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Abstract. Given non-sequential snapshots from instances of a dynamical system, we design
a compressed sensing based algorithm that reconstructs the dynamical system. We formally
prove that successful reconstruction is possible under the assumption that we can construct an
approximate clock from a subset of the coordinates of the underlying system.
As an application, we show that our assumption is likely true for genomic datasets, and we
recover the underlying nuclear receptor networks and predict pathways, as opposed to genes,
that may differentiate phenotypes in some publicly available datasets.

1 Introduction

The problem of reconstructing a noisy linear dynamical system from sequential observations to predict
its next step is the basic problem in filtering theory. Here we consider the case when the order of
observations has been lost, i.e., they are not necessarily sequential. Such a situation arises often in
biological samples, where although one can collect information about cells it is impossible to know
perfectly where the cells are in their cell cycle relative to each other. Another area where this problem
arises is in reconstructing a linear system learnt over noisy networks, for example in a noisy financial
feed where the packets may be disordered or dropped.

In this paper, we formulate a concrete version of the above reconstruction problem and solve it under
the assumption that we can construct an approximate clock from the coordinates of the underlying
dynamical system. Algorithm 1 in Section 3 is our main theoretical contribution and Theorem 2 in
Section 4 upper-bounds the error of the recovered dynamical system using Algorithm 1. The compressed
sensing methods used in our paper ensure that reconstruction can be successful even with small sample
sizes under sparsity assumptions.

We also show an application of our algorithm to genomic datasets in Section 5. These datasets satisfy
both our assumptions: (1) sparsity: since any gene expression directly relies on only a small number
of genes, and (2) admitting an approximate clock: since cyclin expressions can be used to recover the
approximate order in the cell cycle for a given sample (see Figure 3). Moreover, we can potentially
use the reconstructed linear dynamical systems to compute genomic pathways that are prominently
different between pathological and reference biological samples (see Figure 1). Thus, unlike standard
tools (like [LHA14]) which predict genes whose expressions may differentiate between two phenotypes,
we can predict pathways that differentiate between two phenotypes.

2 Background

Perhaps the algorithmic line of work closest to our abstract problem is the Kalman filtering problem
in the presence of network loss and delays (see [LXL21], [LWLA20] and [NE19], and the references
therein). However, in such results they typically assume a independent identical probability of packet
drop or delay, or a specific Markov process of interest is chosen to model that. Also, although the idea of
computing conditioned Gaussians (for the error upper-bound in Theorem 2) is similar to that used for
the analysis of the Kalman filter, the problem studied in our paper differs from the standard filtering
problem: (1) we are interested in recovering the underlying linear system and not in predicting the
next step of the system, and (2) we are interesting in applications with sparsity (note the connection
with compressed sensing).

For our genomic application, we have used the publicly available datasets [Can12] and [ea13],
available at github as well as the cbio portal.1 The single cell RNA-seq dataset from [BPSTS+19] was

1 https://www.cbioportal.org
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(a) Potential pathways for metastasis. Based on
this figure, one prominent pathway could be:
NR1I2 up-regulates RORB which up-regulates
RORC, whose increased expression is posi-
tively correlated with metastasis; based on data
in [Can12].

(b) Potential pathways differentiating NPM1 vs
CBEPA mutation in AML. Based on this fig-
ure, one prominent pathway could be: AR down-
regulates ESR1 which down-regulates PPARG,
whose decreased expression is negatively cor-
related with NPM1 mutation; based on data
in [ea13].

Fig. 1: Predicted pathways where gene A → gene B means that A (indirectly) up-regulates B, while
the flat arrowhead indicates (indirect) down-regulation. A green node indicates that the corresponding
gene expression positively correlates with the pathological phenotype (metastasis or NPM1 mutation),
while a red node indicates positive correlation with the reference phenotype.

used to compare the approximate cyclin clock with latent time [BLP+20], in order to sanity check
the basic idea. Note that the problem of trajectory inference, which is a harder problem than our
problem of merely recovering the covariance matrix, has been well explored in single cell RNA-seq
literature [Sae19]. Finally, it is possible that cyclin expressions themselves may be effected in many
situations by the pathology under consideration (for example [GFKH+22]), so while this exact idea
may not work in many situations, the basic framework nonetheless should hold.

