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Abstract

Given two labeled data-sets S and T , we design a simple and efficient greedy
algorithm to reweigh the loss function such that the limiting distribution of the
neural network weights that result from training on S approaches the limiting
distribution that would have resulted by training on T .
On the theoretical side, we prove that when the metric entropy of the input data-
sets is bounded, our greedy algorithm outputs a close to optimal reweighing, i.e.,
the two invariant distributions of network weights will be provably close in total
variation distance. Moreover, the algorithm is simple and scalable, and we prove
bounds on the efficiency of the algorithm as well.
Our algorithm can deliberately introduce distribution shift to perform (soft) multi-
criteria optimization. As a motivating application, we train a neural net to recognize
small molecule binders to MNK2 (a MAP Kinase, responsible for cell signaling)
which are non-binders to MNK1 (a highly similar protein). We tune the algorithm’s
parameter so that overall change in holdout loss is negligible, but the selectivity,
i.e., the fraction of top 100 MNK2 binders that are MNK1 non-binders, increases
from 54% to 95%, as a result of our reweighing. Of the 43 distinct small molecules
predicted to be most selective from the enamine catalog, 2 small molecules were
experimentally verified to be selective, i.e., they reduced the enzyme activity of
MNK2 below 50% but not MNK1, at 10µM – a 5% success rate.

1 Introduction

Deep learning has found applications in diverse areas ranging from organic chemistry to computer
generated art. Its applicability is limited by the availability of large amounts of labeled training data.
A typical all-to-all neural net of width n (say n = 10000) and depth d (say d = 10) has Θ(n2d)
(' 108) weight parameters, and although many neural nets work well despite being somewhat
over-parameterized, they still need the number of training examples to be of a similar or only slightly
smaller order of magnitude.

This reliance on large amounts of training data leads to difficulties in training when we have multiple
objectives. For example, suppose we separately gather training data for a neural net to perform
classification tasks into a set of classes A using labeled data-set S, and into a set of classes B using
labeled data-set T . Then, unless T and S have many data-points in common, we will not have enough
examples to train a neural net for the classification into classes of A×B. In this paper, we address
this problem by designing a scalable algorithm that reweighs dataset S (using T ), so that training on
the reweighted S leads to network that is close to one obtained by training on T . Moreover, we apply
it to a drug discovery application and obtain wet-lab verified results.

Our main contribution is theoretical. Algorithm 1 deliberately introduces distribution skew and
reweighs the labeled training data-set S using the data-set T so that if we train a neural network
on the reweighed S for a long enough period of time then its weights will be "tilted" so that the
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classification error on classes B in T will also be reduced. The amount of reduction is determined
by the choice of tilt parameter α in Algorithm 1. Theorems 5.4, 5.13, 5.15, and 5.16 formally show
correctness and efficiency of Algorithm 1. In particular, Theorem 5.4 proves correctness and also
justifies the choice of Wasserstein metric in Algorithm 1. Theorems 5.13, 5.15 and 5.16 provide
efficiency guarantees for Algorithm 1.

It has been known since the 1980s that greedy algorithms, like Algorithm 1, have poor approximation
guarantees for computing Wasserstein distance [RT81]. Therefore, we need to assume and exploit
some property of about our input instances to get around the lower bound in [RT81]. This critical
property turn out to be: input instances must admit a small size covering. This small covering
assumption is used in both the random sampling and the greedy reweighing steps of our algorithm.
The connection to random sampling is not surprising and it comes from known techniques – the
union bound in the large deviations proof. However, the connection between small coverings and
greedy matching algorithms (at its core computing Wasserstein distance is equivalent to computing
minimum weight matchings) is somewhat surprising, since we are not aware of results obtaining
sharper guarantees on approximate minimum weight matching, based on the covering properties of
the input data-set.

Organization: In Section 2, we describe an example application to drug discovery that will serve as
our running example, whenever needed. More theoretically inclined readers may skip this section and
any references to it. In Section 3, we discuss prior work from the areas of machine learning theory,
algorithms and computational drug discovery, relevant to our paper. In Section 4, we present Algo-
rithm 1 and provide a technical overview of our paper – how our various theoretical results fit together.
Section 5 presents the theorem statements. In particular, Theorem 5.4 explains why the Wasserstein
metric is an intuitive and appropriate choice of metric for Algorithm 1; Theorems 5.13, 5.15 and 5.16
show that the greedy random sampling based algorithm can compute the minimum weight bipartite
matching, and hence Wasserstein distance, in near linear time; and they provide an upper-bound on
the approximation error under our low metric entropy assumption. Thus showing that Algorithm 1 is
scalable. Finally, the supplementary material contains proofs, and further figures and results from our
drug discovery application.

2 Running example: drug discovery

Multicriteria optimization problems involving data-sets that admit small coverings arise naturally in
drug discovery (see Section 4 for details). Therefore, as a concrete motivating example, we illustrate
an application of Algorithm 1 to a toy problem in this area, which will also serve as our running
example, when needed.

In drug discovery, typically, one wants to isolate small molecules (inhibitors) that bind strongly to a
given enzyme, but often we want to exclude small molecules that bind to another similar enzyme.
For example, MNK1 and MNK2 are two structurally similar kinases (a kinase is an enzyme for
phosphorylation or de-phosphorylation of proteins). We want to identify small molecules that bind
strongly to MNK2 (MNK2 hits), but we also prefer that the identified small molecules not bind to
MNK1 (MNK1 non-hits). In other words, we want to isolate molecules that are selective for MNK2
over MNK1.

