖v∗i ‖ ≤
√

n
λ(L)2

2n for all i ∈ [n].

Proof: Let (v†1, . . . , v
†
n) denote the Gram-Schmidt orthogonalization of (v1, . . . , vn), i.e., v†i is the

component of vi orthogonal to the subspace spanned by v1, . . . , vi−1. Clearly,
〈
v†i , vj

〉
= 0 for i > j.

Recall that in an LLL-reduced basis ‖v†i ‖ ≤
√

2‖v†i+1‖ and for i < j,

∣∣∣
〈
v†i , vj

〉∣∣∣ ≤ 1

2
‖v†i ‖

2
.

In addition, recall that mini ‖v†i ‖ is a lower bound on λ(L). Then for any i ∈ [n], ‖v†1‖ ≤ 2(i−1)/2‖v†i ‖
and therefore ‖v†1‖ ≤ 2(n−1)/2λ(L). Using v†1 = v1, we see that

λ(L) ≤ ‖v1‖ ≤ 2nλ(L).

Consider now the representation of (v1, . . . , vn) in the orthonormal basis

(
v†1
‖v†1‖

, . . . ,
v†n

‖v†n‖

)
.

It is given by the columns of the matrix B = (bi,j)1≤i,j≤n where bi,j =
〈
vj , v

†
i

〉
/‖v†i ‖. Notice that

this matrix is upper triangular and that its diagonal is bi,i = ‖v†i ‖. Also note that by the properties

of an LLL-reduced basis, |bi,j| ≤ 1
2‖v

†
i ‖ for i < j. The shortest vector is

n∑

i=1

aivi =

n∑

i=1




n∑

j=i

ajbi,j



 v†i
‖v†i ‖

.

Since its length is at most 2n‖v†i ‖ the absolute value of each of its coordinates is at most 2n‖v†i ‖.
Hence,

∣∣∣
∑n

j=i ajbi,j

∣∣∣ ≤ 2n‖v†i ‖ for every i ∈ [n]. By taking i = n we get that |anbn,n| ≤ 2n‖v†n‖ and

hence |an| is at most 2n. We continue inductively and show that |ak| ≤ 22n−k. Assume that the

claim holds for ak+1, . . . , an. Then,
∣∣∣∣∣∣

n∑

j=k+1

ajbk,j

∣∣∣∣∣∣
≤ 1

2

∣∣∣∣∣∣

n∑

j=k+1

aj

∣∣∣∣∣∣
‖v†k‖ ≤ 1

2




n∑

j=k+1

22n−j



 ‖v†k‖ ≤ 1

2
· 22n−k‖v†k‖.

10



By the triangle inequality,

|akbk,k| ≤

∣∣∣∣∣∣

n∑

j=k+1

ajbk,j

∣∣∣∣∣∣
+

∣∣∣∣∣∣

n∑

j=k

ajbk,j

∣∣∣∣∣∣
≤
(

1

2
· 22n−k + 2n

)
‖v†k‖ ≤ 22n−k‖v†k‖

and the proof of the first part is completed.

The basis of the dual lattice is given by the columns of (BT )−1. Since mini |bi,i| ≥ λ(L)
2n and

|bi,j| ≤ 1
2 |bi,i|, the following claim implies that the entries of (BT )−1 are at most 1

λ(L)2
2n in absolute

value. Therefore, the length of each column vector is at most
√

n
λ(L)2

2n.

Claim 3.3 Let B = (bi,j)1≤i,j≤n be an n × n upper triangular matrix such that for all i < j ≤ n,

|bi,j| ≤ |bi,i|. Then, the entries of (BT )−1 have an absolute value of at most 1
mini |bi,i|2

n.

Proof: First, let D denote the diagonal matrix with values bi,i on the diagonal. Then B can be

written as DM where M is an upper triangular matrix with ones on the diagonal and all other

entries have an absolute value of at most 1. Then, (BT )−1 = (MT DT )−1 = D−1(MT )−1. Therefore,

it is enough to show that the entries of L := (MT )−1 are at most 2n in absolute value. The diagonal

of L is all ones and it is lower triangular. We can define it recursively by

li = ei −
∑

k<i

lkmk,i

where li denotes the ith row of L and ei is the vector that has 1 in position i and 0 everywhere

else. In other words, the entry li,j for i > j can be defined by −∑j≤k<i lk,jmk,i. Therefore,

|li,j | =

∣∣∣∣∣∣

∑

j≤k<i

lk,jmk,i

∣∣∣∣∣∣
≤
∑

j≤k<i

|lk,jmk,i| ≤
∑

j≤k<i

|lk,j|

from which we get the bound |li,j | ≤ 2i−j for i ≥ j.

3.1 Reduction to a Decision Problem

We reduce uSVP to the following decision problem.

Definition 3.4 (Divisibility SVP with parameter p (dSVPp)) For an integer p ≥ 2, the in-

put to the dSVPp is an arbitrary basis (v1, . . . , vn) of a unique lattice L and a number α such that

λ(L) < α ≤ 2λ(L). Let τ(L) =
∑n

i=1 aivi be the coefficients of the shortest vector. Then the goal

is to output YES if p divides a1 and NO otherwise.

Lemma 3.5 Let p = p(n) > 2 be a prime number that is at most polynomial in n.2 There exists

a reduction from finding the shortest vector in a unique lattice L to dSVPp.
3 Moreover, if L is an

f(n)-unique lattice then all the calls to the dSVP oracle are also with an f(n)-unique lattice.

2The result holds for the case p = 2 as well with some technical differences.
3One can guarantee the uniqueness of the shortest vector in any lattice by adding tiny perturbations to the basis

vectors. Therefore, the assumption that L is unique can be avoided.
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Proof: It is convenient to have a bound on the coefficients of the shortest vector. So we assume,

without loss of generality, that we are given an LLL-reduced basis (v1, . . . , vn) of L. Hence, by

Lemma 3.2, we get that the coefficients of the shortest vector satisfy |ai| ≤ 22n and ‖v1‖
2n ≤ λ(L) ≤

‖v1‖. These are the only properties that we need from the basis and in fact, other bases used

throughout this proof will not necessarily be LLL-reduced. In the following we describe a procedure

B(α) that finds the shortest vector in L given access to a dSVP oracle and an α that satisfies

λ(L) < α ≤ 2λ(L). We apply the procedure n times with α = 2j−n · ‖v1‖ for j = 1, 2, . . . , n + 1.

Notice that when we call B with the wrong value of α it can error by either outputting a non-lattice

vector or a lattice vector that is longer than the shortest vector. We can easily ignore these errors

by checking that the returned vector is a lattice vector and then taking the shortest one. Therefore,

it is sufficient to show that when α satisfies λ(L) < α ≤ 2λ(L), B(α) returns the shortest vector.

Clearly, one can modify the dSVP oracle so that it finds whether p | ai for any i ∈ [n] (and not just

i = 1) by simply changing the order of the vectors in the basis given to it.

The procedure B is based on changes to the basis (v1, . . . , vn). Throughout the procedure we

maintain the invariant that the lattice spanned by the current basis is a sublattice of the original

lattice and that the shortest vector is unchanged. Notice that this implies that if the original lattice

is an f(n)-unique lattice then all intermediate lattices are also f(n)-unique and hence all the calls to

the dSVP oracle are with an f(n)-unique lattice, as required. In addition, since the shortest vector

is unchanged, the estimate α can be used whenever we call the dSVP oracle with an intermediate

lattice. The changes to the basis are meant to decrease the coefficients of the shortest vector. We

let a1, . . . , an denote the coefficients of the shortest vector according to the current basis. We will

show that when the procedure ends all the coefficients of the shortest vector are zero except ai for

some i ∈ [n]. This implies that the shortest vector is vi. In the following we describe a routine C
that will later be used in B.

The routine C(i, j) where i, j ∈ [n] applies a sequence of changes to the basis. Only the vectors

vi and vj in the basis are modified. When the routine finishes it returns the new basis and a bit. If

the bit is zero then we are guaranteed that the coefficient ai of the shortest vector in the new basis

is zero and that aj is unchanged. Otherwise, the bit is one and we are guaranteed that |aj | ≤ 1
2 |ai|

and that ai is nonzero. Moreover, the value of |ai| does not increase by C(i, j).

The routine is composed of the following two steps. In the first step we replace vi with p · vi

as long as the dSVP oracle says that p | ai and not more than 2n times. By multiplying vi by p

when p | ai, we obtain a sublattice that still contains the same shortest vector. The coefficient ai

decreases by a factor of p. Since we began with |ai| < 22n, if this happens 2n times then ai = 0

and therefore in this case we return the current basis and output a zero bit. Otherwise, we are

guaranteed that in the current lattice p - ai.

In the second step we consider p different bases where vi is replaced with one of vi−p−1
2 vj , . . . , vi−

vj , vi, vi + vj , . . . , vi + p−1
2 vj. Notice that all p bases span the same lattice. Also note that the co-

efficient aj changes to aj + p−1
2 ai, . . . , aj + ai, aj , aj − ai, . . . , aj − p−1

2 ai respectively while all other

coefficients remain the same. Since p - ai, one of the bases must satisfy that p | aj and we can find

it by calling the dSVPp oracle. We choose that basis and then multiply vj by p. We repeat the

above steps (of choosing one of the p bases and multiplying by p) 2n times and then output the

12



resulting lattice with the bit one. With each step, the new |aj | becomes at most

p−1
2 |ai| + |aj |

p
=

(
1

2
− 1

2p

)
|ai| +

|aj |
p

.

Hence, after 2n applications, the new |aj | is at most

(
1

2
− 1

2p

)(
1 +

1

p
+ . . . +

1

p2n−1

)
|ai| +

|aj |
p2n

<
1

2
|ai| +

|aj |
p2n

<
1

2
|ai| +

1

4

and since aj is integer this implies |aj | ≤ 1
2 |ai|. This completes the description of C.

We now check that C runs in polynomial time. Indeed, C can be seen as consisting of basic

operations where in each basic operation we either multiply one of the basis vectors by p, or add

a multiple of one basis vector to another. The number of basic operations is clearly at most

polynomial in n. Consider the maximum over all i of the number of bits needed to represent vi.

Each basic operation increases this value by at most O(n log p) (since each vi is an n-dimensional

vector) and hence it is always at most polynomial in n. This implies that each basic operation can

be performed in polynomial time.

The procedure B works by maintaining a set Z of possibly non-zero coefficients that is initially

set to [n]. As long as |Z| ≥ 2 we perform the following operations. Assume without loss of generality

that 1, 2 ∈ Z. We alternatively call C(1, 2) and C(2, 1) until the bit returned in one of the calls is

zero. This indicates that one of the coefficients is zero (either a1 or a2 depending on which call

returns the zero bit) and we remove it from the set Z. In order to show that the procedure runs in

polynomial time, it is enough to show that an element is removed from Z after at most a polynomial

number of steps. Notice that after each pair of calls to C that returned the bit one |a1| decreases

by a factor of at least 4. Therefore, after at most 2n calls to C, a1 becomes zero and C(1, 2) must

return the bit zero.

3.2 Reduction to a Promise Problem

We continue our sequence of reductions by reducing dSVP to the following promise problem.