3 Technical overview

We consider the following concrete problem. Suppose we have a n-dimensional Ornstein-Uhlenbeck
process (see for example [Oks13])

dxt = Bxtdt+AdWt, (1)

where Wt is n-dimensional standard Brownian motion and the diffusivity matrix A is not assumed to
be known. Note that the diffusivity matrix is the covariance matrix of the increments of xt and thus
requires ordering information for its computation. Suppose that we observe xt at various time points
in [0, T ] for large T , but we either do not have the ordering information or do not keep the samples
ordered. Then, we want to know whether we can recover the underlying (unknown) n× n drift matrix
B, that characterizes our dynamical system.2

In general, the answer is negative. However, the main technical result in this paper is to show that
if there exists an ”approximate clock” and B is sparse, then we actually can approximately recover B.
More precisely, when we say that there exists an approximate clock, we mean that we know that one or
more of the coordinates of xt, or their linear combination, have positive drift and a relatively smaller
diffusivity coefficient, i.e., say that coordinate is denoted τ(t) and it is modeled by the diffusion:

dτ(t) = δdt+ εdW ′
t , (2)

where W ′
t is standard Brownian motion and δ is positive and much greater than ε2. Assuming the

existence of such a clock, our main algorithmic contribution is Algorithm 1, that can recover B from

2 We have assumed the system is centered about 0 but that is not an issue since the long term average can
be computed without knowing the ordering and subtracted from the observations.
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the samples under the assumption that B is row sparse, i.e., each row of B has only s = logO(1)(n)
non-zero entries and the number of samples, i.e., t, is larger than s log(n).

For our algorithm, we do not have a given ϵ and δ as in Equation 2. Rather, we will use the
approximate clock to recover an approximation of the diffusivity matrix A, which we denote by Ã.
We don’t actually need Ã but rather ÃÃT , and, in Theorem 2 in Section 4 we show that ordering the
xi values using τ(t) and computing the covariance from the increments can closely approximate the
covariance of the increments computed using the ordering based on the actual time.

Algorithm 1 runs in polynomial time as the main steps are computing a covariance matrix and
solving the convex optimization problem in Step 8, which is a second order cone program. This con-
vex optimization is a slight variation of basis pursuit in compressed sensing literature (see for exam-
ple [FR13]) and therefore unique reconstruction is guaranteed under sparsity assumptions. In particular
the following uniqueness theorem holds true for the matrix B̃ recovered by Algorithm 1.

Theorem 1. [DLR18] Let s denote the row sparsity of B, i.e., each row has at most s non-zero
coordinates, then for m = Ω(log n) large and the sample times for {xt1 , ..., xtm} well separated from
each other, then we have with probability 1− o(1) (for large n): ∥B̃−B∥1 = 0, i.e., B can be recovered
uniquely. If however, the rows are not exactly s sparse and the ℓ1 norm of the n− s remaining entries
in any row is at most ϵ, then we have: ∥B̃ −B∥1 ≤ ϵn.

The proof is fairly standard and follows from existing compressed sensing literature (see [FR13]
or [DLR18]), so we don’t restate it.

Finally, we note that the constraint in Step 7 uses the properties of Ornstein-Uhlenbeck process to
recover the drift matrix B from the covariance matrixΣ and the (approximate) covariance matrix of the
increments ÃÃT up to a scalar multiple (that scalar is just the average drift of the approximate clock).
Recovery up to a scalar multiple suffices because we are often interested in how various coordinates of
x interact relative to each other, as opposed to knowing the exact coefficients.