In the in-silico experiments, we were able to increase the percentage of MNK1 non-hits in our set of
top predicted MNK2 hits – the selectivity – from 54% to 95% on holdout data, using the reweighing
procedure in Algorithm 1. We used a relatively small training set of about 250K small molecules in
total; labeled as MNK1 non-binders, and MNK2 binders and non-binders; and a small holdout set of
7K small molecules that consists of molecules which are labeled as: MNK2 hits (binders), and MNK1
hits (binders) or MNK1 non-hits (non-binders). Further details are given in the supplement section.
In Figure 1, for the neural network models with and without reweighing, we plot the cumulative
number of MNK1 non-hits on the y-axis; and on the x-axis any given point, say k, represents the top
k predicted MNK2 hits from the examples in the holdout set. While we can not make our training
data-sets and code public for proprietary reasons, we were able to experimentally (in wet-lab) verify
that two out of the top fifty (actually 43, since 7 out of 50 molecules could not be synthesized and
tested) predicted selective small molecules, obtained by running our neural network model on the
Enamine 1.9B molecules catalog (https://enamine.net), were indeed selective for MNK2 over
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Figure 1: Selectivity of reweighed (using Algorithm 1) and baseline (without reweighing) neural nets.
Note that this increase in selectivity from 54% to 95% came without any significant change in the
validation loss – the AUC for the classification of MNK2 binders vs non-binders remained around
0.6 in both cases. See supplement for details.

MNK1. That is a success rate of roughly 5% on this admittedly small sample set. We do note that the
results are from a single point concentration assay and can be noisy.

We are not aware of other such multi-target prediction results in DNA encoded library (DEL) space
(see [SBF+22] for background), where one simultaneously predicts hits/non-hits against two or more
proteins. However, the success rates for single target experiments with traditional high-throughput
screening is ∼ 1% (see for example the discussion in [MSK+20]) and it is generally accepted that
multi-target prediction is a harder problem.

More importantly, the two predicted and tested molecules provide a degree of verification for our
experimental application (which has been the motivation, but is not the main result of this paper).
The supplement summarizes the results of the experiments and provides further context about them.

Figure 2: Two predicted and verified selective MNK1 non-hits and MNK2 hits from the Enamine
catalog. The enzyme activity was found to be above 50% for MNK1 but below 50% for MNK2 at
10µM concentration for each of the two small molecules: ∼ 20% vs 70% and ∼ 39% vs 59%. See
supplement for all activities. Note that these values are from single point concentration assay and can
be noisy.

3 Related work

The question of learning with differing test and train distributions has been well investigated in the
machine learning community under different names: ditribution shift and covariate shift, see for
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example the book [QCSSL09], the papers [Shi00, RR83, DSP05, BS07, HSG+07] and [CMRR08],
to name just a few. The question is also relevant to our paper since our algorithm can be used to
reweigh the train data-set to bring the post training neural network weights closer to what they would
have been, had we trained based on the test distribution. However, prior results rely on estimating
the train and test distributions. For example, parameter estimation of the densities followed by
change of variable using the Jacobian. Assuming a logarithmic number of features, that leads to
a Õ(n2) algorithm for distribution skew correction (n being the training and test data-set size) –
much more efficient than Wasserstein distance computation that requires solving a Θ(n2) sized
linear program. That explains why the Wasserstein distance based ideas are less explored in this
context, so far. Distribution shift correction has also found new applications in domain adaptation
literature. However, the only prior theoretical works involving Wasserstein distance computation
that we found in this area were [CFHR17] and [LDN+21], which focus on exact solution of the
Wasserstein distance problem.

In a high dimensional feature space, the density estimation can be inaccurate since the number of
samples required increases exponentially in number of features for any formal guarantee (as can be
seen from large deviation bounds [DZ10]). Moreover, if we are only interested in partial tilting of
one distribution towards another, as in Algorithm 1 (where α controls the amount of tilt), then it is
reasonable to look for approximate but efficient computation of Wasserstein distance. That is what
we do in this paper using Algorithm 1, which is a Õ(n2) time algorithm as well. We now have the
added advantage of a provable upper bound on the test-train prediction error, before and after tilting
using Algorithm 1, from Theorem 5.4.

The problem of efficient Wasserstein distance computation has also received much attention in the
algorithms community. The paper [SA12] studies the equivalence between Wasserstein distance
computation and matching algorithms in the metric space setting. Efficient matching algorithms
have been well studied in literature for five decades. The optimal algorithm for computing weighted
matchings is due to Gabow and Tarjan [GT91] and runs in time O(m

√
n), where m is the number of

edges and n the number of vertices in the graph. Since then more sophisticated algorithms have been
designed, see for example [Vai89, IK93, SA12] and [ABIW09] to name a few. However, under our
assumptions even the simple greedy algorithm performs remarkably well, and it scales efficiently for
large training data-sets.

Reingold and Tarjan [RT81] showed that the greedy algorithm has an abysmal approximation ratio of
nlog2 3/2 for bipartite graphs. In this paper, we show in Theorem 5.13 that the approximation ratio of
the greedy algorithm is much better under our bounded metric entropy assumption than the lower
bound in [RT81]. Hence, an assumption about a covering property of the input leads to more optimal
matchings – a somewhat surprising algorithmic result that may be of independent interest.

Finally, the idea of using deep learning for drug discovery has gained popularity in pharmaceutical
research over the last few years, especially given the amount of data now available [Mul16]. The
paper [MSK+20] shows that neural nets can be trained on DNA encoded chemical libraries to identify
new small molecules that bind to a given protein target. It is particularly relevant to this work, as
we build upon that. Our work extends their work by allowing us to select molecules that bind to
one protein target and not to another. Other papers in this rapidly growing area include [ZKL+19,
KMB+16] and [GSR+17].