Definition 3.6 (Promise SVP with parameter g(n) (pSVPg(n))) For 2 ≤ g(n) ≤ poly(n),

the input to the pSVPg(n) is a lattice L given by an LLL-reduced basis. In YES instances, λ(L) ∈[ √
n

g(n) ,
2
√

n
g(n)

)
and all vectors not parallel to τ(L) are of length more than

√
n. In NO instances,

λ(L) >
√

n. The goal is to distinguish between these two cases with the promise that L satisfies one

of them.

Lemma 3.7 Let g(n) < p(n) be such that p(n) is a prime and both are at most polynomial in n.

Then, there is a reduction from dSVPp(n) on g(n)-unique lattices to pSVPg(n).

Proof: The input to the dSVPp(n) problem is a basis (v1, . . . , vn) of a g(n)-unique lattice L and a

number α such that λ(L) < α ≤ 2λ(L). Let L′ be the lattice L scaled by a factor 2
√

n
α·g(n) , i.e., the

lattice spanned by the basis

(v′1, . . . , v
′
n) :=

2
√

n

α · g(n)
(v1, . . . , vn).
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Notice that τ(L′) =
∑n

i=1 aiv
′
i is of length in

[ √
n

g(n) ,
2
√

n
g(n)

)
and any vector not parallel to τ(L′)

is of length more than g(n) ·
√

n
g(n) =

√
n. Now, let M be the lattice spanned by the basis

(p(n)v′1, v
′
2, . . . , v

′
n). We output the answer obtained by applying the pSVPp(n) oracle to an LLL-

reduced basis of M .

If p(n) | a1 then τ(M) = τ(L′) and therefore its length is in
[ √

n
g(n) ,

2
√

n
g(n)

)
. Also, since M ⊆ L′,

any vector in M not parallel to τ(M) is of length more than
√

n. If p(n) - a1 then the shortest

multiple of τ(L′) that is contained in M is p(n) · τ(L′) whose length is at least p(n) ·
√

n
g(n) >

√
n.

Hence, in this case all non-zero vectors are of length more than
√

n.

3.3 Gaussian Distributions on Lattices

In this section, we describe how to reduce pSVP to a problem of distinguishing between two distri-

butions. The reduction itself appears as Lemma 3.15. Before we get there, we will analyze what

happens when one adds noise to a lattice. The main intuitive idea used in this section is that by

adding noise to L∗, we can essentially ‘erase’ its fine structure. This is also the underlying idea

in the work of Ajtai and Dwork [2]. We will demonstrate this idea for two cases: the first is the

case where L∗ is a very dense lattice. Here, adding noise erases the entire structure and effectively

transforms the lattice into a uniform distribution. Intuitively, the lattice point are so close together

that adding this noise transforms them into one uniform ‘blur’. This intuition will be made precise

in Lemma 3.11. In the second case, L∗ is contained in well-separated n − 1-dimensional hyper-

planes. Inside each of these hyperplanes, L∗ is very dense. In this case, adding noise effectively

erases the structure inside the hyperplanes. The distribution that we obtain has the form of fuzzy

hyperplanes (see Figure 3). This intuition will be made precise in Lemma 3.14.

Before getting to the technical part of this section, let us explain how we deal with distributions

in n-dimensional space. Our distributions all have the property that they are periodic on the lattice

L∗. For example, the most important of these distributions is the one obtained by adding Gaussian

noise to the lattice L∗. How should we define it formally? We can say: “randomly choose a uniform

lattice point and add some Gaussian noise to it”. The problem with this definition is that there is

no way to choose a random lattice point. One possible solution, which has been used in the past, is

to choose the lattice point uniformly at random from all lattice points inside some very large cube.

This is illustrated on the left side of Figure 2. In applying this solution, however, one has to deal

with some annoying technical issues. For example, one has to show that the probability that the

lattice point falls close to the edge of the cube is very small given that the cube is large enough.

In this paper, we will instead follow the approach taken in [20]. This approach yields a much

cleaner analysis and avoids all the technical difficulties of the ‘large cube’ approach. The idea is

simple: we only need to consider distributions on the basic parallelepiped of the lattice. For exam-

ple, in order to represent the distribution mentioned above, we sample from a Gaussian centered

around the origin and reduce the result modulo the basic parallelepiped of the lattice. See the right

side of Figure 2. There is no need to ‘choose a random lattice point’ since this is already captured

by the fact that we reduce modulo the basic parallelepiped. More precisely, for a given lattice L,

we consider the distribution DL∗ on P(L∗) given by the density function

DL∗(x) =
∑

y∈L∗

exp
(
−π‖y + x‖2

)
,
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Figure 2: A Gaussian distribution around lattice points as a distribution on a large hypercube (left)

and on the basic parallelepiped (right)

or, if for a countable set A we define

ρ(A) =
∑

x∈A

exp
(
−π‖x‖2

)
,

then the above becomes

DL∗(x) = ρ(L∗ + x).

A simple calculation shows that DL∗ is indeed a density function:

∫

P(L∗)
DL∗(x)dx =

∫

P(L∗)

∑

y∈L∗

exp
(
−π‖y + x‖2

)
dx

=
∑

y∈L∗

∫

P(L∗)
exp

(
−π‖y + x‖2

)
dx

=

∫

Rn

exp
(
−π‖x‖2

)
dx = 1.

It is important to realize that the parallelepiped is used only as a convenient technical tool. The

reader might benefit from thinking about DL∗ (and other distributions in this section) as a function

from Rn to R+. As such, DL∗ becomes a periodic function on L∗, i.e., DL∗(x) = DL∗(x+y) for any

y ∈ L∗ and any x ∈ Rn. For example, if L∗ is a very sparse lattice, then DL∗ looks like a Gaussian

centered around each lattice point, as in Figure 2. Another point worth mentioning is the following.

Consider two basic parallelepipeds of L∗, say P1 and P2. Then by restricting DL∗ to each of them,

we obtain two seemingly different distributions: one on P1 and the other on P2. However, in many

respects, these two distributions are equivalent. For example, one can show that sampling from the

first distribution and reducing the result modulo P2 yields the second distribution. This, again,

demonstrates that the parallelepiped serves only as a technical tool and is not an inherent part of

the distribution.

Our main technical tool is the following lemma by Banaszczyk. It says that for any lattice L the

contribution to the Gaussian weight ρ(L) from points whose norm is more than
√

n is negligible.

We use Bn to denote the Euclidean unit ball.

Lemma 3.8 ([3], Lemma 1.5(i) with c = 1) For any lattice L, ρ(L \ √nBn) < 2−Ω(n)ρ(L).
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The proof of this lemma is not straightforward; a somewhat easier proof can be found in Štefankovič’s

thesis [28]. Let us mention the following continuous variant of this lemma. Consider the Gaussian

measure on Rn given by exp
(
−π‖x‖2

)
. Then the measure of Rn \ √

nBn is exponentially small

(or, equivalently, the measure of
√

nBn is exponentially close to 1). The proof of this statement

is actually easy and follows from the fact that in high dimensions, the Gaussian measure is highly

concentrated around points of norm
√

n/(2π) (so essentially nothing of the measure reaches out

beyond norm
√

n). What Lemma 3.8 says is that the same property holds for Gaussian measures

on discrete subgroups of Rn (i.e., lattices).

A simple corollary of this lemma is

Corollary 3.9 For any lattice L, ρ(L \ √nBn) < 2−Ω(n)ρ(L ∩√
nBn).

Proof: By Lemma 3.8,

ρ(L \
√

nBn) < 2−Ω(n)ρ(L) = 2−Ω(n)
(
ρ(L \

√
nBn) + ρ(L ∩

√
nBn)

)
.

Therefore,

ρ(L \
√

nBn) <
2−Ω(n)

1 − 2−Ω(n)
ρ(L ∩

√
nBn) = 2−Ω(n)ρ(L ∩

√
nBn).

We also need the following lemma, which is special case of Lemma 1.1(i) in [3] (specifically,

choose a = π, b = 1, y = 0 in Lemma 1.1(i) in [3] and take the real part of both sides of the

equation).

Lemma 3.10 For any lattice L and any vector z ∈ Rn, ρ(L∗+z) = d(L)·∑x∈L cos(2π〈x, z〉)ρ({x}).

This lemma is in fact an easy corollary of the Poisson summation formula, a basic formula in

Fourier analysis. Essentially, this formula says that for any function f on Rn and for any lattice L,

the sum of f over L∗ is equal to d(L) times the sum of the Fourier transform of f over L. Hence,

if we take f to be ρ({x}), which is its own Fourier transform, we obtain Lemma 3.10 for the case

z = 0, namely ρ(L∗) = d(L)ρ(L). To get some intuition on this equality, try to consider the case

where L = {kc | k ∈ Z} for some c > 0 is a one-dimensional lattice. Lemma 3.10 for arbitrary z

follows similarly by taking f to be ρ({x+ z}). See Section 2.3 in [6] for a more complete treatment

of the Poisson summation formula.

We now get to the first lemma of this section. It shows that when L∗ is dense enough, the

distribution DL∗ is essentially uniform. Intuitively, this happens because adding the Gaussian

noise makes the fine structure of the lattice L∗ disappear. It turns out that a sufficient condition

for this to happen is that the length of the shortest vector in L is more than
√

n. Interestingly, this

characterization is quite tight: there are cases where the length of the shortest vector in L is c
√

n

for some constant c and DL∗ is far from uniform (see the references in [3]).

Lemma 3.11 Let L be a lattice in which all non-zero vectors are of length more than
√

n and let

UL∗(x) = 1
d(L∗) = d(L) be the uniform density function on P(L∗). Then, ∆(DL∗ , UL∗) < 2−Ω(n).
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Proof: We first show that at any point y ∈ P(L∗), DL∗(y) and UL∗(y) are very close. By Lemma

3.10,

DL∗(y) = ρ(L∗ + y) = d(L) ·
∑

x∈L

cos(2π〈x, y〉)ρ({x})

= d(L) ·



1 +
∑

x∈L\{0}
cos(2π〈x, y〉)ρ({x})





= d(L) ·



1 +
∑

x∈L\√nBn

cos(2π〈x, y〉)ρ({x})





where we used L ∩√
nBn = {0}. Now,

|DL∗(y) − UL∗(y)| = d(L) ·

∣∣∣∣∣∣

∑

x∈L\√nBn

cos(2π〈x, y〉)ρ({x})

∣∣∣∣∣∣

≤ d(L) ·
∑

x∈L\√nBn

| cos(2π〈x, y〉)| · ρ({x})

≤ d(L) ·
∑

x∈L\√nBn

ρ({x})

= d(L) · ρ(L \
√

nBn)

Now, using Corollary 3.9,

d(L) · ρ(L \
√

nBn) < d(L) · 2−Ω(n) · ρ(L ∩
√

nBn)

= d(L) · 2−Ω(n)

where in the last inequality we used that L ∩ √
nBn = {0}. We conclude the proof by integrating

over P(L∗), whose volume is d(L∗) = 1/d(L),

∆(DL∗ , UL∗) < 2−Ω(n).