Algorithm 1 Recover dynamical system

1: Input: Unordered snapshots {x1, ..., xt ∈ Rn; t ∈ [0, T ]} derived from an Ornstein-Uhlenbeck process dxt =
Bxtdt+AdWt; where the diffusivity matrix A is known up to a constant multiple error as Ã, and B is row
sparse but unknown.

2: Output: A recovered matrix B̃ that is close (in ℓ1 norm) to a scalar multiple of B.
3: ▷ Algorithm starts:
4: Compute the n× n covariance matrix of the random vectors {x1, ..., xt}, denoted Σ
5: ▷ Note: computing Σ does not require ordering the xis.
6: ▷ Below, Bi denotes the ith row of B

7: Solve B̃ := argminB

∑n
i=0 ∥Bi∥2 s.t. ΣB +BTΣ = − ÃÃT

2

8: return B̃

Often it is not enough to recover the drift matrix, but we need to distinguish one linear system
from another, where the first is a small perturbation of the second, and one has only few samples of the
second at hand. This exact case happens for genomic data samples, where one system is the reference
and many samples are available, but another system is some rare genetic condition or disease for which
fewer samples are available. Algorithm 2 obtains the perturbation matrix P (upto a small error) that
distinguishes the second linear system from the first. Note that the algorithm always returns a value
for a large enough choice of the noise parameter η and small enough choice of ϵ in Step 8, since that
will suffice to make the convex program feasible.

3.1 Application to genomics

As a concrete application, we use the recovered perturbation matrix P̃ to isolate the paths consisting
entirely of high weight edges in the directed graph underlying the dynamical system, since these paths
should reflect the prominent genomic pathways that differentiate the reference dynamical system from
the pathological dynamic system. We note that more standard methods like time series analysis based
on Fourier transform of the recovered linear system can also be tried out, but our method below is far
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Algorithm 2 Order and recover perturbations between two dynamical systems

1: Input: Unordered snapshots {x1, ..., xt ∈ Rn; t ∈ [0, T ]} and {x′
1, ..., x

′
t′ ∈ Rn; t ∈ [0, T ′]} derived from

two Ornstein-Uhlenbeck processes dxt = Bxtdt+ AdWt and dx′
t = B′xtdt+ A′dWt; where the diffusivity

matrices A and A′ are known up to small error, but B and B′ are unknown. Moreover, t′ ≪ t and B and
B′ are row sparse.

2: Output: A recovered matrix B̃ that is close to B in ℓ1 norm, and a perturbation matrix P̃ such that
B̃ + ϵP̃ ≃ B′, for a small positive parameter ε.

3: ▷ Algorithm starts:
4: Use Algorithm 1 to compute B̃
5: ▷ The smaller number of samples prevents direct computation of B̃′, so we compute a first order approxi-

mation.
6: Compute the n× n covariance matrix of the random vectors {x′

1, ..., x
′
t′}, denoted Σ′

7: ▷ Choose a small noise η so that the following convex program program is feasible
8: Solve P̃ := argminP

∑n
i,j=0 |Pij | s.t. ∥(Σ −Σ′)B̃T + B̃(Σ −Σ′)− ϵ(Σ′PT + PΣ′)∥2 ≤ η

9: return P̃

simpler, and thus probably more robust to recovery errors, and it suffices to illustrate the pathways
that can be recovered.

Intuitively, the matrix P can be thought of as a directed graph with entry Pij reflecting a weighted
directed edge from node corresponding to gene j to that for gene i. A prominent path is defined to be
one such that all its edges have weight higher than some fixed threshold, say θ. For such a prominent
path p to potentially reflect an actual underlying genetic pathway that promotes the pathological
phenotype, one of the following intuitive condition should hold:

1. If the gene corresponding to the terminal node of p positively correlates with the pathological
phenotype then it should be up-regulated by the gene preceding it in the path p; moreover, the
same property or property (2) should now hold for the subpath terminating in the penultimate
gene, and so on.