4 Problem statement and overview of results

Suppose we are given two labeled training data sets, say S and T for two different classification
tasks. Moreover, let’s assume that the points in the data-sets are weighted according to two different
probability distributions, say PS and PT respectively. Our goal is to reweigh S , i.e., "tilt" PS towards
PT , and train a neural net classifier so that the limiting distribution of network weights is closer to the
one that would be obtained from training using PT . We assume labels of S are known, and the labels
of T may be unknown or they may be known but |T ∩ S| may be small. Our reweighing algorithm
handles both cases. Furthermore, our reweighing procedure (Algorithm 1) works efficiently on very
large data-sets, with provable guarantees.

For our running example, the drug discovery application, the set T consists of a subset of small
molecules labeled non-binders (non-hits) for the protein MNK1, and the full labeled training set
consists of molecules that are binders and non-binders for the protein MNK2, while the set S is
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not the full training set but just the set of binders to MNK22. Here the labels of the molecules
in T are known but not necessarily on the same molecules as S. Our goal: given a new small
molecule, we want to compute the likelihood that it is a binder for MNK2 and a non-binder for
MNK1. Such models can allow us to make predictions on large commercially available catalogs and
enrich compounds that have high likelihood to bind to MNK2 but not MNK1. The results of our
experimental implementation of a version of Algorithm 1 to predict selective binders for MNK2 over
MNK1 is given in the supplement.

The rest of the paper concentrates on providing a theoretical explanation for why Algorithm 1 should
work as intended and scale well in general; beyond the experiments with MNK1-MNK2.

Algorithm 1 Reweigh Distribution and Train
1: Input: Two data-sets: S and T of size n each, weighed according to PS and PT respectively, and

a tilt factor α ∈ [0, 1].
2: Output: A neural net model trained using a reweighed version of PS such that its weight

parameters behave as if trained on distribution closer (in Wasserstein metric) to PT .
3: . RandomSample returns an empirical probability distribution computed from sample size m.
4: . RS ⊆ S and RT ⊆ T denote the random sample of points from their respective ground sets.
5: PRS := RandomSamplem(S,PS)
6: PRT := RandomSamplem(T ,PT )
7: . Obtain a α-tilted version of PRS that’s close to PRT using greedy minimum weight metric

bipartite matching algorithm (ScaledGreedyReweight in supplement)
8: P′RS := ScaledGreedyReweight(PRS ,PRT , α)
9: . Obtain a reweighted version of S

10: P′S = (1− α)PS + αP′RS .
11: . Train neural net on P′S .
12: Use stochastic gradient descent (SGD) to train the neural net using P′S .

A difference in PS and PT results in a difference in the convergence point of the weights in any
neural net training procedure, like SGD. This is because the loss functions in the SGD algorithm will
differ in their weights, though they may have the same form. Therefore, given two mean squared
error loss functions weighted with different probability distributions, say PS and PT , on each of their
terms, a natural question is: what is the relation between the output of two neural nets that are trained
using the two different loss functions?

The expected output of any neural net, on any given input, at the end of a long enough training
period, depends on the invariant measure of the weights from the SGD training algorithm. The
1-Wasserstein distance3 between the weights in the loss functions is the same as the 1-Wasserstein
distance between the occurrence frequencies of data-points in the two underlying data-sets S and T .
Our first theoretical contribution, Theorem 5.4, shows that W1(PS ,PT ), the 1-Wasserstein distance
between the loss function weight distributions PS and PT , upper-bounds the total variation distance
between the invariant measures of two such neural nets. Therefore, if the data-sets S and T are not
identical, i.e., PS and PT do not have the same support set, then the best we can hope for is a small
W1(PS ,PT ), in order to obtain similar neural net models for interchangeability. The above explains
our choice of the 1-Wassertein metric in Algorithm 1 (see also Remark 5.5 for comparing with the
Levy metric).

Let’s assume W1(PS ,PT ) is large, so that we need to reweigh S . For reweighing, we do not remove
any examples from S, instead we prefer to increase the weight of some already present examples
in S. Therefore, we compute a distribution P′S with the same set of support as PS , such that it
minimizes 1-Wasserstein distance between (1− α)PS + αPT and P′S , for some fixed choice of tilt
factor α ∈ [0, 1].4 We use P′S as the new set of weights for neural net training. Note that, for α close
to 1, the distribution will be closest to PT while being supported on S.

Note that the optimal P′S mentioned above can be computed by solving a linear program that closely
resembles the 1-Wasserstein distance computation linear program. However, the size of the linear

2Note that we have the labeled set of non-binders to MNK2 in our training examples as well, but they remain
unaffected by the reweighing, though they are used in training as well.

3See, for example [BGV07] and the references therein for background on the Wasserstein distances.
4The optimum value of α can be chosen by binary search after running multiple training evaluations.
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program would be quadratic in the size of the data-sets, making the computation intractable for most
practical data-sets.5 Therefore, we look for inaccurate but efficient algorithms and a natural candidate
is the randomized greedy algorithm below.

The 1-Wasserstein metric has an equivalent interpretation as a optimal transport problem. See
Theorem 5.6 (essentially repeated from [SA12]) for a formal statement that reduces it to the metric
minimum weight bipartite matching problem [RT81].

Given a bipartite graph with vertices embedded in a metric space, the metric minimum weight bipartite
matching problem asks to compute a minimum weight matching, where the weight of a matching is
the sum of the lengths of edges in the matching.