We now turn to the second lemma of this section. Here, we consider the case where L has one

short vector τ(L) and all other non-parallel vectors are of length more than
√

n. By the definition of

the dual lattice, this implies that L∗ is aligned on n−1-dimensional hyperplanes orthogonal to τ(L);

the distance between two adjacent hyperplanes is 1/λ(L). Intuitively, the structure of the lattice

on each of the hyperplanes is quite dense. This holds since all vectors not parallel to τ(L) in L are

of length more than
√

n. After adding a Gaussian noise, the fine structure inside the hyperplanes

disappears. We are left with a distribution that is essentially uniform on hyperplanes orthogonal

to τ(L). In the direction of τ(L), the distribution is wavy. See Figure 3 for an illustration.

More formally, our current goal is to show that under the above conditions, DL∗ is very close

to the distribution TL∗ on P(L∗) whose density function is given by

TL∗(x) =
d(L)

λ(L)

∑

k∈Z

exp

(
−π

(
k + 〈τ(L), x〉

λ(L)

)2
)

.

17



Figure 3: The distribution TL∗

Notice that TL∗ depends only on 〈τ(L), x〉. Actually, it depends only on 〈τ(L), x〉 mod 1 because

we sum over all k ∈ Z. Its maximum is attained when 〈τ(L), x〉 is an integer and its minimum is

attained when 〈τ(L), x〉 mod 1 is half. Hence, it corresponds to the hyperplane structure described

above. Let us say again that it is helpful to think of TL∗ as a periodic function from Rn to R+, as

shown in Figure 3.

We now describe an equivalent expression for TL∗(x). Consider the one-dimensional lattice M

spanned by the number λ(L), i.e., M = {kλ(L) | k ∈ Z}. Clearly, the lattice M∗ is spanned by the

number 1
λ(L) . According to Lemma 3.10, for any a ∈ R,

ρ(M∗ + a) = d(M)
∑

b∈M

cos(2πab)ρ({b}) = λ(L)
∑

k∈Z

cos(2πkaλ(L))ρ({kτ(L)}).

Therefore, taking a = 〈τ(L), x〉/λ(L),

TL∗(x) =
d(L)

λ(L)
· ρ
(

M∗ +
〈τ(L), x〉

λ(L)

)
= d(L)

∑

k∈Z

cos(2πk〈τ(L), x〉) · ρ({kτ(L)}). (2)

The following technical claim shows that TL∗ is indeed a density function.

Claim 3.12 ∫

P(L∗)
TL∗(x)dx = 1.

Proof: By the above,
∫

P(L∗)
TL∗(x)dx = d(L)

∫

P(L∗)

∑

k∈Z

cos(2πk〈τ(L), x〉) · ρ({kτ(L)})dx

= d(L)
∑

k∈Z

∫

P(L∗)
cos(2πk〈τ(L), x〉) · ρ({kτ(L)})dx

= d(L) ·



d(L∗) +
∑

k∈Z\{0}

∫

P(L∗)
cos(2πk〈τ(L), x〉) · ρ({kτ(L)})dx





= 1 + d(L) ·
∑

k∈Z\{0}
ρ({kτ(L)}) ·

∫

P(L∗)
cos(2πk〈τ(L), x〉)dx.

Hence, it is enough to show that for any integer k 6= 0,
∫

P(L∗)
cos(2πk〈τ(L), x〉)dx = 0.
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Let v∗1 , . . . , v
∗
n be the basis of L∗ that forms P(L∗). Then since τ(L) is non-zero, there must exist

an i0 such that
〈
τ(L), v∗i0

〉
is non-zero. Moreover, since τ(L) ∈ L,

〈
τ(L), v∗i0

〉
must be integer. Let

l = k
〈
τ(L), v∗i0

〉
. Define

P1 =

{
n∑

i=1

αiv
∗
i

∣∣∣∣∣ αi ∈ [0, 1) and b2lαi0c is even

}
,

P2 =

{
n∑

i=1

αiv
∗
i

∣∣∣∣∣ αi ∈ [0, 1) and b2lαi0c is odd

}
.

Clearly, the two sets are disjoint, P1 ∪ P2 = P(L∗), and P2 = P1 + v∗i0/(2l). Hence, the above

integral can be written as

∫

P1

cos(2πk〈τ(L), x〉)dx +

∫

P2

cos(2πk〈τ(L), x〉)dx

=

∫

P1

cos(2πk〈τ(L), x〉)dx +

∫

P1

cos(2πk
〈
τ(L), x + v∗i0/(2l)

〉
)dx

=

∫

P1

cos(2πk〈τ(L), x〉)dx −
∫

P1

cos(2πk〈τ(L), x〉)dx

= 0

Remark: Notice that in the above proof we did not use any property of τ(L) except that it is a

non-zero vector in L. In fact, one can define a distribution like TL∗ for any vector in L (and not

just for τ(L)).

We also need the following simple claim.

Claim 3.13

∀x, r ∈ R,
∑

k∈Z

exp
(
−π(kr + x)2

)
≤ 1 +

1

r

Proof: Let k′ ∈ Z be such that |k′r + x| is minimized. Then,

∑

k∈Z

exp
(
−π(kr + x)2

)
≤ 1 +

∑

k∈Z\{k′}
exp

(
−π(kr + x)2

)

= 1 +
1

r

∑

k∈Z\{k′}
r · exp

(
−π(kr + x)2

)

≤ 1 +
1

r

∫ ∞

−∞
exp

(
−πy2

)
dy

= 1 +
1

r

where changing the sum to an integral is possible because the sum can be seen as the area under

a function that lies completely below exp
(
−πy2

)
.
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Lemma 3.14 Let L be a lattice in which all vectors not parallel to τ(L) are of length more than√
n. Then, ∆(DL∗ , TL∗) < 2−Ω(n)(1 + 1

λ(L)). In particular, if λ(L) ≥ 1
nc for some c > 0 then

∆(DL∗ , TL∗) < 2−Ω(n).

Proof: As in the proof of Lemma 3.11, we first show that at any point y ∈ P(L∗), DL∗(y) and

TL∗(y) are very close. By Lemma 3.10,

DL∗(y) = ρ(L∗ + y) = d(L) ·
∑

x∈L

cos(2π〈x, y〉)ρ({x})

= d(L) ·




∑

x∈{kτ(L)|k∈Z}
cos(2π〈x, y〉)ρ({x}) +

∑

x∈L\{kτ(L)|k∈Z}
cos(2π〈x, y〉)ρ({x})





= TL∗(y) + d(L) ·




∑

x∈L\{kτ(L)|k∈Z}
cos(2π〈x, y〉)ρ({x})





where we used (2). Now,

|DL∗(y) − TL∗(y)| = d(L) ·

∣∣∣∣∣∣

∑

x∈L\{kτ(L)|k∈Z}
cos(2π〈x, y〉)ρ({x})

∣∣∣∣∣∣

≤ d(L) ·
∑

x∈L\{kτ(L)|k∈Z}
| cos(2π〈x, y〉)| · ρ({x})

≤ d(L) ·
∑

x∈L\{kτ(L)|k∈Z}
ρ({x})

= d(L) · ρ(L \ {kτ(L)|k ∈ Z})
< d(L) · ρ(L \

√
nBn)

where we used L \ {kτ(L) | k ∈ Z} ⊆ L \ √nBn. Now, using Corollary 3.9,

d(L) · ρ(L \
√

nBn) < d(L) · 2−Ω(n) · ρ(L ∩
√

nBn)

< d(L) · 2−Ω(n) · ρ({kτ(L) | k ∈ Z})

≤ d(L) · 2−Ω(n)

(
1 +

1

λ(L)

)

where the last inequality follows from Claim 3.13 with x = 0. We conclude the proof by integrating

over P(L∗).

∆(DL∗ , TL∗) < 2−Ω(n)

(
1 +

1

λ(L)

)
.

Lemma 3.15 Let g(n) be at most polynomial in n. Then there exists a reduction from pSVPg(n)

to the following problem. Given a lattice L as an LLL-reduced basis and samples from some dis-

tribution, distinguish between the following two cases. Either the distribution is UL∗ , or λ(L) ∈[ √
n

g(n) ,
2
√

n
g(n)

)
and the distribution is TL∗ .
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Proof: The input to the pSVPg(n) problem is a lattice L given as an LLL-reduced basis. Consider

the distribution DL∗ . We can efficiently sample from it by sampling a standard Gaussian centered

around the origin and reducing the result modulo P(L∗). According to Lemma 3.14, if L is a

YES instance, then the distribution is exponentially close to TL∗ . On the other hand, if L is a

NO instance, then Lemma 3.11 implies that the distribution is exponentially close to the uniform

distribution UL∗ . We call the algorithm that distinguishes between TL∗ and UL∗ a polynomial

number of times and take the majority. This makes the probability of error exponentially small.

3.4 One-dimensional Distributions

In this section we complete our sequence of reductions and the proof of the main theorem by

reducing the n-dimensional problem of the last section to a one-dimensional problem. We begin

with a technical claim.

Claim 3.16 For any a, x, y ∈ R, a ≥ 0 and any b > 1√
2π

+ 1,

∣∣∣∣∣
d

dx

∑

k∈Z

exp
(
−π(bk + ax + y)2

)
∣∣∣∣∣ ≤ c̃a.

Proof: Let z denote ax + y. Then,

∣∣∣∣∣
d

dx

∑

k∈Z

exp
(
−π(bk + ax + y)2

)
∣∣∣∣∣ = a

∣∣∣∣∣
d

dz

∑

k∈Z

exp
(
−π(bk + z)2

)
∣∣∣∣∣

= a

∣∣∣∣∣
∑

k∈Z

−2π(bk + z)exp
(
−π(bk + z)2

)
∣∣∣∣∣

≤ a
∑

k∈Z

∣∣2π(bk + z)exp
(
−π(bk + z)2

)∣∣

≤ a
∑

k∈Z

η(bk + z)

where η(r) denotes |2πr · exp
(
−πr2

)
|. In the following we will upper bound

∑

k∈{0,1,...}
η(bk + z)

by a constant for any z ≥ 0. It can be seen that the original expression is at most 2a times this

value. Notice that η is increasing from 0 to 1√
2π

where it attains the maximum value of
√

2πe.

After that point it is monotonically decreasing. Hence,

∑

k∈{0,1,...}
η(bk + z) = η(z) +

∑

k∈{1,2,...}
η(bk + z)

≤ η(z) +
∑

k∈{1,2,...}
η(b + k − 1 + z)

≤
√

2πe +
∑

k∈{1,2,...}
η(b + k − 1 + z)
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Figure 4: The line connecting the origin with w with K = 4 in two dimensions with P(v1, v2) and

in three dimensions with the unit cube. The gray area on the left is mapped by f to the segment[
1
2 , 3

4

)
. The dotted line in its center is the set S(5

8).

where the first inequality holds since b+k−1 ≤ bk and η is monotonically decreasing on (b+z,∞).

The sum can be upper bounded by

∑

k∈{1,2,...}
η(b + k − 1 + z) ≤

∫ ∞

b+z−1
η(z)dz ≤

∫ ∞

0
η(z)dz = 1

where the first inequality holds since η is monotonically decreasing on (b + z − 1,∞).

Lemma 3.17 Let g(n) ≥ 4
√

n be at most polynomial in n. Then, if there exists a distinguisher

between U and Tn,g(n) then there also exists a distinguisher that, given an LLL-reduced basis for a

lattice L and samples from some distribution, distinguishes between the following two cases. Either

the distribution is UL∗, or λ(L) ∈
[ √

n
g(n) ,

2
√

n
g(n)

)
and the distribution is TL∗ .