2. Otherwise, if the gene corresponding to the terminal node of p negatively correlates with the
pathological phenotype then it should be down-regulated by the gene preceding it in the path p;
moreover, the same property or property (1) should now hold for the subpath terminating in the
penultimate gene, and so on.

This intuition leads to the following algorithm (Algorithm 3) for predicting prominent genomic
pathways that may be experimentally verified to confirm that some or all of them lead to the patho-
logical phenotype.

Algorithm 3 Recover Pathways

1: Input: The underlying linear dynamical systems matrices B̃ and B̃′ and the correlations between each of
the coordinates (corresponding to genes) and the two phenotypes of interest.

2: Output: A set of pathways of a given length L that are prominently different between the two phenotypes.
3: ▷ Algorithm starts:
4: Compute and sort the list of genes in descending order in terms of the absolute value of their correlation

coefficient with the pathological phenotype, denote this list as g
5: Compute C := Diag(g)(B̃′ − B̃)
6: Fix a positive threshold θ and set Cij = 0 if Cij < θ, denote the resulting matrix as Πθ

7: Compute the set of paths of length L in the graph with adjacency matrix Πθ and return them.

The results of running Algorithm 3 on the BRCA [Can12] and AML [ea13] datasets to isolate
critical differentiating pathways are described in Figure 1. In this figure, we show predicted pathways
where gene A → gene B means that A (indirectly) up-regulates B, while the flat arrowhead indicates
(indirect) down-regulation. A green node indicates that the corresponding gene expression positively
correlates with the pathological phenotype (metastasis or NPM1 mutation), while a red node indicates
positive correlation with the reference phenotype. In part a, we show potential pathways for metastasis.
Based on this figure, one prominent pathway could be: NR1I2 up-regulates RORB which up-regulates



Approximating a linear dynamical system from non-sequential data 5

RORC. Data presented in [Can12] shows that the expression of RORC is positively correlated with
metastasis, and thus this pathway is a plausible explanation. In part b, we show potential pathways
differentiating NPM1 vs CBEPA mutation in AML. Based on this figure, one prominent pathway could
be: AR down-regulates ESR1 which down-regulates PPARG. Data in [ea13] shows that a decreased
expression of PPARG is negatively correlated with NPM1 mutation.

In the rest of the paper we give and prove our main theorem in Section 4 and then give more details
on how we obtain the results in Figure 1 in Section 5.

4 Theoretical bound on error from approximate clock

In this section, we derive an upper-bound on the error of the recovered diffusivity matrix when we use
an approximate clock. We will assume that our dynamical system can be modeled by an Ornstein-
Uhlenbeck process and it has a coordinate, or a linear combination of coordinates, that admit a positive
drift which is larger than the diffusivity. This coordinate will act as an approximate clock. Theorem 2
shows that if we use this approximate clock then the recovered diffusivity is not too different from the
diffusivity that would be obtained if we knew the ordering in the dynamical system.

Theorem 2. Assuming that the clock coordinate τ(t) is independent of the remaining coordinates of
xt, the diffusivity matrix ÃÃT computed using the approximate clock τ(t) is a constant multiple of the
actual diffusivity, i.e.,

ÃÃT = lim
h→0

E

[
1

T

∫ T

0

⟨(x(τ(t+ h))− x(τ(t))), (x(τ(t+ h))− x(τ(t)))⟩dτ(t)

]
≃ δAAT , (3)

for ε ≪ δ, which is the drift of the clock.3

Proof. Note that

ÃÃT = lim
h→0

E

[
1

T

∫ T

0

⟨(x(τ(t+ h))− x(τ(t))), (x(τ(t+ h))− x(τ(t)))⟩dτ(t)

]
(4)

by definition of xt. By the tower property of conditional expectation and switching the order of integrals:

