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Abstract
We design a Neyman-Pearson test for differentiat-
ing between two Markov Chains using a relatively
small number of samples compared to the state
space size or the mixing time. We assume the
transition matrices corresponding to the null and
alternative hypothesis are known but the initial
distribution is not known. We bound the error
using ideas from large deviation theory but in a
non-asymptotic setting. As an application, using
scRNA-seq data, we design a Neyman-Pearson
test for inferring whether a given distribution of
RNA expressions from a murine pancreatic tissue
sample corresponds to a given transition matrix
or not, using only a small number of cell samples.

1. Introduction
Markov chains underlie many natural phenomena ranging
from gene expression mechanisms to stochastic gradient
descent algorithms. Given just the empirical distribution
from a sample of observations and the transition matrices of
two finite state Markov chains, it is natural question to ask
whether one can identify which Markov chain resulted in the
sample? Such questions are important because they underlie
genomic tests, but can be difficult to answer as the initial
distribution is unknown, the Markov chains mix slowly, and
the number of samples used in the empirical distribution
is small. In this note, we present such a hypothesis testing
algorithm using a modified empirical log-likelihood, and
explain the underlying intuition behind the modification.

A Neyman-Pearson hypothesis test consists of comparing
the empirical log-likelihood (equivalently the hypothesis
test score) with a fixed constant, and accepting or reject-
ing the null hypothesis based on the outcome (see chapter
3 in (Dembo & Zeitouni, 1998)). We design a modified
Neyman-Pearson test that works with a small number of
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samples. We provide an overview of our theoretical results
in Section 2. In particular, Equation 2 contains the score
calculation associated with our modified Neyman-Pearson
test, which is the heart of our hypothesis testing algorithm.
The basic idea is to project the empirical distribution to a
lower dimension. Although the projection may increase
the total error by disregarding some information from the
sample, it also increases the reliability of the hypothesis test
score by filtering out initial state effects.

Application to single cell data: As an application, we
use the scRNA expression data from murine pancreatic
cells (Bastidas-Ponce et al., 2019) to compare our projected
hypothesis testing algorithm with the usual hypothesis test
(which requires a much larger number of samples). We
use the empirical distribution of Cpe expressions calculated
from a sample of 10-20 beta cells, and ask if we can reliably
say whether the sample came from (1) beta cells vs alpha
cells and (2) beta cells vs ductal cells. Since Cpe is involved
in hormone secretion, we expect (1) to be much harder to
test than (2). Indeed that is the case: Our projection based
test can not succeed at (1) but does seem to succeed at (2).
Figures 1 and 2 summarize our initial results and Section 3
contains further details about the experimental application.

Related Work: Neyman-Pearson tests are well-known in
statistics (Dembo & Zeitouni, 1998). The assumption of
large sample size is their major drawback for slow mixing
chains. The paper (Sun et al., 2006) investigates the closely
related problem of computing the fastest mixing Markov
chain supported on a graph. In principle, that may also help
reduce the sample size required but their techniques are very
different from ours.

2. Overview of our theoretical results
Suppose Sn := s1s2...sn is a realization of an ergodic
irreducible Markov Chain M on a finite discrete alphabet
A := {1, 2, ...,m − 1,m} with time-steps in [n], where
n = o(m). Let P denote its transition matrix. We assume
that P is known, and while we assume that the sequence Sn

itself can not be observed, the empirical distribution µ̂Sn
:=

1
n

∑
j∈[n],
i∈[m]

δi(sj) of M can be observed. We also assume

that the initial distribution p of M is unknown. Given µ̂Sn ,
and two candidate transition matrices P1 and P2, our goal is
to design a Neyman-Pearson test that either rejects the null
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(a) Neyman-Pearson scores from small sample (pro-
jected) and unprojected tests
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(b) Zoom-in of Neyman-Pearson score from projected
(small sample) tests only

Figure 1. High positive values of the score suggest that the test empirical distribution is from beta cells (the ground truth) while high
negative values suggest the distribution came from alpha cells. Note that the unprojected or unmodified Neyman-Pearson scores are high
positive but very variable (as can be expected for the small sample size) but our projected scores are much more stable – note the y-range
on the right figure above, also compare Figure 2.
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Figure 2. High positive values of the score suggest that the empiri-
cal distribution is from beta cells (the ground truth). Here we can
distinguish between the two cell types (beta cells vs ductal cells)
using just 10-20 cell samples of Cpe expressions.

hypothesis H0 : µ̂Sn ∼ P1 or the alternative hypothesis
H1 : µ̂Sn

∼ P2, where ∼ denotes that the measure came
from the given Markov chain.