One tractable way to compute a minimum weight bipartite matching is to use a faster but sub-optimal
algorithm. The greedy algorithm, formally studied by [RT81] in this context, is a natural contender.
It is almost linear time, and easy to implement. However, [RT81] showed that such greedy algorithms
can be really inaccurate. Moreover, even the greedy algorithm requires linear space and given the
size of our data-sets, that can also become a constraint.

However, if our input instances admit a small sized covering then we show that the greedy algorithm
run on a large enough random sample of data, i.e., Algorithm 1 for a large enough choice of m,
performs reasonably well. Our main contribution here is Theorem 5.16. Theorem 5.16 states that
the greedy algorithm on a small fraction random sample of an Θ(n) point data-set can be used to
approximate the 1-Wasserstein distance with a poly-logarithmic factor approximation.

So, the question arises: What precisely does a small covering assumption above mean and what for
kind of natural problems does Algorithm 1 scales efficiently without deterioration in the approximation
guarantee?

The metric entropy of a point set (see Definition 5.10) is the minimum number of balls of a given
radius required to cover the point set. So, in high dimensions, data-sets with low metric entropy can
be characterized from their values on (relatively) small balls spread through space. This is indeed the
case with DEL data-sets like MNK1-MNK2. The combinatorial synthesis process utilized in DELs
often results in local chemical similarity among compounds that share common building blocks.
Since similar molecules likely have the same binding behavior, synthesized molecules form a small
ball around a parent molecule in the molecule fingerprint space. Therefore, molecule binding vs
non-binding data-sets likely have low metric entropy. It turns out that for training data-sets with low
metric entropy the greedy algorithm of [RT81] performs provably well (cf. Theorem 5.13).

The proof of Theorem 5.16 relies on Theorems 5.13 and 5.15.

Theorem 5.13 show that greedy minimum weight matching on bipartite graphs for vertex sets with
low metric entropy has a much better (poly-logarithmic) approximation guarantee in our case, as
opposed to the polynomial approximation guarantee from [RT81]. This argument, especially the
connection between covering and matching in Lemma 5.12 may be of independent interest.

Theorem 5.15 essentially shows that random samples on data-sets with bounded metric entropy
preserves 1-Wasserstein distances. This allows us to work with small samples of large data-sets. For
the proof, we need large deviation bounds for the 1-Wasserstein distance between the theoretical
distribution and its empirical distribution. Such results have been explored previously with tight
Sanov’s theorem type bounds in low dimensional spaces (see for example [BGV07]), but in high
dimensions, we need the assumption of low metric entropy for the same results to go through (see
chapter 6 in [DZ10]). Coincidentally, that is precisely our assumption in Theorem 5.13!

5 Theorems and Proofs

5.1 Bounding 1-Wasserstein distance suffices

In this section, in Theorem 5.4, we show that the Wasserstein distance between two measures,
corresponding in the sum of squares loss function, upper bounds the total variation distance between
the invariant measures underlying the stochastic gradient descent (SGD) algorithms.

5A typical large data-set has 10-100M examples, and computing W1 over two such data-sets requires solving
a linear program – a Θ(n3) time procedure, resulting in the order of 1024 computational operations!
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Assumption 5.1. We assume that our input consists of 2n points among the vertices of the hypercube:
Qd(n) := {0, 1}d(n), where d(n) is Θ(log n).

Restricting the state-space to the hypercube is fairly standard in algorithms literature. For the
drug discovery example, the state-space is just the binary molecule fingerprint vectors i.e., roughly
d(n) = 2000. Note that assuming training and test data-sets of equal size is more for clarity of
presentation, as one can add dummy example points of 0 weight, if needed.

Let X × Y denote the usual space of labeled examples i.e, in our case X ⊆ {0, 1}d(n) is the set of
feature values and Y := {0, 1} is the set of labels. Our object of interest in this section is a neural
network with smooth bounded activation functions. Let y = f(w, x) denote the abstraction of our
neural network, where w denotes the real valued vector of weights. For a depth p neural-net with
polynomial activation functions of degree q, f(w, x) is a polynomial in x with degree at most pq.

Let `(·) denote the loss function, which we will assume to be the sum of square loss, for the sake
of concreteness. The ideas easily extend to any low degree loss function. The training loss can be
written as:

`w(PS) := E(x,y)∼PS [(y − f(w, x))2]. (1)

Recall that (see for example [CS18]), a stochastic gradient descent algorithm with loss function ` can
be abstracted as the Itó diffusion in the limit of small step size:

dwS(t) = ∇w`w(PS)dt + σSdB(t), (2)
where ∇w denotes gradient with respect to w, B(t) denotes Standard Brownian Motion in |w|-
dimensions and the matrix σS depends upon the variance of the loss function for the mini-batch,
mini-batch size and the learning rate.
Assumption 5.2. We assume that the diffusion corresponds to an uniformly elliptic generator, since
that ensures the existence of a unique limiting (invariant) measure [BD17]. Furthermore, we assume
σS is isotropic i.e, it’s a scalar multiple of the identity σ · Id and that σS = σT , in Theorem 5.4.