E

[
1

T

∫ T

0

⟨dx(τ(t)), dx(τ(t))⟩

]
= E

[
1

T

∫ T

0

E
[
⟨dx(τ(t)), dx(τ(t))⟩

∣∣∣∣τ(t)]
]

(5)

Recall that,

dx(t) = Bx(t)dt+AdWt (6)

dτ(t) = δdt+ εdW ′
t , (7)

where W ′
t and Wt are independent standard Brownian motions in R and Rn respectively. The inner

conditional expectation can be evaluated in terms of τ(t) as follows:

E
[
⟨dx(τ(t)), dx(τ(t))⟩

∣∣∣∣τ(t)] = E
[
⟨Bx(τ)dτ +AdWτ , Bx(τ)dτ +AdWτ ⟩

∣∣∣∣τ(t)] . (8)

Note that we are conditioning a Gaussian with another Gaussian, so the result is a Gaussian variable.
The quadratic variation term in the RHS expectation is a sum of three types of terms that can be
calculated using:

E [⟨AdWτ , AdWτ ⟩] = AAT dτ(t) (9)

E [⟨Bx(τ)dτ,Bx(τ)dτ⟩] = ε2Bx(τ)x(τ)TBT dt (10)

E [⟨AdWτ , Bx(τ)dτ⟩] = 0. (11)

3 Note that one can skirt around the issue of negative values of τ by assuming that τ(0) is large, that will
ensure τ remains positive with high probability.
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The last equality follows because we have assumed that W ′
t and Wt are independent. However, that

correlation can be calculated explicitly as well, if needed.
Therefore,∫ T

0

E
[
⟨dx(τ(t)), dx(τ(t))⟩

∣∣∣∣τ(t)] =

∫ T

0

(
AAT dτ(t) + ε2Bx(τ)x(τ)TBT dt

)
(12)

Note that

E

[
1

T

∫ T

0

AAT dτ(t)

]
= E

[
1

T

∫ T

0

δAAT dt

]
, (13)

since the integral with dW ′
t is a martingale with zero mean. Therefore, if ε ≪ δ then

E

[
1

T

∫ T

0

⟨dx(τ(t)), dx(τ(t))⟩

]
≃ δ

T

∫ T

0

AAT dt. (14)

□

If the correlations between the randomness in τ(t) and other coordinates is significant then we can
evaluate Equation 11 as follows.

Lemma 1. Let ρ ∈ R1×n be the covariance matrix between W ′
t and Wt, which are the Brownian

motions in the definitions of τ(t) and xt respectively; then the quadratic variation below evaluates as:

E [⟨AdWτ , Bx(τ)dτ⟩] = εAρx(t)TBT dt (15)

The proof follows immediately from the definition quadratic variation. Therefore, following a similar
proof as Theorem 2, the error to ÃÃT from Theorem 2 is changed by an additive factor that is
O(εmax{ρ}). So when all coordinates of ερ are small, the characterization of ÃÃT in Theorem 2
continues to hold.

5 Application: RNA-seq data

In this section, we describe an application of our algorithms on publicly available genomic datasets.
While our main result is in Figure 1 which is the output of Algorithm 3, where the latter predicts
potential nuclear receptor pathways that differentiate two clusters of genomic data; we do need to
compute the drift matrix for that and also verify in one setting that the approximate cyclin expression
based clock can be used for our purposes. In this section, we illustrate the intermediate outputs for
both these problems.

Although our example applications are based on RNA-seq data from [Can12] and [ea13] and use
only a small set of nuclear receptors for computational tractability reasons, the output illustrates our
basic approach well. 4

5.1 Recovering dynamical systems from RNA-seq datasets

Recall that, often biological data-samples do not come with timestamps, for example, RNA-seq data
can be modeled to be derived from a Markov process, but it is often impossible to say, with perfect
accuracy, whether a sequenced cell precedes or succeeds another sequenced cell in cell cycle time. For
single cell data this has led to a substantial number of algorithms and literature that tries to order
cells by their latent time [BLP+20] or some equivalent of it, and those results are surveyed in [Sae19].