Proof: The proof is based on a mapping f from P(L∗) to [0, 1). The mapping has the property

that it maps the uniform distribution UL∗ on P(L∗) to the uniform distribution U on [0, 1) and

that it maps the distribution TL∗ on P(L∗) to a distribution on [0, 1) that is very close to one of

the distributions in Tn,g(n). Hence, a distinguisher between U and Tn,g(n) implies a distinguisher

between UL∗ and TL∗ .

We start by describing the mapping f . Let v1, . . . , vn denote the LLL-reduced basis of L and

let v∗1 , . . . , v
∗
n be the dual basis of L∗, i.e., a basis of L∗ such that 〈vi, v

∗
j 〉 = δij . For a very large K,

we partition the fundamental parallelepiped into Kn−1 ‘narrow and long’ cells, by partitioning the

coefficients of v∗1 , . . . , v
∗
n−1 into small intervals of size 1/K, and letting the coefficient of v∗n range

over the entire interval [0, 1). That is, the cell with index 〈r1, r2, . . . , rn−1〉 is

{
n∑

i=1

aiv
∗
i

∣∣∣∣∣ ∀i ∈ [n − 1] ai ∈
[

ri

K
,
ri + 1

K

)
and an ∈ [0, 1)

}

where r1, . . . , rn−1 are all in {0, . . . ,K − 1}. See the gray area in Figure 4. These cells are ordered

lexicographically, starting from 〈0, . . . , 0, 0〉, 〈0, . . . , 0, 1〉 and so on. For j = 1, . . . ,Kn−1, the jth

cell is mapped by f to the interval [(j − 1)/Kn−1, j/Kn−1). More precisely, if x ∈ P(L∗) is in
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the jth cell and its v∗n coefficient is an, then f(x) is the number (j + an − 1)/Kn−1 ∈ [0, 1). An

alternative, more succinct way to describe f is as the function that maps the vector v =
∑n

i=1 aiv
∗
i

in P(L∗) to
bKa1c

K
+

bKa2c
K2

+ . . . +
bKan−1c

Kn−1
+

Kan

Kn
∈ [0, 1).

The set of points mapped to each r ∈ [0, 1), which we denote by S(r), is an n − 1-dimensional

parallelepiped obtained by taking a slice of one of the cells. See the dotted line in Figure 4. More

precisely, we define

S(r) :=

{
n∑

i=1

aiv
∗
i

∣∣∣∣∣ ∀i ∈ [n − 1] ai ∈
[

ri

K
,
ri + 1

K

)
and an =

rn

K

}
.

where r1, . . . , rn−1 ∈ {0, 1, . . . ,K − 1} and rn ∈ [0,K) are the unique numbers such that

r =
r1

K
+

r2

K2
+ . . . +

rn−1

Kn−1
+

rn

Kn
.

Notice that S(r) is an n − 1-dimensional parallelepiped whose diameter is at most 1
K

∑n−1
i=1 ‖v∗i ‖.

This fact is crucial in our reduction.

The reduction works by sampling a point from the given distribution on P(L∗) and applying f ,

thereby obtaining a distribution on [0, 1). Notice that f can be computed efficiently. By starting

from a uniform distribution on P(L∗) we obtain the uniform distribution on [0, 1) (this holds since

the volume of S(r) is independent of r). Hence, it is enough to consider the case where the given

distribution is TL∗ . Here, we show that when K is large enough, the resulting distribution is close

to one of the distributions in Tn,g(n). The density of the resulting distribution at any r ∈ [0, 1) is

given by averaging (i.e., integrating) the density function TL∗ over S(r). We first note that when K

is large enough then all the points in S(r) have almost the same density under TL∗ . This requires

K to be large enough so that the diameter of S(r) is small compared with the derivative of TL∗ .

Hence, for such K, the density of the resulting distribution at any r ∈ [0, 1) is closely approximated

by TL∗(x) for any x ∈ S(r). We then choose a specific point in each S(r), namely, rw mod P(L∗)
for some w to be defined later, and note that

TL∗(rw mod P )

is in fact a distribution in Tn,g(n).

Let us explain the above in more detail. Choose K = 23n. By averaging over S(r) and

multiplying by a normalization factor, we see that the distribution that we obtain on [0, 1) is given

by

Z(r) :=
d(L∗)

vol(S(r))

∫

S(r)
TL∗(x)dx.

We now use the crucial fact that the diameter of S(r) is very small: Z(r), which is d(L∗) times the

average of TL∗ over S(r), can be closely approximated by d(L∗) times the value of TL∗ at any point

in S(r). More precisely, in Claim 3.18 we will show that Z(r) is exponentially close to d(L∗)TL∗(z)

for any z ∈ S(r).

In the next step, we choose one point from each S(r). Let w ∈ L∗ denote the vector v∗1 +Kv∗2 +

. . . + Kn−1v∗n. Since v∗n has the largest coefficient, w is almost parallel to v∗n. Consider the line
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connecting the origin and w, {rw | r ∈ [0, 1)}. We reduce this line modulo P(L∗) and obtain

{rw mod P(L∗) | r ∈ [0, 1)} .

This set has the form of Kn−1 segments running through P(L∗); each segment is contained in

a different cell. Figure 4 illustrates this with K = 4. We now claim that for any r ∈ [0, 1),

rw mod P(L∗) is in S(r). Let r1, . . . , rn−1 ∈ {0, 1, . . . ,K − 1} and rn ∈ [0,K) be the unique

numbers such that

r =
r1

K
+

r2

K2
+ . . . +

rn−1

Kn−1
+

rn

Kn
.

Then,

rw mod P(L∗) = (r mod 1) · v∗1 + (Kr mod 1) · v∗2 + . . . + (Kn−1r mod 1) · v∗n.

It is now easy to check that for each i ∈ [n − 1] the coefficient of v∗i is in [ri/K, (ri + 1)/K) and

that the coefficient of v∗n is rn/K. Hence, rw mod P(L∗) ∈ S(r).

The last crucial observation we make is that d(L∗)TL∗(rw mod P(L∗)) is in fact a density

function in Tn,g(n). Indeed,

d(L∗) · TL∗(rw mod P(L∗)) =
1

λ(L)

∑

k∈Z

exp

(

−π

(
k + r〈τ(L), w〉

λ(L)

)2
)

=
1

λ(L)

∑

k∈Z

exp

(
−π

(
r |〈τ(L), w〉| − k

λ(L)

)2
)

= T|〈τ(L),w〉|,λ(L)2(r).

The distribution T|〈τ(L),w〉|,λ(L)2 is in Tn,g(n) for the following reasons. First, λ(L)2 is in
[

n
g2 , 4 n

g2

)
.

Moreover, recall that w =
∑n

i=1 Ki−1v∗i and τ(L) =
∑n

i=1 aivi where all |ai| ≤ 22n by Lemma

3.2. Since
〈
vi, v

∗
j

〉
= δij , the inner product 〈τ(L), w〉 is integer and its absolute value is at most

n · 22n · Kn ≤ 24n2
.

It remains to prove the following claim.

Claim 3.18 For all r ∈ [0, 1) and all z ∈ S(r),

|Z(r) − d(L∗)TL∗(z)| ≤ 2−Ω(n).

Proof: It is enough to show that

∣∣∣∣∣
1

vol(S(r))

∫

S(r)
TL∗(x)dx − TL∗(z)

∣∣∣∣∣ ≤ d(L) · 2−Ω(n).

The left expression inside the absolute value is the average of TL∗ in S(r). The right expression is

the value of TL∗ at a point in S(r). Hence, in the following, it will be enough to prove that for any

two points x, y ∈ S(r),

|TL∗(x) − TL∗(y)| ≤ d(L) · 2−Ω(n).
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Consider the derivative of TL∗ in some direction u ∈ Rn (i.e., u is a unit vector). In order to

calculate this derivative, write

Ju,x(t) = TL∗(x + tu) =
d(L)

λ(L)

∑

k∈Z

exp

(
−π

(
k + 〈τ(L), x + tu〉

λ(L)

)2
)

=
d(L)

λ(L)

∑

k∈Z

exp

(

−π

(
1

λ(L)
· k +

〈τ(L), u〉
λ(L)

· t +
〈τ(L), x〉

λ(L)

)2
)

.

The derivative of TL∗ in the direction u at point x is given by J ′
u,x(0). Using Claim 3.16 and

1/λ(L) ≥ g(n)
2
√

n
≥ 2, the absolute value of this derivative can be upper bounded by

d(L)

λ(L)
· c̃ · 〈τ(L), u〉

λ(L)
≤ c̃ · d(L)

λ(L)

since both τ(L)/λ(L) and u are unit vectors. Having bounded the derivative of TL∗ in any direction

and at any point, we now apply the mean value theorem and obtain that for any x, y ∈ S(r),

|TL∗(x) − TL∗(y)| ≤ c̃ · d(L)

λ(L)
· diam(S(r))

≤ c̃ · d(L)

λ(L)
· 1

K

n−1∑

i=1

‖v∗i ‖

≤ c̃ · d(L)

λ(L)
· 1

K
· n ·

√
n

λ(L)
· 22n

≤ c̃ · d(L) · 1

K
· 22n · poly(n)

≤ d(L) · 2−Ω(n)

where we used Lemma 3.2.

4 From Worst-case to Average-case

We start with a few technical claims.

Claim 4.1 For any h ∈ N, β ∈ R+, let X,Y be two independent random variables; X is distributed

uniformly over {0, 1
h , . . . , h−1

h } and Y is normal with mean 0 and variance β
2πh2 . Then Th,β is

equivalent to the distribution of the sum of X and Y reduced modulo 1.

Proof:

Th,β(r) = Qβ(hr mod 1) =

∞∑

k=−∞

1√
β
· exp

(
−π

β
(hr − k)2

)

=
h−1∑

l=0

∞∑

k=−∞

1√
β
· exp

(
−π

β
(hr − hk − l)2

)

=

h−1∑

l=0

1

h

∞∑

k=−∞

h√
β
· exp

(

−πh2

β

(
r − k − l

h

)2
)
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Claim 4.2 For any h ∈ N and any β, µ ∈ R+, Th,β + Qµ mod 1 = Th,β+µh2.

Proof: According to Claim 4.1, Th,β can be viewed as the sum of two random variables X and Y

reduced modulo 1. Therefore, Th,β + Qµ mod 1 = X + Y + Qµ mod 1. But since both Y and Qµ

are normal, their sum modulo 1 is exactly Q β

h2 +µ
and we conclude the proof by using Claim 4.1

again.

Before describing the main theorem of this section, we need to extend the definition of Th,β to

non-integer h. This is done by adding a normalization factor, i.e., for a real h > 0 and r ∈ [0, 1)

we define

Th,β(r) =
1

∫ 1
0 Qβ(xh mod 1)dx

Qβ(rh mod 1).

It is easy to see that Th,β is still efficiently samplable. Namely, for a real h > 0, first choose a value

x ∈ {0, 1, . . . , dhe − 1} and then choose a value y according to Qβ. If x+y
h < 1 then return it as

the result. Otherwise, repeat the process again. It is easy to see that the distribution obtained is

indeed Th,β and that the process is efficient for (say) h ≥ 1.