We relax the isotropy assumption somewhat in a corollary (see supplement). Finally, for our situation
of interest, i.e., W1(PS ,PT ) large, we make a covariate shift type assumption.
Assumption 5.3. We assume that W1(PS ,PT ) = Ω(1). Furthermore, f and y are bounded, say
y, f ∈ [0, 1] and

|Ey∼PS (·|x)[(y−f(w,x))2]−Ey∼PT (·|x)[(y−f(w,x))2]|=O(1). (3)

Essentially, it says the data-sets have similar average loss in the same neighborhood for a given set of
weights.
Theorem 5.4. Suppose we train two neural networks, under the assumptions 5.2 and 5.3 above, on
different input distributions, PT and PS , using the stochastic gradient descent (SGD) algorithm. Then,
the total variation distance between their invariant measures can be bounded by O(W1(PT ,PS)), in
the limit as SGD step-size goes to 0.

Proof deferred to supplement.
Remark 5.5. For dimension d(n) large, the Levy-Prokhorov distance L(PS ,PT ) between two
distributions can be ω(1) times the Wasserstein distance W1(PS ,PT ), so a Levy-Prokhorov metric
based algorithm and guarantee can be weaker than the above.

5.2 The Greedy Algorithm

5.2.1 Reduction to bipartite matching

So far, we have established that 1-Wasserstein metric is a sufficient topology to work with. This
leads to the problem of computing the 1-Wasserstein distance on two large datasets. That problem is
equivalent to the minimum weight bipartite matching problem. In particular, we have the following
lemma from [SA12].
Theorem 5.6. [SA12] Given an instance of the optimal transport problem with supply and demands
on two sets of points (R,B), i.e, equivalently the 1-Wasserstein distance computation problem in
our case; we can construct an instance of the minimum weight bipartite matching problem such that
solving the latter up to an approximation factor α will solve the former up to the same approximation
factor α.
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The Algorithm ScaledGreedyWeight (below) carries out the reduction in Theorem 5.6 and calls
GreedyMatch which matches two multisets embedded in a metric space using greedy algorithm on
the edge lengths.

Notation: Scaling a discrete probability distribution P up by an integer factor ofC leads to a numerical
rounding error of 1

Cmin{P} , where min{P} denotes the minimum positive value of density P. Assume
that we pick a large enough constant C below, so that we can ignore the rounding error for the
purposes of Theorem 5.13.

Algorithm 2 ScaledGreedyReweight (scale distributions and call bipartite matching)
1: Input: Two probability distributions PB ,PR supported onB,R ⊂ Qd, and a tilt factor α ∈ (0, 1).
2: Output: Probability distribution P′B supported on B. P′B is close to αPR + (1− α)PB in W1,

under assumptions of Theorem 5.13.
3: for r ∈ R do
4: Supply(r)← C · αPR(r)

5: for b ∈ B do
6: Demand(b)← C − C · (1− α)PB(r)
7: if Demand(b) < 0 then
8: Demand(b)← 0

9: Create multi-set B′, R′ with multiplicities of each element being equal to their Demand and
Supply respectively.

10: Use GreedyMatch(R′, B′) to compute the met (matched) demands, i.e., the extent to which the
demands of B that are actually fulfilled by R.

11: Normalize the weights of met demands to obtain a probability distribution P′B supported on B.
12: return P′B .

5.2.2 Greedy algorithm and metric entropy

Recall that the data-points are set in the d-dimensional hypercube Qd with `1 metric, where
d = logO(1) n. The minimum weight bipartite matching problem is known to be harder than
its non bipartite version. For example, the greedy algorithm is known to have a lower bound of
Θ(nlog2 3/2) [RT81] for the bipartite version with n data-set T and n data-set S vertices. As an aside,
a variant of the greedy algorithm (the hyper-greedy algorithm) provides a log n approximation in the
non-bipartite case i.e, when any vertex can be matched to any other vertex. For the bipartite case, we
obtain better approximation guarantees via the greedy algorithm, assuming small metric entropy of
the input point sets.
Definition 5.7. Given a perfect matching M over a subset of vertices C in a graph G, an alternating
cycle γ is a cycle in G such that each alternate edge in the cycle belongs to M . Note that any such
M corresponds to a set of vertex disjoint alternating cycles.

In particular, Reingold and Tarjan [RT81] essentially show the following theorem.
Theorem 5.8. [RT81] Given a set of n data-set T and data-set n S points in a metric space, the
greedy algorithm returns a matching with weight that is within a factor of γlog2

3
2 of the minimum

weight matching, where γ is the length of the longest alternating cycle in the set (which can be Θ(n)
for Qlogn).

In order to improve upon their guarantee, we will exploit the following assumption for our input
instance.
Assumption 5.9. We assume that all input T and S points can be covered by η balls of radius ζ lying
within Qd. We call such an input instance (η, ζ)-bounded. The parameters η and ζ will determine
the approximation guarantee of our algorithm.
Definition 5.10. Given a metric space, say (Q, d) and E ⊂ Q„ the metric entropy N ent

r (E) is the
largest number of points {x1, . . . , xn} one can find in E that are r-separated, i.e., d(xi, xj) ≥ r for
all i 6= j.
Definition 5.11. Given a metric space, say (Q, d) and E ⊂ Q, the (external) covering
number N cov

r (E) is the fewest number of points {x1, . . . , xn ∈ Q} such that the d-balls
{B(x1, r), . . . , B(xn, r)} cover E.
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Lemma 5.12 (Structural Lemma). For an alternating cycle γ induced by the greedy matching, if
the weight of edges in the alternating cycle coming from the greedy matching is at least α times the
weight of edges in the alternating cycle coming from the minimum weight matching then the metric
entropy of γ is large i.e, more precisely,(

N ent
α/2(γ) · 2d− α

α

)log2 3/2

≥ α. (4)

Proof deferred to supplement. Note that an approximation factor of d is trivial on Qd or on any set
with dmin = 1 and dmax = d(n). The following corollary shows that the above indeed helps to
improve upon the trivial bound for appropriately bounded instances.

