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Problem statement 
Setup: Online sequential learning where at each time step :


1. Observe batch of  examples  from distribution 

2. Incur loss 

3. Update model weights with one step of SGD:   


Def: Dynamic regret is defined w.r.t. optimal model weights at each time step: 

 

Goal: Design learning rate schedule  with bounded regret  in terms of 
distribution shift . 

Motivation: online deep learning recommender systems (DLRS)  same loss function , 
time-varying data distributions 
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Example: Chasing a moving target 

Linear regression 
Time-varying coefficients model: At each time , we get  covariate-response 
pairs 

,

where ,  is random noise, and  is least-squares loss.


Approach: Analyze effect of learning rate schedule on SGD undergoing distribution shift 
in the continuous time-limit. 

• Tools: stochastic differential equations (SDEs), Euler–Maruyama method, Itô’s lemma


Main result: Solve SDE  discretize to get optimal online learning rate schedule
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Case studies for linear regression: Optimal learning rate schedules η*t

Bursty shifts: Jump process where  jumps to  every episode (40 steps) and then is 
zero for the rest of the episode. We set max step size . 

Smooth shifts:  changes continuously as  for a constant value . Smaller 
values of  (i.e., larger distribution shifts) induce larger rates.


No shift: We also analyze the simplest case when there is no distribution shift and 
recover the optimal learning rate schedule  which is asymptotically .
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Summary of results 
1.Large distribution shifts  larger learning rates


• Insights from linear regression also apply to general convex and non-convex losses 

2.We formulate the problem as dynamic regret minimization, where the target  moves 
and we chase it via SGD


3.Differences with related dynamic regret works: Besbes-Bur-Zeevi (Operations Research 
2015) and Yang-Zhang-Jin-Yi (ICML 2016):


i) Supports adaptive schedules (vs. choosing a fixed constant step size in advance)


ii) Supports adaptivity in the choice of distribution at each time step, in contrast with 
an arbitrary but fixed sequence of loss functions satisfying a variation budget 
constraint


iii) Same loss function for lower and upper bounds  match up to constant factors
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Experiments
High-dimensional regression: linear regression, logistic regression

Neural network application: 
flow cytometry  classify stream 
of RNA expressions that arrive 
from shifting data distribution

→

Parameter space 
• model:  
• oracle:  

θt ∈ ℝ2

θ*t ∈ ℝ2

Learning rate 
schedule ηt

Learning rate oscillates 
between  jumpsθ*t
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