Definition 4.3 Given a density function X on [0, 1) and a real η ≥ 1, we define its compression

by η as the distribution on [0, 1) given by

1
∫ 1
0 X(ηx mod 1)dx

X(ηr mod 1).

We denote the result by Cη(X).

Using the above definition, for any real h > 0, Th,β is a compression of Qβ by a factor of

h. Notice that if we can sample efficiently from X then we can also sample efficiently from its

compression. This is done in a way similar to that used to sample from Th,β.

Claim 4.4 For any h ∈ N and any real η ≥ 1, the compression of Th,β by a factor η is Tηh,β .

Proof: The proof follows directly from the definition of Th,β.

We now prove the main theorem of this section.

Theorem 4.5 Let g(n) be any function such that 4
√

n ≤ g(n) ≤ poly(n). Let h be chosen uni-

formly from [24n2
, 2 · 24n2

) and β be chosen uniformly from [4n/g(n)2, 8n/g(n)2). Assume there

exists a distinguisher A that with probability at least 1/poly(n) over the choice of h and β distin-

guishes between U and Th,β. Then, there exists a solution to g(n)-uSVP.

Proof: Let pA(D) denote the probability that A accepts given samples from some distribution D on

[0, 1). Then, our assumption above says that there exists some c > 0 such that with probability at

least 1/poly(n) over our choice of h and β, |pA(U)−pA(Th,β)| ≥ n−c. In the following we construct

a distinguisher B that distinguishes between U and any Th,β ∈ Tn,g(n). In other words, our goal is to

construct B such that the acceptance probability with U and the acceptance probability with Th,β

26



differ by a non-negligible amount. Using the main theorem, this implies a solution to g(n)-uSVP.

Recall that neither h nor β are given to B. The idea is to perform a random modification to the

given distribution. The modification is such that the uniform distribution remains uniform while

Th,β transforms to Th′,β′ for some h′, β′ that are in the range in which A works. Modifying h is

done by compressing the input distribution; modifying β is done by adding some noise.

Let R denote the unknown distribution given to B. We start by choosing h̃ uniformly from

the set {1, 2, 4, . . . , 24n2}. In addition, we choose δ uniformly from [1, 4) and s uniformly from[
0, 32n/g(n)2

)
. Then, consider the distribution

R′ = C
δ24n2/h̃

(R + Qs/h̃2 mod 1),

i.e., we first add a normal variable to R and then compress the result by a factor of δ24n2
/h̃. We

call A a polynomial number of times with samples taken from this distribution (each time with as

many samples as required by A). This allows us to obtain, with probability exponentially close

to 1, an estimate on pA(R′) that is accurate up to an additive error of 1
8nc . We then do a similar

process with samples taken from U and obtain an estimate on pA(U) with the same additive error.

If the two estimates differ by more than 1
2nc , B accepts. Otherwise, B rejects.

We first claim that when R is the uniform distribution, B rejects with high probability. The

distribution R + Qs/h̃2 mod 1 is still a uniform distribution on [0, 1) and so is R′ as can be easily

seen from the definition of the compression. Hence, pA(U) = pA(R′) and the probability that our

two estimates differ by more than 1
2nc is exponentially small.

Now assume that R is the distribution Th,β for some fixed integer h ≤ 24n2
and β ∈ [n/g(n)2, 4n/g(n)2)

and we claim that B accepts with non-negligible probability. According to Claim 4.2, R+Qs/h̃2 mod 1

is Th,β+s(h/h̃)2 . Hence, according to Claim 4.4, R′ is T
δ24n2h/h̃,β+s(h/h̃)2

. Let X denote the event

that

h ≤ h̃ < 2h, δh/h̃ ∈ [1, 2), and β + s(h/h̃)2 ∈
[

4n

g(n)2
,

8n

g(n)2

)
.

We now show that X happens with probability 1/poly(n) over our choice of h̃, δ, s. First, with

probability 1
4n2 , h ≤ h̃ < 2h. From now on, condition on this event happening. Then, δh/h̃, which

is uniformly distributed in [h/h̃, 4h/h̃), satisfies that the probability that δh/h̃ ∈ [1, 2) is at least
1
3 . Moreover, β + s(h/h̃)2 is distributed uniformly in

[
β, β + 32n/g(n)2 · (h/h̃)2

)
.

Since h/h̃ ∈ (1
2 , 1], the length of this segment is at most 32n/g(n)2 and it always contains[

4n/g(n)2, 8n/g(n)2)
)

(recall that β ∈
[
n/g(n)2, 4n/g(n)2

)
). Therefore, the probability on the

choice of s that

β + s(h/h̃)2 ∈
[

4n

g(n)2
,

8n

g(n)2

)

is at least 4
32 = 1

8 . To sum up, the probability of X is at least

1

4n2
· 1

3
· 1

8
=

1

poly(n)
.

Finally, notice that conditioned on X, the distribution of δ24n2
h/h̃ and β+s(h/h̃)2 is the same as

the distribution of h and β in our assumption on A. Therefore, with probability at least 1/poly(n),
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pA(U) and pA(R′) differ by at least n−c. Then, except with exponentially small probability, our

estimates are good enough and B accepts.

5 A Public Key Cryptosystem

For a security parameter n, let N be 28n2
and let m be cmn2 where cm is a constant to be specified

later. Let γ(n) = ω(n
√

log n), i.e., any function that satisfies γ(n)

n
√

log n
→ ∞ as n goes to infinity.

On one hand, choosing a smaller function γ(n) yields a stronger security guarantee. On the other

hand, it also makes decryption errors more likely. Our choice of ω(n
√

log n) is the smallest possible

γ(n) that still leaves the probability of decryption error negligible. For concreteness, one can choose

γ(n) = n log n. Let us now describe the cryptosystem.

• Private Key: Let H = {h ∈ [
√

N, 2
√

N) | frc (h) < 1
16m}. Choose h ∈ H uniformly at

random. Let d denote N
h . The private key is the number h.

• Public Key: Choose β ∈
[
4/(γ(n))2, 8/(γ(n))2

)
uniformly at random. We choose m values

z1, . . . , zm from Th,β by choosing x1, . . . , xm and y1, . . . , ym as described above Definition 4.3.

Let i0 be an index such that xi0 is odd (such an i0 exists with probability exponentially close

to 1). For i ∈ [m], let ai denote bN · zic. The public key is (a1, . . . , am, i0).

• Encryption: In order to encrypt a bit we choose a random subset S of [m]. The encryption

is
∑

i∈S ai mod N if the bit is 0 and
∑

i∈S ai + bai0
2 c mod N if the bit is 1.

• Decryption: On receiving w ∈ {0, . . . ,N − 1} we decrypt 0 if frc
(

w
d

)
< 1

4 and 1 otherwise.

5.1 Analysis

We start with a simple tail bound on the normal distribution.

Claim 5.1 The probability that the distance of a normal variable with variance σ2 from its mean

is more than t is at most
√

2
π · σ

t · exp
(
− t2

2σ2

)
.

Proof:
∫ ∞

t

1√
2πσ

exp

(
− x2

2σ2

)
dx ≤

∫ ∞

t

(
1 +

σ2

x2

)
1√
2πσ

exp

(
− x2

2σ2

)
dx

= − 1√
2πσ

· σ2

x
exp

(
− x2

2σ2

)∣∣∣∣
∞

x=t

=
σ√
2πt

exp

(
− t2

2σ2

)
.

In the following lemma we prove the correctness of the encryption scheme. The idea is the

following. We prove that an encryption of 0 is close to a multiple of d and that an encryption of 1

is far from a multiple of d. Let us explain how we prove this for an encryption of 0, the other case
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being similar. Each number ai is chosen to be close to some multiple of d with standard deviation

roughly d/γ(n). Hence
∑

i∈S ai, which is a sum of at most m of them, is also distributed around

some multiple of d and has standard deviation d
√

m/γ(n) = d/ω(
√

log n). Hence, the probability

that its distance from a multiple of d is more than, say, d/8 is at most 2−ω(log n), which is a negligible

amount. We also have to deal with the fact that the encryption is in fact
∑

i∈S ai mod N and not∑
i∈S ai. Notice that for an integer h, the distance to the nearest multiple of d is the same for both

expressions. We show that since h is close to an integer, the distance to the nearest multiple of d

is almost the same for both expressions.

Lemma 5.2 (Correctness) The probability of a decryption error is at most 2−Ω(
(γ(n))2

m
) plus some

exponentially small terms.

Note that the above probability is negligible since γ(n) = ω(n
√

log n).

Proof: First consider an encryption of the bit 0. Probabilities are taken over the choices of the

private and public keys and the randomization in the encryption process. Let S denote the subset

of indices that are included in the sum and let w :=
∑

i∈S ai mod N . Since
∑

i∈S ai ≤ m · N ,
∣∣∣∣∣w −

(
∑

i∈S

ai mod dbhe
)∣∣∣∣∣ ≤ m · |N − dbhe| = m · d · frc (h) <

1

16
d

and by the triangle inequality,

frc
(w

d

)
<

1

16
+ frc

(∑
i∈S ai mod dbhe

d

)
=

1

16
+ frc

(∑
i∈S ai

d

)
<

1

16
+

m

d
+ frc

(
N

d

∑

i∈S

zi

)

where the last inequality uses |N · zi − ai| < 1. Notice that

frc

(
N

d

∑

i∈S

zi

)

= frc

(
∑

i∈S

(xi + yi)

)

= frc

(
∑

i∈S

yi

)

.

Hence,

frc
(w

d

)
<

1

16
+

m

d
+ frc

(
∑

i∈S

yi

)
<

1

8
+ frc

(
∑

i∈S

yi

)

where we used the fact that d is much larger than m. With probability exponentially close to 1,

all xi’s are strictly less than dhe − 1. Conditioned on that, the distribution of yi is Qβ and the

distribution of
∑

i∈S yi mod 1 is Q|S|β where |S|β ≤ m · β = O( m
(γ(n))2

). Therefore, according to

Claim 5.1, the probability of frc
(∑

i∈S yi

)
> 1

16 is at most 2−Ω( (γ(n))2

m
) and hence

frc
(w

d

)
<

1

8
+

1

16
, (3)

which is less than 1
4 , as required.

The proof for the case of an encryption of 1 is similar. By using the fact that xi0 is odd and

that with probability exponentially close to 1, frc (yi0) < 1
16 we get frc

( bai0
/2c

d

)
> 1

2 − 1
32 − 1

d . This,

combined with (3) gives

frc
(w

d

)
> frc

(bai0/2c
d

)
− 1

8
− 1

16
>

1

4

and the proof is completed.
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The following claim is a special case of Lemma 1 in the appendix of [1]. We include a proof for

completeness.

Claim 5.3 For large enough c, when choosing c · l numbers a1, . . . , ac·l uniformly from 0 to 2l − 1

the probability that the statistical distance between the uniform distribution on {0, . . . , 2l − 1} and

the distribution given by sums modulo 2l of random subsets of {a1, . . . , ac·l} is more than 2−l is at

most 2−l.