Corollary 5.12.1. Lemma 5.12 implies that the greedy algorithm achieves an approximation factor
of o(d3/4) on a (d3/4, d3/4)-bounded instance.

Proof. We know that N cov
r (E) ≥ N ent

r (E) (see for example [DZ10]). Therefore, Lemma 5.12
implies

α ≤
(
N cov
α/2(γ) · 2d− α

α

)log2 3/2

. (5)

For α = d3/4, the right side of Equation 5 is dlog23/2, while the left side is d3/4. Since log2 3/2 < 3/4
we have a contradiction. Therefore, α = o(d3/4).

Of course, as the metric entropy decreases, the approximation factor improves, see for example the
theorem below.

Theorem 5.13. For η = O(d
1

ξ log2 3/2 ), (ξ > 1), Lemma 5.12 implies that the greedy algorithm

achieves an approximation factor of max{2ζ,O
(
d

1+ξ log2(3/2)

ξ(1+log2(3/2))

)
} on a (η, ζ)-bounded minimum

weight matching instance.

Together with Theorem 5.6, Theorem 5.13 implies that the greedy algorithm obtains the approximation
factor on a (η, ζ)-bounded Wasserstein distance computation instance. Proof deferred to supplement.

5.2.3 Small random samples suffice

In this subsection, we show that if the metric entropy is small, and so is the spread (see Definition 5.14)
of the underlying distribution, then the empirical distribution of a much (polynomially) smaller sample
is close to the actual distribution, in the 1-Wasserstein metric, with high probability.

Definition 5.14. Let µ be the uniform distribution supported on a subset of vertices Q of Qd(n). The
spread of µ, S(µ), is defined as:

S(µ) := inf
x0∈Q

(
1 + ln

(∫
Q

ed(x0,x)2dµ(x)

))1/2

, (6)

where d(·, ·) denotes the `1 distance on Qd(n).

Note that the spread is positive and greater than 1, for any distribution defined on the hypercube,
since the minimum value of d(·, ·) is 1. In general, S(µ) can be a function of d(n).

Theorem 5.15. For a (η, ζ) coverable point-set, with m = α(n)
(
η2ζ
)

and α(n) ∈ (0, 1), the
1-Wasserstein distance between the empirical distribution and the true distribution of data-sets with
bounded metric entropy obeys the following Sanov type concentration bound:

∃ α(n)→0, limn→∞
1

η2ζ
ln P(W1(µ̂m,µ)≥log logn+o(1)S(µ))≤−Ω(1). (7)

The proof is in the supplement. It closely follows the covering based proof of multidimensional
Cramer’s theorem in its metric entropy version (exercise 6.2.19 in [DZ10]) with two main differences:
(1) we need the topology induced by the Wasserstein metric instead of the Levy metric, and (2) our

9



space has large dimension, i.e., say log n, which depends upon n6. The second point requires us to be
more careful with the covering argument, and so we only prove a relatively weaker result, with the
help of the transportation inequality from [BV05].

5.2.4 Efficiency guarantee: Greedy with random sampling

Theorems 5.15, 5.13, and 5.6 imply the following efficiency guarantee about the greedy minimum
weight bipartite matching algorithm (GreedyMatch) on a random sample, and therefore Algorithm 1
as well.
Theorem 5.16. Suppose we are given two data-sets with S and T that are weighted according to
distributions PS and PT . If,

1. S∪T admits a small covering: an (η, ζ) covering with η, ζ = O(logc n) and η = O(logc n)
for some constant c ≤ 1

1+log2(3/2) ; and

2. PS and PT are sufficiently far apart: W1(PS ,PT ) ≥ log log n+o(1) max{S(PS), S(PT )}

then the greedy algorithm achieves an approximation ratio of max

(
2ζ,O

(
d

1+ξ log2(3/2)

1+log2(3/2)

))
with

probability 1− o(1), when computed on a small random sample of r(n) fraction of data-points and
r(n)→ 0.

More succinctly, Theorem 5.16 states that the greedy algorithm on a small random sample can be
used to approximate W1(PS ,PT ) on our data-sets S and T , as long as the data-sets admit a small
size covering using balls of small radius, and the two training weight distributions PS and PT are
sufficiently different, which is the interesting case.
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7 Supplement

7.1 Further details about the greedy bipartite matching algorithm

For the sake of completeness, we outline below a way to implement the greedy matching algorithm.

Algorithm 3 GreedyMatch (Greedy metric bipartite matching)
1: Input: Two multi-sets of n points R,B in Qd.
2: Output: A matching from R to B.
3: . The set B is shared across all threads
4: procedure WEIGHTEDMATCH(R,B)
5: for r ∈ R do . All for loop statements run in parallel
6: b← BreadthFirstSearch(r,B)
7: M ←M ∪ {r → b}
8: return M . M is the matching
9: procedure BREADTHFIRSTSEARCH(r,B)

10: for i = 1, ..., d do
11: for v ∈ Qd, ‖v − r‖1 = i do
12: if v ∈ B then
13: B ← B \ v
14: return v . r matches to v

7.2 Proof of Theorem 5.4

Proof. Let LT ,LS be the infinitesimal generators, and let ρT (w), ρS(w) be the invariant measures,
corresponding to the SGD for T ,S respectively. Then, from our ergodicity assumption about the
SGD, and the definition of invariant measures, we have:

L∗T ρT (w) = 0, (8)
L∗SρS(w) = 0. (9)