We used Algorithms 1 and 2 to compute the underlying linear dynamical system matrix: B̃ and
the perturbations: P̃ , and our results are in the Figure 2. They were obtained using RNA-seq data
in publicly available data-sets [Can12] and [ea13]. Since the data-sets are unordered we use a linear
combination of Cyclin A and D expression levels, as our approximate clock, to order the data-points
by cell age. Essentially, if we were to obtain a random sample of two cells from a tissue and found the
difference, i.e., cyclin A - cyclin D levels, was relatively higher for sample 1 over sample 2 than we

4 The python code for this section is available at: https://github.com/cliffstein/recomb pathways
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know that sample 1 was more advanced in the cell cycle than sample 2 (with some error). Thus we can
use their difference in their expression as our approximate clock. Note that we can’t verify how good
this clock is, since we don’t have access to any ground truth clock for [Can12] and [ea13] data-sets that
orders cells by their relative cell cycle stage. However, in the next subsection, we do compare scVelo
latent time against this kind of an approximate cyclin clock in murine pancreatic tissue using data
from [BPSTS+19].

Once we have the approximate clock using cyclin expressions, we can order the cell samples to derive
the covariance matrix of increments ÃÃT . Finally, we model the logarithmic RNA-seq expression levels
in the data-sets [Can12] and [ea13] as an Ornsetin-Uhlenbeck process of the form in Equation 2, and
use Algorithm 2 to derive the matrices B̃ and P̃ in Figure 2.

Given the ability of linear dynamical systems to capture fairly complicated dynamics such a model
should be general enough to capture many of the intricacies of gene expression pathways.

(a) Underlying dynamical system for non-metastatic
cases

(b) Perturbations towards metastasis

(c) Underlying dynamical system for CBEPA mutation (d) Perturbations towards NPM1 mutation

Fig. 2: Recovered dynamical system and perturbation for breast cancer and AML datasets.

5.2 The cyclin clock

In this subsection, we verify that the error in the computation of the diffusivity matrix is indeed small
by computing it in two ways using the scRNA-seq data from [BPSTS+19]:

1. First, we compute the diffusivity matrix Ã using an approximate clock that equals the difference in
expression level between two cyclin expressions, say Cyclins I and D, i.e., τ(c) := Cyclin I−Cyclin D
for a given cell c. Cyclin I and D represent the optimal choice based on the correlations in Figure 3.
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2. Next, we compute the diffusivity matrix Ã by using the latent time function in scVelo as our
approximate clock.

We use the total RNA expression levels data for alpha, beta, epsilon, pre-endocrine and ductal cells
in the murine pancreatic single cell RNA-seq dataset [BPSTS+19] for this purpose. As can be seen in
Figure 3, the error measured as the average entry-wise absolute difference of the computed diffusivity
matrix is indeed small, much smaller than the variances (diagonals in the heatmaps), thus leading
some amount of credence to our overall methods above.

(a) Dynamical system obtained from latent time com-
putation

(b) Dynamical system obtained from Cyclin clock

(c) Average entry-wise difference between the re-
covered dynamical system matrix for various cell
clusters

(d) Correlations between various cyclin expres-
sions and scVelo latent time

Fig. 3: Effectiveness of Cyclin clock

6 Conclusion

We have demonstrated that it is possible to approximately order the snapshots of a linear dynamical
system and reconstruct it from few samples, by combining compressed sensing and filtering methods.
We have shown how it can be practically useful in identifying prominent genomic pathways that
differentiate two classes of samples in a couple of TCGA data-sets. Due to lack of resources and
domain expertise we have not been able to verify the predictions ourselves. However, domain experts
should be able to generate and verify such predictions to further their basic understanding of the
genomic pathways underlying the conditions.
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