Let τ be the ε mixing time of Markov chain M . Suppose
n ≪ τ,m, i.e., we are not assured that M mixes in the time
we observe it. In that case, it is natural to ask, what can we
say about the properties of the empirical distribution µ̂Sn

of
M? For example, given a subset of measures on A, say Γ,
can we estimate P(µ̂Sn ∈ Γ) with a reasonable accuracy?

One way to estimate the probability is to design a coarser
alphabet, obtained by grouping subsets of A, such that the
empirical distribution on the coarser alphabet converges

much more rapidly. An immediate brute force heuristic
algorithm to find such a coarser alphabet is: Let π be the
principle eigenvector of P , and α > 0 be such that ∀x, y ∈
[m], P (x, y) ≥ απZ(y). Then the ε mixing time is at most

log(1/ε)
log(1/(1−α)) . Therefore, we can simply group alphabets
such that the resulting ”Markov chain” corresponding to
the coarser alphabet maximizes the α above, then we may
obtain a stable empirical distribution in a much shorter time.

There are at least two issues with the above brute force
approach:

1. Non-linearity: it is unclear if one can always represent
the stochastic process on the coarser alphabet as a
Markov Chain (in general the answer is no).

2. Efficiency: there are exponentially many groupings of
alphabets to try.

Fortunately, it turns out that we don’t need to try all group-
ings of A if we are satisfied with a near optimal solution.
We will define our coarse alphabet via a linear projection,
which will allow us to solve the problem via alternating
minimization type algorithms.

Given a probability vector q supported on A (|A| = m),
and a m× d, where d ≤ m, stochastic matrix Z, define the
projection projZ(q) : Rm → Rd as projZ(q) := ZT q.

In particular, if d = m and Z = Id, then projZ is just
the PDF of the original distribution q. However, for d <
m, if the columns of Z are set appropriately (so that each
column sum is the same or roughly the same), then we get
a coarse PDF supported on a smaller size alphabet, only
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approximating q. We have clearly lost information about
our distribution, and that can lead to a higher error in any
Neyman-Pearson test. On the other hand, the resulting
Neyman-Pearson test using the coarse PDF may be more
robust to variation in the initial state. Below we sketch how
to quantify the gains from each side, using large deviation
techniques.

Recall that, the Gärtner-Ellis theorem (see (Dembo &
Zeitouni, 1998)) allows us to asymptotically estimate the
large deviation probability P(µ̂Sn

∈ Γ), for the empirical
distribution of a given Markov chain. That’s our starting
point, since our projections are linear transformations of the
empirical distribution. The main issue is the asymptotic (in
n) nature of the bound in the Gärtner-Ellis theorem. Typ-
ically, n is assumed to be very large – much larger than
the mixing time. Throughout, we will assume n is only
moderately large, i.e., n → ∞ but n = o(m), where recall
that, m is the size of the our finite Markov chain state space.

In a full version, we show a non-asymptotic version of
Gärtner-Ellis theorem, i.e., its bounds hold for n = o(m).
For this overview, we will concentrate on only the upper-
bound. In a full version, we show that 1

n logP(ZT µ̂Sn
∈

ZTΓ) can be upper bounded by a sum of three terms:

1. The log metric entropy term equals: 1
n logN(ZTΓ, r);

where N(E, r) denotes the metric entropy of a subset
E of a metric space, i.e., the number of balls of a
radius r required to cover E. Note that ZTΓ is the
action of Z on a subset of the space of measures and
thus N(ZTΓ, r) can be exponentially large in d.

2. The rate function term which equals:
supλ∈Rd

(
⟨λ, ZT q⟩ − log ρZ (λ)

)
; where ρ(Pλ,Z)

is the principal eigenvalue of Pλ,Z for the matrix
Pλ,Z(i, j) := P (i, j)e⟨λ,Z

T 1j⟩. 1 This is the usual
rate function term found in large deviations results,
and would be the only surviving term if we were to
assume n ≫ τ (the mixing time).

3. The initial state term which can be upper bounded by:
1
n ·maxi∈[m]{log( p(i)

πZ(i) ), log(
πZ(i)
p(i) )}; where πZ is the

(left) principal eigenvector of Pλ,Z and p is the (un-
known) initial state distribution of the Markov chain.

