Learning Rate Schedules in the Presence of Distribution Shift Google Research

Problem statement

Setup: Online sequential learning where at each time step $t \in [T]$:

. Observe batch of B examples $\{(\mathbf{x}_{t,k}, y_{t,k})\}_{k=1}^{B}$ from distribution P_{t}

2. Incur loss
$$L_t(\theta_t) = \frac{1}{B} \sum_{k=1}^B \ell(f(\mathbf{x}_{t,k}; \theta_t), y_{t,k})$$

3. Update model weights with one step of SGD: $\theta_{t+1} \leftarrow \theta_t - \eta_t \nabla L_t(\theta_t)$

Def: Dynamic regret is defined w.r.t. optimal model weights at each time step:

$$\theta_t^* = \arg\min_{\theta} \mathbb{E}_{(\mathbf{x}, y) \sim P_t} [\ell(f(\mathbf{x}; \theta), y)]$$
$$\operatorname{Reg}(T) = \sum_{t=1}^T L_t(\theta_t) - L_t(\theta_t^*)$$

Goal: Design learning rate schedule $\{\eta_t\}_{t=1}^T$ with bounded regret $\operatorname{Reg}(T)$ in terms of distribution shift $\gamma_t = \| \theta_t^* - \theta_{t+1}^* \|_2$.

Motivation: online deep learning recommender systems (DLRS) \rightarrow same loss function ℓ , time-varying data distributions P_t

Figure 1: SGD trajectories for online linear regression with different constant learning rates. The discrete blue spirals are the optimal model weights $\theta_t^* \in \mathbb{R}^2$, which start at (1,0) and jump clockwise every 100 steps. The orange paths are the learned weights θ_t , starting at $\theta_0 = 0$ for $0 \le t \le 17 \cdot 100$. The orange squares depict the position every 100 steps. We use batch size $B_t = 1$ and step sizes $\eta_t \in \{0.003, 0.01, 0.03, 0.1\}$ from left to right. The rightmost SGD is the most out of control, but it incurs the least regret because it adapts to changes in θ_t^* the fastest without diverging.

Matthew Fahrbach¹, Adel Javanmard^{1,2}, Vahab Mirrokni¹, Pratik Worah¹ ¹Google Research, ²University of Southern California

Linear regression

Time-varying coefficients model: At each time $t \in [T]$, we get B covariate-response pairs

$$y_{t,k} = \left\langle \mathbf{x}_{t,k} \right\rangle$$

where $\mathbf{x}_{t,k} \sim N(0,\mathbf{I})$, $\varepsilon_{t,k} = N(0,\sigma^2)$ is random noise, and ℓ is least-squares loss.

Approach: Analyze effect of learning rate schedule on SGD undergoing distribution shift in the continuous time-limit.

<u>Tools</u>: stochastic differential equations (SDEs), Euler–Maruyama method, Itô's lemma

Main result: Solve SDE \rightarrow discretize to get optimal online learning rate schedule

Case studies for linear regression: Optimal learning rate schedules η_{t}^{*}

Bursty shifts: Jump process where γ_t jumps to s every episode (40 steps) and then is zero for the rest of the episode. We set max step size $\eta_{max} = 0.1$.

Smooth shifts: γ_t changes continuously as $\gamma_t = 1/t^{\alpha}$ for a constant value α . Smaller values of α (i.e., larger distribution shifts) induce larger rates.

No shift: We also analyze the simplest case when there is no distribution shift and recover the optimal learning rate schedule η_{τ}^* which is asymptotically 1/t.

- $\langle k, \theta_t^* \rangle + \varepsilon_{t,k},$

Summary of results

- and we chase it via SGD

- constraint

Neural network application: flow cytometry \rightarrow classify stream

of RNA expressions that arrive from shifting data distribution

1. Large distribution shifts \rightarrow larger learning rates

Insights from linear regression also apply to general convex and non-convex losses

2. We formulate the problem as dynamic regret minimization, where the target θ_{t}^{*} moves

3. Differences with related dynamic regret works: Besbes-Bur-Zeevi (Operations Research 2015) and Yang-Zhang-Jin-Yi (ICML 2016):

i) Supports adaptive schedules (vs. choosing a fixed constant step size in advance)

ii) Supports adaptivity in the choice of distribution at each time step, in contrast with an arbitrary but fixed sequence of loss functions satisfying a variation budget

iii) Same loss function for lower and upper bounds \rightarrow match up to constant factors

High-dimensional regression: linear regression, logistic regression Learning rate oscillate between $heta_{t}^{*}$ jumps Figure 4: SGD trajectories of Algorithm 1 (top); and oscillating learning rates η_t as we discretize the path defined by θ_t^* where $\eta_{\text{max}} = 0.5$ (bottom).