Proof: Let Xt,b for t ∈ {0, . . . , 2l − 1}, b ∈ {0, 1}c·l \ {0c·l} denote the event that
∑c·l

i=1 biai ≡
t (mod 2l) where the probability is taken over the choice of {a1, . . . , ac·l}. Then, E[Xt,b] = 2−l and

V [Xt,b] < 2−l. Hence,

E[Yt] =
2c·l − 1

2l
= 2(c−1)·l − 2−l

where Yt denotes
∑

b∈{0,1}c·l\0c·l Xt,b. Moreover, for any b 6= b′, the events Xt,b and Xt,b′ are

independent. Therefore,

V [Yt] <
2c·l − 1

2l
< 2(c−1)·l.

Using the Chebyshev inequality,

Pr
(∣∣∣Yt − (2(c−1)·l − 2−l)

∣∣∣ ≥ 2( c−1
2

+1)·l
)
≤ 2−2l

and hence,

Pr
(∣∣∣Yt − 2(c−1)·l

∣∣∣ ≥ 2( c−1
2

+1)·l + 2−l
)
≤ 2−2l.

Using the union bound,

Pr
(
∃t,

∣∣∣Yt − 2(c−1)·l
∣∣∣ ≥ 2( c−1

2
+1)·l + 2−l

)
≤ 2−l.

Therefore, with probability at least 1 − 2−l on the choice of {a1, . . . , ac·l}, the number of subsets

(including the empty subset) mapped to each number t is at most

2( c−1
2

+1)·l + 2−l + 1 ≤ 2( c−1
2

+2)·l

away from 2(c−1)·l. This translates to a statistical distance of at most

2( c−1
2

+2)·l · 2−(c−1)·l < 2−l

for large enough c.

Based on Theorem 4.5, we can now prove the security of the encryption scheme.

Lemma 5.4 (Security) For a large enough cm, if there exists a polynomial time algorithm A that

distinguishes between encryptions of 0 and 1 then there exists an algorithm B that with probabil-

ity at least 1/poly(n) over the choice of h uniformly from [24n2
, 2 · 24n2

) and β uniformly from[
4/(γ(n))2, 8/(γ(n))2

)
, distinguishes between the distributions U and Th,β.
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Proof: Let p0 be the acceptance probability of A on input ((a1, . . . , am, i0), w) where w is an

encryption of 0 with the public key (a1, . . . , am, i0) and the probability is taken over the choice of

private and public keys and the encryption algorithm. We define p1 similarly for encryptions of 1

and let pu be the acceptance probability of A on inputs ((a1, . . . , am, i0), w) where a1, . . . , am, i0 are

again chosen according to the private and public keys distribution but w is chosen uniformly from

{0, . . . , N −1}. We would like to construct an A′ that distinguishes between the case where w is an

encryption of 0 and the case where w is random. According to our hypothesis, |p0 − p1| ≥ 1
nc for

some c > 0. Therefore, either |p0 − pu| ≥ 1
2nc or |p1 − pu| ≥ 1

2nc . In the former case A is itself the

required distinguisher. In the latter case A distinguishes between the case where w is an encryption

of 1 and the case where w is random. We construct A′ as follows. On input ((a1, . . . , an, i0), w),

A′ calls A with ((a1, . . . , an, i0), w + bai0
2 c mod N). Notice that this maps the distribution on

encryptions of 0 to the distribution on encryptions of 1 and the uniform distribution to itself.

Therefore, A′ is the required distinguisher.

Let p0(h, β) be the probability that A′ accepts on input ((a1, . . . , am, i0), w) where (a1, . . . , am, i0)

is chosen as a public key with some fixed choice of h and β, and w is an encryption of 0 with the

public key (a1, . . . , am, i0). Similarly, define pu(h, β) to be the acceptance probability of A′ where

(a1, . . . , am, i0) is chosen as a public key with some fixed choice of h and β, and w is now chosen

uniformly at random from {0, . . . , N − 1}. Define

Y =

{
(h, β)

∣∣∣∣ |p0(h, β) − pu(h, β)| ≥ 1

4nc

}
.

By an averaging argument we get that with probability at least 1
4nc on the choice of (h, β) in the

encryption scheme, (h, β) ∈ Y for otherwise A′ would have a gap of less than 1
2nc . Notice that if

instead of choosing h as in the encryption scheme, we choose it uniformly from [
√

N, 2
√

N), we

get that the probability that (h, β) ∈ Y is at least 1
8m · 1

4nc = 1/poly(n) since with probability 1
8m ,

frc (h) < 1
16m . Hence, it is enough to show a distinguisher B that distinguishes between U and Th,β

for any (h, β) ∈ Y .

In the following we describe the distinguisher B. We are given a distribution R that is either

U or Th,β for some (h, β) ∈ Y . We take m samples a1, . . . , am from bN · Rc and let i0 be chosen

uniformly at random from [m]. Let p0(a1, . . . , am, i0) be the probability that A′ accepts on input

((a1, . . . , am, i0), w) where the probability is taken only on the choice of w as an encryption of the bit

0. Similarly, let pu(a1, . . . , am, i0) be the probability that A′ accepts on input ((a1, . . . , am, i0), w)

where the probability is taken over the choice of w as a random element of {0, . . . ,N − 1}. We

estimate both p0(a1, . . . , am, i0) and pu(a1, . . . , am, i0) up to an additive error of 1
64nc . If the two

estimates differ by more than 1
16nc , B accepts. Otherwise, B rejects.

We first claim that when R is the uniform distribution, B rejects with high probability. In

this case, a1, . . . , am are chosen uniformly from {0, . . . ,N − 1} and according to Claim 5.3, if cm

is a large enough constant, then with probability exponentially close to 1, the distribution on w

obtained by encryptions of 0 is exponentially close to the uniform distribution on {0, . . . ,N − 1}.
Therefore, except with exponentially small probability,

|p0(a1, . . . , am, i0) − pu(a1, . . . , am, i0)|

is exponentially small. Hence, our two estimates differ by at most 1
32nc , and B rejects.
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Next, we show that if R is Th,β for some (h, β) ∈ Y then B accepts with probability 1/poly(n).

Notice that p0(h, β) (respectively, pu(h, β)) is the average of p0(a1, . . . , am, i0) (respectively, pu(a1, . . . , am, i0))

taken over the choice of a1, . . . , am, i0 in the encryption scheme. From |p0(h, β) − pu(h, β)| ≥ 1
4nc

we obtain by an averaging argument that

|pu(a1, . . . , am, i0) − p0(a1, . . . , am, i0)| ≥
1

8nc

with probability at least 1
8nc on the choice of a1, . . . , am, i0 in the encryption scheme. Now B chooses

a1, . . . , am in the same way they are chosen by the encryption scheme, i.e., from bN ·Th,βc. The index

i0, however, is chosen randomly. This implies that with probability at least 1
8nc · 1

m = 1/poly(n), B
chooses a tuple (a1, . . . , am, i0) such that

|pu(a1, . . . , am, i0) − p0(a1, . . . , am, i0)| ≥
1

8nc
.

Since our estimates are accurate to within 1
64nc , the difference between them is more than 1

16nc and

B accepts.

By combining the two lemmas above and using Theorem 4.5 we get,

Theorem 5.5 For a large enough cm, our public key cryptosystem makes decryption errors with

negligible probability and its security is based on the worst-case hardness of
√

n · γ(n)-uSVP.

6 A Family of Collision Resistant Hash Functions

For a security parameter n, let N be 28n2
and let m be cmn2 where cm > 0 is any constant. Choose

m numbers a1, . . . , am uniformly in {0, 1, . . . ,N − 1}. The function f : {0, 1}m → {0, 1, . . . ,N − 1}
is defined as

f(b) =
m∑

i=1

biai mod N.

Notice that if cm > 8 then f indeed compresses the size of the input and collisions are guaranteed

to exist.

6.1 Analysis

We start with a simple bound on the statistical distance between joint distributions.

Claim 6.1 Let X1, . . . ,Xm, Y1, . . . , Ym be mutually independent random variables. Then the sta-

tistical distance between the joint distributions satisfies

∆((X1, . . . ,Xm), (Y1, . . . , Ym)) ≤
m∑

i=1

∆(Xi, Yi).

Proof: We consider the case m = 2. The claim follows for m > 2 by induction. According to the

triangle inequality,

∆((X1,X2), (Y1, Y2)) ≤ ∆((X1,X2), (X1, Y2)) + ∆((X1, Y2), (Y1, Y2)).
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Since X1 is independent of X2 and Y2,

∆((X1,X2), (X1, Y2)) = ∆(X2, Y2)

and similarly

∆((X1, Y2), (Y1, Y2)) = ∆(X1, Y1).

Claim 6.2 Let X1, . . . ,Xm be m independent normal random variables with mean 0 and standard

deviation σ. For any vector b ∈ Rm, the random variable
∑m

i=1 biXi has a normal distribution with

mean 0 and standard deviation ‖b‖ · σ.

Proof: The joint distribution (X1, . . . ,Xm) is a Gaussian distribution in Rm that is invariant under

rotations. Hence we can equivalently consider the inner product of (‖b‖, 0, . . . , 0) and a Gaussian

distribution. We complete the proof by noting that the first coordinate of the Gaussian has a

normal distribution with mean 0 and standard deviation σ.

We now define two distributions on the segment [0, 1). These distributions are obtained by

restricting Th,β to an interval and scaling appropriately. The first is a restriction to the interval

[a, a + 1/h̃) and the second is a restriction to the interval [a, a + 1/h). In the technical claim that

follows, we show that these distributions are close given that h̃ is close to h.

Definition 6.3 For any h ∈ N, h̃, β ∈ R and any a ∈ [0, 1) we define the following two density

functions on [0, 1):

Sh̃,h,β,a(r) :=
1

h̃
∫ a+1/h̃
a Th,β(x)dx

Th,β

(
a +

r

h̃

)
,

S′
h,β,a(r) := Th,β

(
a +

r

h

)
= Qβ(a · h + r mod 1).

Claim 6.4 If h ≤ h̃ < (1+ δ)h where h ∈ N, h̃ ∈ R, δ > 0 and β ≤ 1
4 then ∆(Sh̃,h,β,a, S

′
h,β,a) ≤ c̃

β δ.

Proof: According to Claim 3.13,

Th,β(x) = Qβ(hx mod 1) ≤ (1 +
√

β)/
√

β ≤ 2/
√

β

for any x ∈ R. Therefore,

∫ a+1/h

a
−
∫ a+1/h̃

a
Th,β(x)dx ≤ 2√

β

(
1

h
− 1

h̃

)
=

2√
β · h̃

(
h̃

h
− 1

)

≤ 2δ√
β · h̃

.

But
∫ a+1/h
a Th,β(x)dx = 1

h and therefore we see that

h̃

h
− h̃

∫ a+1/h̃

a
Th,β(x)dx ≤ 2δ√

β
.
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Let S′′
h̃,h,β,a

(r) := Th,β(a + r/h̃). Then,

∫ 1

0

∣∣∣Sh̃,h,β,a(r) − S′′
h̃,h,β,a

(r)
∣∣∣dr =

∣∣∣∣∣1 − h̃

∫ a+1/h̃

a
Th,β(x)dx

∣∣∣∣∣ ·
∫ 1

0
Sh̃,h,β,a(r)dr

=

∣∣∣∣∣1 − h̃

∫ a+1/h̃

a
Th,β(x)dx

∣∣∣∣∣

≤
∣∣∣∣∣1 − h̃

h

∣∣∣∣∣+

∣∣∣∣∣
h̃

h
− h̃

∫ a+1/h̃

a
Th,β(x)dx

∣∣∣∣∣ ≤
(

1 +
2√
β

)
δ.