An upper bound on P(ZT µ̂Sn ∈ ZTΓ) implies an upper
bound on P(µ̂SN

∈ Γ) for N ≫ n. For P(ZT µ̂Sn ∈ ZTΓ)
to meaningfully translate to P(µ̂SN

∈ Γ), we need to ensure
that the sum of the three terms is positive.

The metric entropy term increases exponentially as
Θ(d logm

n ). As there is no other way to control this term,

1Note 1j is a vector with 1 in the jth co-ordinate and 0 else-
where.

we have to ensure that the dimension of the projection is
much smaller than n, so that this term goes to zero. For
controlling the sum of the remaining two terms, we have
two parameters that we can choose: λ and Z. The resulting
optimization problem can be written as:

supλ∈Rd,Z,d≪n(⟨λ, Zq⟩ − log ρZ (λ)

− 1
n ·maxi∈[m](log(

p(i)
πZ(i) ), log(

πZ(i)
p(i) ))) (1)

The expression in Equation 1, involving the principal eigen-
value of matrix Pλ,Z , is not amenable to efficient global
optimization over λ and Z since it is non-convex in λ, Z
taken together, but convex in each of the two sets of variables
when considered separately. However, it can be shown that
alternating maximization, over the λ and Z variables, will
converge to a stationary point (Bertsekas, 1999). Thus one
can obtain an upper estimate of the probability P(µ̂Sn

∈ Γ)
in time polynomial in n,m.

Finally, we define our modified Neyman-Pearson test.

Given an observed empirical distribution µ̂Sn on {1, ...,m},
and two Markov chain transition matrices P1 and P2, we
can chose a m × d projection Z to define the projected
empirical log-likelihood:

Ŝn :=
∑
i∈[d]

⟨ZT µ̂Sn
, 1i⟩ · log

⟨ZT µ̂Sn
P2, 1i⟩

⟨ZT µ̂SnP1, 1i⟩
. (2)

For large n, the usual Neyman-Pearson test would have
consisted of comparing Ŝn with a chosen constant threshold,
say γ, and accepting the alternative hypothesis (H1 : µ̂Sn

∼
P2) if Ŝn > γ and accepting the null hypothesis (H0 :
µ̂Sn

∼ P1) otherwise.

In our small sample case, i.e., n ≪ τ,m, the test becomes:
(1) if Ŝn − γ > βZ accept the alternative hypothesis, and
(2) if γ − Ŝn > βZ accept the null hypothesis; for an error
term βZ that depends upon Z.

Clearly, we want to chose Z so that |βZ | is small, as we can
not accept the null hypothesis, nor the alternative hypothesis,
if |Ŝn − γ| < |βZ |. The error βZ arises because of using a
small number of samples, and can be bounded in terms of
Z and the co-ordinates of principal eigenvectors of P1 and
P2 as follows.

The height of the principal eigenvector π for a transition
matrix P is the ratio between its maximum and minimum
co-ordinates. Note that the contribution of the initial state
term can be upper bounded by a quantity proportional to the
log of the height of the principal eigenvector πZ . In turn,
the height can be upper bounded using the bounds (see for
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example (Minc, 1970)):

h(P, π) ≤ RM −Rm

mini,j∈[m](P (i, j))
, (3)

where RM and Rm are the largest and smallest column
sums of P .

Under the assumption that mini,j∈[m](Pk(i, j)) are com-
parable for k ∈ {1, 2}, and maxi p(i) ≫ mini π

P1

Z ,
maxi p(i) ≫ mini π

P2

Z , and maxi π
P1

Z ≫ mini p(i),
maxi π

P2

Z ≫ mini p(i), we can use the previous discus-
sion to show:

βZ≤ 1
n ·maxi∈[m]

(
log

(
π
P2
Z

(i)

π
P1
Z

(i)

)
,log

(
π
P1
Z

(i)

π
P2
Z

(i)

))
, (4)

where the RHS is O(log h(P1, π
P1

Z ) + log h(P2, π
P2

Z )).
Therefore, there’s a trade-off in the choice of Z: whether to
minimize the height or to optimize the projected empirical
log-likelihood.

Total error: By definition, the total error in the Neyman-
Pearson test corresponding to Equation 2 is simply:
PP1

(ZT µ̂Sn
∈ ZTΓ) + PP2

(ZT µ̂Sn
∈ ZTΓ), for some

subset Γ that separates P1 and P2 when the number of sam-
ples n is large.

