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Broad themes:

● Based on abundance of data:
○ Lots of data available: neural networks. 

■ Examples: predicting enzyme inhibitors using neural nets (NNs), cell annotation for 
flow-cytometry

○ Little training data available: algorithms like compressed sensing
■ Examples: designing genomic tests for “rare” diseases, recovering the interactome

● Based on application:
○ Clinical / directly patient related:

■ Examples: genomic tests, recovering single cell data …
○ Pharmaceutical:

■ Examples: drug discovery, flow cytometry …



Genomics

1. Approximately recovering single cell distribution from aggregate 
measurements
a. Recovering scRNA-seq data from aggregate level hybridization assays.
b. [W1] Recovering approximate single cell distribution from aggregate measurements, 2023

2. Recovering the interactome from scRNA-seq data
a. Model gene translation as a Markov Chains (MC) and recover the transition matrix.
b. [W2] Recovering a sparse linear dynamical system, 2023

3. Comparing recovered interactome with a reference
a. Equivalent to hypothesis testing for MCs, but in high dimension with few cell samples.
b. [SW] Designing optimal tests for slow converging Markov chains. Joint with C.Stein. IMLH (ICML), 2023



Recovering scRNA-seq from aggregate measurements

● Carboxypeptidase E (Cpe): gene for enzyme involved in synthesis of insulin, glucagon etc
● Sample: 4000 cells from murine pancreas [Bastidas-Ponce et al., Development 2019]
● Blue bars are recovered from data using RNA-seq type assays, while Red bars are actual 

scRNA-seq data
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Genes that directly influence other genes

● Y-axis: (inverted) influence of gene on secretion of (1) Cpe, (2) Nnat
● Data from [Bastidas-Ponce et al. Devlopment 2019] and [Bergen et al., Nature 2020]
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Comparing two interactomes
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Pharmaceutical

1. Train NNs to learn and predict selective and potent enzyme inhibitors
a. Example: predict small molecule inhibitors to MNK2 that are non-inhibitors for MNK1.
b. [TW] Enhancing small molecule selectivity using Wasserstein distance based reweighing. Joint with W.Torng, 

2022

2. Train NNs to annotate cells in a stream
a. Example: in flow cytometry, the goal is to classify cells based on fluorescence
b. [FJMW] Learning rate under distribution shift (with an application to flow cytometry). Joint with M.Fahrbach, 

A.Javanmard, V.Mirrokni. ICML, 2023



Inhibitors of MNK2 but not MNK1 

● 5 out of 100 compounds are expected to be inhibitors for MNK2 but not MNK1 at 10uM
● Can be tried for other enzymes, more than one pair of enzymes etc…
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High throughput flow cytometry 

Accuracy of cell annotation using NNs and unlabelled flow-cytometry data
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