Now, using the mean value theorem, for any r ∈ [0, 1)

∣∣∣S′
h,β,a(r) − S′′

h̃,h,β,a
(r)
∣∣∣ ≤

(
1

h
− 1

h̃

)
max

x

∣∣∣∣
d

dx
Th,β(x)

∣∣∣∣

=

(
1

h
− 1

h̃

)
max

x

∣∣∣∣∣
d

dx

∞∑

k=−∞

1√
β

exp

(
−π(

h√
β

x − 1√
β

k)2
)∣∣∣∣∣

which, according to Claim 3.16 using 1√
β
≥ 2 > 1√

2π
+ 1, is at most

(
1

h
− 1

h̃

)
· c̃√

β
· h√

β
=

c̃

β

(
1 − h

h̃

)
≤ c̃

β
· δ.

To sum up,

2∆(Sh̃,h,β,a, S
′
h,β,a) ≤

∫ 1

0

∣∣∣Sh̃,h,β,a(r) − S′′
h̃,h,β,a

(r)
∣∣∣dr +

∫ 1

0

∣∣∣S′
h,β,a(r) − S′′

h̃,h,β,a
(r)
∣∣∣dr

≤
(

c̃

β
+ 1 +

2√
β

)
δ ≤ c̃

β
· δ.

Let γ(n) = ω(n
√

log n) be any function growing faster than n
√

log n. For concreteness, we can

choose γ(n) = n log n. For technical reasons, we also need some polynomial upper bound on γ(n)

so assume that γ(n) ≤ n2.

Theorem 6.5 If there exists an algorithm A that given a list a1, . . . , am ∈ {0, 1, . . . ,N −1} chosen

uniformly at random finds a nonzero vector b ∈ Zm such that ‖b‖ ≤ √
m and

∑m
i=1 biai ≡ 0(mod N)

with probability at least n−ca where ca > 0 is some constant then there exists a solution to
√

n ·
γ(n)-uSVP.

Note that in particular, if b ∈ {−1, 0, 1}m then ‖b‖ ≤ √
m and hence this theorem includes collision

finding algorithms.

Proof: The existence of A implies the existence of an algorithm A′ that, given a list z1, . . . , zm ∈
[0, 1) chosen uniformly at random finds a nonzero vector b ∈ Zm such that ‖b‖ ≤ √

m and

frc

(
m∑

i=1

bizi

)

≤ m

N

34



with probability at least n−ca . Notice that m
N is extremely small, essentially on the order of 1/N .

Indeed, given a list z1, . . . , zm ∈ [0, 1) we can define ai = bN · zic and call A. The returned vector

b satisfies

frc

(
m∑

i=1

bizi

)

= frc

(
m∑

i=1

1

N
· bi · Nzi

)

≤ frc

(
m∑

i=1

1

N
· biai

)

+

m∑

i=1

1

N
· bi =

m∑

i=1

1

N
· bi ≤

m

N
.

From now on, we will use A′ instead of A.

According to Theorem 3.1 it is enough to construct a distinguisher B between U and Tn,
√

n·γ(n).

The distinguisher B works by calling the routine C described below n times with each value h̃ =

(1 + n−c
h̃)i, i ∈ [log

1+n
−c

h̃
N ]. The constant c

h̃
will be specified later. If there exists an h̃ for which

all n calls to C accept, B accepts. Otherwise, for any h̃ there exists one call where C rejects and B
rejects.

The routine C(h̃) samples m values x1, . . . , xm from the given distribution, which we denote by

R. It also chooses m values y1, . . . , ym uniformly in [0, 1/h̃). Let zi = xi − yi mod 1. We call A′

with z1, . . . , zm. If A′ fails we repeat the process again (choosing xi, yi and calling A′). If after

nca+1 calls A′ still fails, C accepts. Otherwise, we have a vector b ∈ Zm such that ‖b‖ ≤ √
m and

frc (
∑m

i=1 bizi) ≤ m
N . The routine C(h̃) accepts if frc

(∑m
i=1 bih̃yi

)
< 1

4 and rejects otherwise. We

summarize the routine C(h̃) in the following.

1. For each i ∈ [m], choose xi according to R and choose yi uniformly from [0, 1/h̃)

2. For each i ∈ [m], set zi = xi − yi mod 1

3. Call A′ with z1, . . . , zm

4. If A′ fails, go back to step (1) (and after nca+1 times accept). Otherwise, let b1, . . . , bm be its

answer.

5. Accept iff frc
(∑m

i=1 bih̃yi

)
< 1

4

We now make an important observation. For each i ∈ [n], the first two steps of C(h̃) essentially

sample the triple (xi, yi, zi) from some distribution D on (x, y, z). In this distribution, x and y are

independent: x is chosen from R and y is chosen uniformly from [0, 1/h̃). Moreover, z is a function

of x and y. Let us describe an equivalent way to obtain a sample (xi, yi, zi) from D. First choose

zi from Dz, the marginal distribution of z. Then choose xi and yi from D|z = zi, the conditional

distribution on x and y given that z is zi. Clearly, a triple (xi, yi, zi) chosen this way has exactly

the same distribution D. Hence, if we replace the first two steps in C(h̃) with the following, we

obtain a procedure that has the same acceptance probability:

1. For each i ∈ [m], choose zi from Dz

2. For each i ∈ [m], choose xi and yi according to D|z = zi

This modified procedure is no longer implementable as we do not know how to sample from D|z = zi

(the distribution R is unknown). This, however, raises no difficulties since we only use the modified

procedure for the analysis. Notice now that step (2) is independent of steps (3) and (4). Hence,

the above can be equivalently written as
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1. For each i ∈ [m], choose zi from Dz

2. Call A′ with z1, . . . , zm

3. If A′ fails, go back to step (1) (and after nca+1 times accept). Otherwise, let b1, . . . , bm be its

answer.

4. For each i ∈ [m], choose xi and yi according to D|z = zi

5. Accept iff frc
(∑m

i=1 bih̃yi

)
< 1

4

We use this equivalent procedure in our analysis of C(h̃).

We first show that if R is the uniform distribution then for any h̃, C(h̃) accepts with probability

roughly 1
2 . From this it will follow that the probability that n calls to C(h̃) accept is exponentially

small, i.e., B rejects with probability exponentially close to 1. The distribution Dz is clearly uniform.

Hence, each zi is uniform in [0, 1) and according to our assumption, A′ succeeds with probability

at least n−ca . The probability that nca+1 calls fail is at most (1 − n−ca)n
ca+1

< exp (−n), which is

exponentially small. So now assume that A′ accepts in one of the calls and fix the values of z1, . . . , zm

and b1, . . . , bm. Then, in step (4), we choose each yi from the conditional distribution which in this

case is uniform in [0, 1/h̃). The distribution of h̃yi is uniform in [0, 1). Since b1, . . . , bm are not all

zero, frc
(∑m

i=1 bih̃yi

)
is distributed uniformly in [0, 1

2). The probability that frc
(∑m

i=1 bih̃yi

)
< 1

4

is therefore 1
2 , as required.

Now consider the case that R is Th,β where β ≤ 4
(γ(n))2 . We claim that when h̃ is the smallest

such that h̃ ≥ h, C(h̃) rejects with probability at most c̃mn4−c
h̃ . Therefore, the probability that B

sees a rejection after n calls is at most c̃mn4−c
h̃
+1 and it therefore accepts with probability close to

1 if we choose a large enough c
h̃
. Notice that such an h̃ satisfies h ≤ h̃ < (1 + n−c

h̃)h.

In order for C(h̃) to reject, we must get to step (4). Hence, it is enough to show that for any

z1, . . . , zm and any b1, . . . , bm such that frc (
∑m

i=1 bizi) ≤ m
N , steps (4) and (5) reject with probability

at most c̃mn4−c
h̃ . The conditional distribution from which we choose yi is given by:

1
∫ zi+1/h̃
zi

Th,β(x)dx
Th,β(zi + r) ∀r ∈

[
0, 1/h̃

)
.

Hence the density function of the distribution of h̃ · yi is exactly Sh̃,h,β,zi
. According to Claim 6.4

the statistical distance between Sh̃,h,β,zi
and S′

h,β,zi
is at most c̃

β n−c
h̃ ≤ c̃n4−c

h̃ . Let ξ1, . . . , ξm be m

random variables chosen independently according to Qβ. Notice that the distribution of the random

variable ξi − h · zi mod 1 is exactly S′
h,β,zi

. Hence, according to Claim 6.1, the statistical distance

between the joint distributions (h̃ · y1, . . . , h̃ · ym) and (ξ1 − h · z1 mod 1, . . . , ξm − h · zm mod 1) is

at most c̃m · n4−c
h̃ . Now,

m∑

i=1

bi(ξi − h · zi) mod 1 =
m∑

i=1

biξi −
m∑

i=1

bi · h · zi mod 1.

According to Claim 6.2,
∑m

i=1 biξi has a normal distribution with mean 0 and standard deviation

‖b‖ ·
√

β

2π
≤
√

mβ

2π
≤
√

2m

π(γ(n))2
= o

(
1√

log n

)
.
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Therefore, according to Claim 5.1, the probability that frc (
∑m

i=1 biξi) > 1
8 is negligible. Now,

frc

(
m∑

i=1

bi · h · zi

)

≤ h · frc
(

m∑

i=1

bi · zi

)

≤ hm

N
.

Therefore, except with negligible probability,

frc

(
m∑

i=1

bi(ξi − h · zi)

)

≤ 1

8
+

hm

N
<

1

4

where we used the fact that h ≤ 24n2
=

√
N . This implies that the probability that frc

(∑m
i=1 bih̃yi

)
<

1
4 is at most c̃m · n4−c

h̃ plus some negligible amount.

7 Quantum Computation

In this section we show a result related to a problem in quantum computation known as the dihedral

hidden subgroup problem. Let us start by describing the hidden subgroup problem (HSP), a central

problem in quantum computation. Here, we are given a black box that computes a function on

elements of a group G. The function is known to be constant on left cosets of a subgroup H 6 G and

distinct on each coset. Our goal is to find H. Interestingly, almost all known quantum algorithms

that run super-polynomially faster than classical (i.e., non-quantum) algorithms solve special cases

of the HSP on Abelian groups (e.g., [27]). Also, it is known that solving the HSP on the symmetric

group leads to a quantum solution to graph isomorphism [17]. This motivated research into possible

extensions of the HSP to noncommutative groups (see, e.g., [13, 14, 26, 8]).

In this section we consider the HSP on the dihedral group. The dihedral group of order 2N

is the group of symmetries of an N -sided regular polygon. It is isomorphic to the abstract group

generated by the element ρ of order n and the element τ of order 2 subject to the relation ρτ = τρ−1.

No efficient solution to the HSP on the dihedral group is known. The best known algorithm is due

to Kuperberg [18] and runs in subexponential time 2O(
√

log N) (the size of the input is O(log N)).

A different approach was taken by Ettinger and Høyer [7]. They reduced the dihedral HSP to

the classical problem of finding an integer k given access to the distribution Zk on {0, 1, . . . ,N −1}
defined by

Pr(Zk = z) = 2/N · cos2(πkz/N), z = 0, 1, . . . ,N − 1.