Tying theory to application: As a direct application of the
above ideas we can design a test that uses the RNA expres-
sions from a small number of cell samples from a tissue to
test whether RNA expressions in the original tissue follow
a prescribed transition matrix or not. More concretely, we
sample the RNA expressions corresponding to the gene Cpe
from a small number of beta cells (n = 10) from the murine
pancreatic single cell data of (Bastidas-Ponce et al., 2019) 2

. We estimate the transition matrices corresponding to the
Markov chain that models Cpe expression in the beta cells,
alpha cells and ductal cells, see Figures 3 and 4. This was
done by sorting the cells by their latent time (see (Bergen
et al., 2020)) and then estimating the probability that a cell
makes an immediate transition from Cpe expression ci to
Cpe expression level cj .

In this setting, we have the empirical distribution corre-
sponding to Cpe µ̂Sn (n ≃ 10) sampled from the beta cells.
We have the transition matrices P1 (estimated from the beta
cells), P2 (estimated from the alpha cells), and P3 estimated
from the ductal cells. Note that both beta and alpha cells
express non-trivial amounts of Cpe which is required for
synthesizing and secreting hormones but not the ductal cells.
Therefore, one would expect that with such a small number
of samples, just 10 cells sequenced, it would not be pos-
sible to reliably distinguish between alpha and beta cells

2Their data is available at https://scvelo.
readthedocs.io/en/stable/scvelo.datasets.
pancreas/ and https://github.com/theislab/
pancreatic-endocrinogenesis/

using Cpe expressions but ti would be possible to distinguish
between beta and ductal cells using Cpe expressions.

Indeed that turns out to be the case with our small sample
Neyman-Pearson test (see Section 3 and Figures 1 and 2).
The usual Neyman-Pearson test which assumes a large sam-
ple size, i.e., large n, can lead to fluctuating log likelihood
values (see Figure 1). A more detailed set of experiments
will be presented in a full version of this paper.

3. Further details of experiments on scRNA
expression data

To verify the effectiveness of our algorithm, we design a
test to check if we can correctly use just a few sample
cells and expression levels for a single gene expression to
distinguish between different cell types. We use the expres-
sions for the gene Carboxypeptidase E (Cpe), required in
the synthesis of hormones like insulin and glucagon, from
scRNA sequencing data samples of murine pancreatic cells
in (Bastidas-Ponce et al., 2019; Bergen et al., 2020).

Note that this is just a simplistic application illustrating how
our test behaves with small sample sizes, and not an actual
genetic test procedure, which would be far more compli-
cated taking into account many biological and equipment
related factors.

The set-up is described in this paragraph and our initial
conclusions are described below. We use Cpe expressions
from about 1000 pancreatic cells of three types: insulin
secreting beta cells, glucagon secreting alpha cells and non-
secretory ductal cells. We sample the expression levels of
Cpe from random samples of n ∈ [10, 20] beta cells, and
construct our sample empirical distribution for each choice
of n. We infer the transition matrices P1 and P2 for the
Cpe secreting gene, from expression data for the secreting
cells and non-secreting cells respectively, by sorting cells
with latent time (Bergen et al., 2020) and computing the
underlying Markov chain for Cpe expressions (see Figures 3
and 4), and then compute the log-likelihoods.

Our plots (Figures 1 and 2) show that in the harder problem,
when trying to distinguish beta and alpha cells based on
Cpe expressions from 10-20 beta cells, the usual Neyman-
Pearson test can give very variable results, while our pro-
jected (small sample) test scores are close to 0 and suggest
that one can not reliably distinguish between them using
just a 10 cell sample. On the other hand, if we replace the al-
pha cells by non-hormone secreting pancreatic cells (ductal
cells) then the problem becomes easier, and the hypothesis
test scores become positive suggesting that we should be
able to distinguish between beta cells and ductal cells using
Cpe expressions from a sample of just 10-20 cells.
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Conclusion: We propose a modified Neyman-Pearson test
and our results show initial gains in reliability by suitably
modifying the empirical log-likelihood.
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Figure 3. Heat map for the transition matrix of Cpe expression in
beta cells. Darker areas indicate higher values.
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Figure 4. Heat map for the transition matrix of Cpe expression in
alpha cells. Darker areas indicate higher values.
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