We know that LS is a perturbation of LT . So, let

L∗SρT (w) = ε(w). (10)

Therefore,
L∗SρS(w)− L∗SρT (w) = ε(w), (11)

and
L∗T ρT (w)− L∗SρT (w) = ε(w). (12)

Putting Equations 11 and 12 together, we have:

L∗S(ρS(w)− ρT (w)) = (L∗T − L∗S)ρT (w)

(ρS(w)− ρT (w)) = (L∗S)−1(L∗T − L∗S)ρT (w), (13)

where we have used the uniform ellipticity assumption in the last step to ensure the inverse exists.
Taking 1-norm on both sides and using the sub-additivity of operator norms, we have:

‖ρS(w)− ρT (w)‖1 ≤ ‖(L∗S)−1‖1‖(L∗T − L∗S)‖1. (14)

We will upper-bound ‖(L∗T − L∗S)‖1 in terms of W1(PT ,PS). The essential idea is to simply write
down the adjoints of the elliptic operators, group like terms together and use Kantorovich-Rubenstein
duality to upper-bound each of the resulting terms in terms of W1(PT ,PS).

Recall that,

LT ψ ≡ ∇w`w(PT )
∂ψ

∂wi
+ ε2D

∂ψ

∂wi∂wj
, (15)

L∗T ψ ≡ ∂∇w`w(PT )

∂wi
ψ +∇w`w(PT )

∂ψ

∂wi
− ε2D ∂ψ

∂wi∂wj
, (16)
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where we have used the Einstein summation notation on the partial derivatives for the sake of brevity
in expressing the last two equations. Similarly, we can write out LS and L∗S .

Note that:

(L∗T − L∗S)ψ ≡
(
∂∇w`w(PT )

∂wi
− ∂∇w`w(PT )

∂wi

)
ψ + (∇w`w(PT )−∇w`w(PS))

∂ψ

∂wi
. (17)

One can choose ψ as any Lipschitz function of unit `1 norm, so that if we upper bound the coefficients
of the two partial terms on the RHS of Equation 17 for every co-ordinate i by W1(PT ,PS), then we
will have bounded ‖L∗T − L∗S‖1 by W1(PT ,PS). The first term can be upper-bounded as:

∇w`w(PT )−∇w`w(PS) = Ex∼PSEy∼PS(·|x)[(y − f(w, x))2]− Ex∼PT Ey∼PT (·|x)[(y − f(w, x))2]

' Ex∼PSEy∼PS(·|x)[(y − f(w, x))2]− Ex∼PT Ey∼PS(·|x)[(y − f(w, x))2]

≤ O(W1(PT ,PS)), (18)

where we have used:

1. The covariate shift type assumption in deriving the second equality (Equation 3).

2. The Kantorovich-Rubenstein duality together with the assumption that Ey∼P(·|x)[(y −
f(w, x))2] is O(1)-Lipschitz in deriving the last inequality.

Similarly, one can show the same upper-bound for
(
∂∇w`w(PT )

∂wi
− ∂∇w`w(PT )

∂wi

)
. Therefore, ‖L∗T −

L∗S‖1 ≤ O(1)W1(PT ,PS).

Corollary 7.0.1. The anisotropic diffusivity case: The upper-bound holds when the diffusivity is
anisotropic as well, with the caveat that W1(PS ,PT ) be replaced by W1(PS ,PT )2.

Proof. The proof of Theorem 5.4 uses isotropic diffusivity in one place only – when computing the
difference L∗T − L∗S . Note that, the diffusivity may be written as (see for example [CS18]):

D(P) := E
[
∇`w(P) · ∇`w(P)T

]
− E [∇`w(P)] · E

[
∇`w(P)T

]
. (19)

Then, D(PS) − D(PT ) can be upper-bounded in terms of O(W1(PS ,PT )) + O(W1(PS ,PT )2)
under the assumption that we have O(1)-Lipschitz gradients. The argument is similar to that used for
the drift term in the isotropic case, albeit with one new observation, the term

EPS×PS [f(w)]− EPT×PT [f(w)]

can be upper-bounded by W1(PS ,PT )2 using Kantorovich-Rubenstein duality and the definition of
Wasserstein distance.

7.3 Proof of Lemma 5.12

Proof. One way to write the greedy matching algorithm is to imagine it as a set of parallel breadth
first searches (BFS), as in Algorithm 3. For any two vertices x, y ∈ R in an alternating cycle γ,
suppose their neighbors from the greedy matching algorithm are x′ and y′ respectively. Think of the
last step in Algorithm 3 before either x or y was matched, so at that time-point the BFS from x′ and
y′ hadn’t reached either x or y. Therefore, we have the following relationship between their mutual
distances:

min{d(x′, y), d(y′, x)} ≥ min{d(x, x′), d(y, y′)}, (20)
where d denotes the distance metric, which in our case is the underlying cost inW1 i.e, the `1 distance.
The situation is illustrated in Figure 3.

Now suppose that the weight of the greedy matching edges in γ is α times the weight of the minimum
weight matching. Then we show below that a significant fraction of the greedy edges in the cycle γ
must be at a distance at least α/2 from their neighbors.

Let G be the set of greedy edges in γ and M be the set of optimal matching edges. Then we have,∑
xy∈G

d(x, y) ≥ α
∑
xy∈M

d(x, y). (21)
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Figure 3: Alternate edges in an alternating cycle γ belong to greedy and optimal matching.

Let f be the fraction of edges in G with weight at least α/2. Let’s call that set Gα/2. Recall that, in
the setting of Qd, dmin = 1 and dmax = d. Therefore, we have

d · f +
α

2
· (1− f) ≥ α. (22)

Therefore, f ≥ α
2d−α .