They presented an exponential time classical algorithm that solves this problem using only a poly-

nomial number of samples from Zk. Hence, a polynomial number of samples contains enough

information to find k. The question of whether there exists an efficient algorithm remained open.

In this section we show that such an efficient algorithm is unlikely to exist: its existence implies a

(classical) solution to nc-uSVP for some c.

Another related result is that of Regev [25]. He showed that under certain conditions (namely,

that of coset sampling), an efficient solution to the dihedral HSP implies an efficient quantum

algorithm for uSVP. Finding such an algorithm is a very important open question in quantum

computation. Hence, another way to interpret the result of this section is the following: a solution

to the classical problem of Ettinger and Høyer would not only lead to a quantum algorithm for

uSVP but also to a classical algorithm and should therefore be considered unlikely.
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We start by extending Theorem 3.1 to more general periodic distributions. Let D be an ef-

ficiently samplable distribution on [0, 1) such that its density function satisfies D(r) ≤ cD and

|D(r)−D(r + ε mod 1)| ≤ cDε for all r, ε ∈ [0, 1) for some constant cD. Essentially, this means that

D is smooth enough. For h ∈ N, define

TD
h (r) = D(rh mod 1)

to be the distribution on [0, 1) given by h periods of D. Moreover, define

T D
n =

{
TD

h

∣∣∣ h ∈ N, h ≤ 24n2
}

where n is the size parameter of the problem.

Lemma 7.1 For D as above, if there exists a distinguisher between U and T D
n then there exists a

solution to nc-uSVP for some c > 0.

Proof: The proof is based on a reduction from distinguishing between U and Tn,nc to distinguishing

between U and T D
h . The idea is the following. Assume we are given either U or Th,β for some

unknown h and small enough β. Assume we have a good estimate h̃ on h (we can obtain it by trying

polynomially many possibilities for h̃). The reduction works by sampling a value from the unknown

distribution and then adding to it a sample from D/h̃. Then, on one hand, the distribution U +D/h̃

is exactly the uniform distribution U . On the other hand, Th,β + D/h̃ is shown to be close to TD
h .

Therefore, if one can distinguish between U and TD
h then one could also distinguish between U and

Th,β.

The proof that Th,β + D/h̃ is close to TD
h is rather technical. First, we show that Th,β + D/h̃

is close to Th,β + D/h. We actually show the stronger fact that D/h̃ is close to D/h. This holds

since D is smooth and h̃ is close to h. Then we show that Th,β + D/h is close to TD
h . Intuitively,

the limit of Th,β +D/h as β goes to 0 is exactly TD
h . Our proof here shows that since D is smooth,

the noise added by a non-zero β does not change the distribution much.

Let us now describe the proof in more detail. Assume A is a distinguisher between U and T D
n

and assume that it uses ncA samples of the given distribution for some cA > 0. Let pu denote

the acceptance probability of A on inputs from distribution U and for h ∈ N let ph denote its

acceptance probability on inputs from TD
h . According to our hypothesis |pu − ph| ≥ n−cd for all

h ∈ [24n2
] for some constant cd > 0.

We construct a distinguisher B between U and Tn,nc for some large enough c > 0. The lemma

then follows from Theorem 3.1. Let R denote the given distribution. First, B chooses a value h̃

uniformly from the set {1, 1 + µ, (1 + µ)2, . . . , 24n2} where µ = n−cµ for some constant cµ > 0 to be

chosen later. Then, define the distribution R′ as

R′ = R +
D

h̃
mod 1,

i.e., a sample from R′ is given by x + r/h̃ mod 1 where x is chosen from R and r is chosen from D.

It then estimates the acceptance probability of A using sequences of samples from R′ each of length

ncA . According to the Chernoff bound, using a polynomial number of sequences, we can obtain

an estimate that with probability exponentially close to 1 is within 1
4ncd

of the actual acceptance
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probability. If the estimate differs from pu by more than 1
2nc

d
, B accepts; otherwise, it rejects. This

completes the description of B.

When R is the uniform distribution then R′ is also uniform. Therefore, with probability expo-

nentially close to 1, B’s estimate is within 1
4ncd

of pu and B rejects. Hence, it is remains to show

that B accepts with some non-negligible probability when R is Th,β where h ≤ 24n2
and β ≤ n−cβ

for some large enough cβ.

Consider the event in which h ≤ h̃ < (1 + µ)h. Notice that it happens with non-negligible

probability since h̃ is chosen from a set of size polynomial in n. The following technical claim

will complete the proof by showing that the statistical distance between R′ and TD
h is smaller

than n−cA−cd/4. Using Claim 6.1, it follows that the statistical distance between a sequence of ncA

elements of R′ and a sequence of ncA elements of TD
h is at most n−cd/4. Finally, using Equation 1

in Section 2, this implies that A’s success probability on sequences from R′ is within n−cd/4 from

ph and since |pu − ph| ≥ n−cd , B accepts.

Claim 7.2 For h̃ as above and for large enough cβ and cµ, the statistical distance ∆(R′, TD
h ) ≤

n−cA−cd/4.

Proof: Consider the distribution R′′ given by

R′′ = Th,β +
D

h
.

The distribution R′′ can be seen as a random function of the distribution D: given a value r ∈ D

sample a value x from Th,β and output x + r/h. Notice that R′ is given by applying the same

function to the distribution (h/h̃)D. Hence, using Equation 1,

∆(R′, R′′) ≤ ∆

(
D,

h

h̃
D

)
=

∫ h/h̃

0

∣∣∣D(r) − D
(
h̃r/h

)∣∣∣ dr +

∫ 1

h/h̃
D(r)dr

≤ cD

(
1 − h

h̃

)
+

(
1 − h

h̃

)
cD

≤ 2cDµ = 2cDn−cµ . (4)

We next bound the statistical distance between TD
h and R′′. Let X be a random variable

distributed uniformly over {0, 1
h , . . . , h−1

h }. Then, it can be seen that

TD
h = X +

D

h
mod 1.

Now, let Y be another random variable distributed normally with mean 0 and variance β
2π . Then,

as in Claim 4.1, Th,β = X + Y/h mod 1 and hence,

R′′ = X +
Y

h
+

D

h
mod 1.

Therefore, TD
h can be seen as a random function applied to a sample from D

h while R′′ can be seen

as the same function applied to a sample from Y
h + D

h . From Equation 1 it follows that

∆(TD
h , R′′) ≤ ∆

(
1

h
D,

1

h
(D + Y )

)
= ∆(D,D + Y ). (5)
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Let Ŷ be the restriction of a normal distribution with mean 0 and variance β
2π to the interval

[−n
√

β, n
√

β]. More formally,

Ŷ (r) =
Y (r)

∫ n
√

β

−n
√

β
Y (r)dr

for r ∈ [−n
√

β, n
√

β] and Ŷ (r) = 0 elsewhere. From Claim 5.1 it follows that the distribution of Y

is very close to that of Ŷ :

∆(Y, Ŷ ) ≤
√

2

π
· 1

n
√

2π
· exp

(
−πn2

)
= 2−Ω(n2). (6)

Now, using the fact that Ŷ always gets values of small absolute value,

∣∣∣D(r) − (D + Ŷ )(r)
∣∣∣ =

∣∣∣∣∣D(r) −
∫ n

√
β

−n
√

β
D(r − x)Ŷ (x)dx

∣∣∣∣∣

=

∣∣∣∣∣

∫ n
√

β

−n
√

β
(D(r) − D(r − x))Ŷ (x)dx

∣∣∣∣∣

≤
∫ n

√
β

−n
√

β
|D(r) − D(r − x)| Ŷ (x)dx

≤ cDn
√

β

∫ n
√

β

−n
√

β
Ŷ (x)dx

= cDn
√

β.

where we used the triangle inequality and the fact that
∫ n

√
β

−n
√

β
Ŷ (x)dx = 1. Since both D(r) and

(D + Ŷ )(r) are zero for r < −n
√

β and for r > 1 + n
√

β,

∆(D,D + Ŷ ) =

∫ 1+n
√

β

−n
√

β

∣∣∣D(r) − (D + Ŷ )(r)
∣∣∣ dr

≤ (1 + 2n
√

β) · cDn
√

β

≤ (1 + 2n1−cβ/2) · cDn1−cβ/2 ≤ 2cDn1−cβ/2 (7)

for large enough cβ . Finally, combining Equations 4, 5, 6, 7 and using the triangle inequality, we

obtain

∆(R′, TD
h ) ≤ 2cDn−cµ + 2−Ω(n2) + 2cDn1−cβ/2 ≤ n−cA−cd/4

for large enough cβ and cµ.

This completes the proof of Lemma 7.1.

We can now prove the main theorem of this section.

Theorem 7.3 For k ∈ N, k < N , define the distribution Zk on {0, 1, . . . ,N − 1} by

Pr(Zk = z) = 2/N · cos2(πkz/N), z = 0, 1, . . . ,N − 1.

Assume there exists an algorithm A that given a polynomial (in log N) number of samples from

Zk, returns k with probability exponentially close to 1. Then, there exists a solution to nc-uSVP for

some c.
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We remark that it is possible to relax the assumptions of the theorem. It is enough if the algorithm

returns k with non-negligible probability. Also, by using Theorem 4.5 instead of Theorem 3.1,

one can show that it is enough if the algorithm finds k only for some non-negligible fraction of all

possible k’s.

Proof: Let D be the distribution on [0, 1) given by D(r) = 2 cos2(πr). An easy calculation shows

that the absolute value of its derivative is at most 4π. Therefore, it satisfies the conditions stated

before Lemma 7.1 with cD = 4π. Using Lemma 7.1, it is enough to show how to distinguish between

U and T D
n . The idea is to notice that Zh is essentially a discretization of TD

h . Therefore, algorithm

A can find the value h given TD
h . From this, we construct a distinguisher between U and T D

n by

simply checking whether a sample from the unknown distribution is close to 1/h. For TD
h it is more

likely to be close to 1/h than for U .

Given an unknown distribution R, let R′ be the distribution given by bN ·Rc where N is chosen

to be large enough, say, 28n2
. We call A with enough samples from R′ and obtain a value k. Finally,

we take one sample r from R and accept if frc (rk) < 1/4 and reject otherwise.

First, consider the case where R is the uniform distribution. Then no matter which value of k

we obtain, the probability that frc (rk) < 1/4 is exactly 1/2. Now consider the case where R is TD
h

for some h ≤ 24n2
. For any r = 0, . . . , N − 1, the probability that R′ = r is given by

∫ (r+1)/N

r/N
D(hx mod 1)dx =

∫ (r+1)/N

r/N
2 cos2(πhx)dx.

From the bound on the derivative of D mentioned above, we obtain that the distance of this integral

from 2/N · cos2(πhr/N) is at most 4π2h/N2. Therefore, the statistical distance between R′ and Zh

is

∆(Zh, R′) ≤ N

2
· 4π2h/N2 = 2−Ω(n2).

Since the number of samples given to A is only polynomial in n, its input is still within statistical

distance 2−Ω(n2) of Zh and it therefore outputs h with probability exponentially close to 1. Then,

the probability that frc (rk) < 1/4 is given by

∫ 1/4

−1/4
2 cos2(πr)dr =

1

2
+

1

π
.
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