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Problem statement

Setup: Online sequential learning where at each time step r € [T]:

Observe batch of B examples {(x,;,y, )}, from distribution P,

2. Incurloss L(0,) = Z C(f(X 560, ¥,0)
k—l

3. Update model weights with one step of SGD: 6, < 6, — 5,V L(6,)

Def: Dynamic regret is defined w.r.t. optimal model weights at each time step:

et* — argmé{n _(X,y)NPt[f(f(X; 6)9 Y)]

T
Reg(T) = Z L(0,) — L(07)
=1

Goal: Design learning rate schedule , ;’;1 with bounded regret Reg(7T) in terms of
distribution shift y, = || 6* —

O 2

Motivation: online deep learning recommender systems (DLRS) — same loss function 7,

time-varying data distributions P,

Example: Chasing a moving target
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Figure 1: SGD trajectories for online linear regression with different constant learning rates. The
discrete blue spirals are the optimal model weights 8 € R?, which start at (1,0) and jump clockwise
every 100 steps. The orange paths are the learned weights 60;, starting at g =0 for 0 < ¢ < 17 - 100.
The orange squares depict the position every 100 steps. We use batch size B; = 1 and step sizes
n: € {0.003,0.01,0.03,0.1} from left to right. The rightmost SGD is the most out of control, but it

incurs the least regret because it adapts to changes in 6; the fastest without diverging.

Linear regression

Time-varying coefficients model: At each time ¢t € |T], we get B covariate-response
pairs

Yik = <Xt,k’ ‘9;*> + & ko
where x,, ~ N(O,I), ¢, = N(0,6%) is random noise, and ¢ is least-squares loss.

Approach: Analyze effect of learning rate schedule on SGD undergoing distribution shift
In the continuous time-limit.

e Tools: stochastic differential equations (SDEs), Euler-Maruyama method, 1t0’s lemma

Main result: Solve SDE — discretize to get optimal online learning rate schedule

Case studies for linear regression: Optimal learning rate schedules ”t*
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(a) Bursty distribution shifts (b) Smooth distribution shifts

Bursty shifts: Jump process where y, jumps to s every episode (40 steps) and then is
zero for the rest of the episode. We set max step size s, .. = 0.1.

Smooth shifts: y, changes continuously as y, = 1//“ for a constant value a. Smaller
values of « (i.e., larger distribution shifts) induce larger rates.

No shift: We also analyze the simplest case when there is no distribution shift and
recover the optimal learning rate schedule 7 which is asymptotically 1/1.
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Summary of results

1. Large distribution shifts — larger learning rates

* Insights from linear regression also apply to general convex and non-convex losses

2. We tformulate the problem as dynamic regret minimization, where the target 6* moves
and we chase it via SGD

3. Differences with related dynamic regret works: Besbes-Bur-Zeevi (Operations Research
2015) and Yang-Zhang-Jin-Yi (ICML 2016):

) Supports adaptive schedules (vs. choosing a fixed constant step size in advance)

1) Supports adaptivity in the choice of distribution at each time step, in contrast with
an arbitrary but fixed sequence of loss functions satisfying a variation budget

constraint

i) Same loss function for lower and upper bounds — match up to constant factors

Experiments

High-dimensional regression: linear regression, logistic regression
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Figure 4: SGD trajectories of Algorithm 1 (top); and oscillating learning rates 7; as we discretize
the path defined by 6 where 1y = 0.5 (bottom).
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