By the definition of metric entropy and Equation 20, we know that

|γ|f ≤ N ent
α/2(Gα/2) ≤ N ent

α/2(γ). (23)

By Theorem 5.8 we know that α ≤ |γ|log2 3/2. Putting that together with Equation 23 gives:

α ≤
(
N ent
α/2(γ) · 2d− α

α

)log2 3/2

. (24)

7.4 Proof of Theorem 5.13

Proof. We have two cases:

1. α ≤ 2ζ: In this case, there’s nothing to prove.

2. α ≥ 2ζ: In this case, since N cov
α/2(γ) ≥ N cov

ζ (γ) = η, we have

α ≤
(
η · 2d− α

α

)log2 3/2

. (25)

Therefore, we have two sub-cases:

(a) α = Ω(d): In this case, we obtain from Equation 25 that α = O(ηlog2 3/2), which is
o(d) for η = O(d

1
ξ log2 3/2 ) – a contradiction for ξ > 1. Hence α = o(d).

(b) α = o(d): In this case we obtain:

α1+log2 3/2 ≤ (η · 2d)
log2 3/2

α ≤ O

(
d

1+ξ log2(3/2)

ξ(1+log2(3/2))

)
, (26)

where we have used η = O(d
1

ξ log2 3/2 ) in the last inequality.
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7.5 Proof of Theorem 5.15

Proof. Recall that, we have an (η, ζ) = (logc1 n, logc2 n) instance, for some small constants c1 and
c2. So the covering number of the support set for µ, denoted Sµ, with balls of radius δ (δ ∈ [1, ζ)),
denoted m(Sµ, δ), is upper bounded by η · Vol(ζ,Qd(n))

Vol(δ,Qd(n))
. Replacing the asymptotic value for the

volume, we get

η ·
Vol(ζ,Qd(n))

Vol(δ,Qd(n))
. η · 2−d(n)(H(ζ/d(n))−H(δ/d(n))), (27)

where H(x) := x log2 x+ (1− x) log2(1− x) is the entropy function and is negative for x ∈ (0, 1).

Since Sµ of µ is finite, the set of set of probability measures M1 that are supported on Sµ is compact
in the 1-Wasserstein metric topology. Therefore, there exists a finite covering of M1, i.e., using
elementary measures that are constant on the atoms of a finite covering of Sµ, we can approximate
any given probability measure in M1 up to an additive constant ε+ δ, in the 1-Wasserstein metric.
The value of the constant for each ball in the covering ranging in [0, 1] in steps of ε. We will fix the
values of ε ∈ (0, 1) and δ ∈ [1, ζ) later in the proof.

Therefore, as in exercise 6.2.19 in [DZ10], we can bound the covering number ofM1, i.e.,m(M1, δ, ε)
by

m (M1, δ, ε) ≤
(
m(Sµ, δ)(1 + 1

ε )

m(Sµ, δ)

)
≤
(

4

ε

)m(Sµ,δ)

. (28)

Therefore, we have by the standard covering argument for the proof of multidimensional version of
Cramer’s large deviation bound (equivalently Sanov’s theorem for finite spaces, see exercise 6.2.19
in [DZ10]):

∃m0 ∀m > m0, P(µ̂m ∈ A) ≤ m (M1, δ, ε) · e−m·inf
ν∈Aε+δ H(ν,µ), (29)

where H(ν, µ) is the relative entropy (KL divergence), and Aδ is the δ blow-up of A ⊂ M1 with
respect to the 1-Wasserstein metric.

Note that infν∈Aε+δ H(ν, µ) can be lower bounded in terms of the 1-Wasserstein distance using the
following transportation inequality from [BV05].

Theorem 7.1. [BV05] For distribution µ, ν supported on any polish space, we have:

H(µ, ν)S(µ) ≥W1(µ, ν). (30)

Essentially,

inf
ν∈Aε+δ

H(ν, µ) ≥ inf
ν∈Aε+δ

W (ν, µ)

S(µ)
≥ W (ν, µ)− δ − ε

S(µ)
. (31)

For ε � 1, we have δ + ε ' δ. Therefore, the exponent on the RHS of Equation 29 can be lower
bounded as

inf
ν∈Aε+δ

H(ν, µ) ≥ W (ν, µ)− δ
S(µ)

. (32)

Furthermore, for m = α(n)|Q| = α(n)
(
η2ζ
)
, the RHS of Equation 29 can be upper bounded as

P(µ̂m ∈ A) ≤
(

4

ε

)m(Sµ,δ)

· e−(η2−d(n)H(ζ/d(n)))α(n)·(W (ν,µ)−δ
S(µ) )

≤ eη·2
−d(n)(H(ζ/d(n))−H(δ/d(n))) ln( 4

ε ) · e−(η2−d(n)H(ζ/d(n)))α(n)·(W (ν,µ)−δ
S(µ) ), (33)

where we have used Equation 27 in the last inequality. If we choose δ and ε such that(
W (ν, µ)− δ

S(µ)

)
≥

2d(n)H(δ/d(n)) ln
(

4
ε

)
α(n)

W (ν, µ) ≥ δ +
2d(n)H(δ/d(n)) ln

(
4
ε

)
α(n)

S(µ), (34)

equivalently for a small enough α(n), say α(n) = log log n, choose δ(n) = log log n and ε > 0 then
W (ν, µ) ≥ log log n+ o(1)S(µ) and the exponent in Equation 33 is negative. Thus P(µ̂n ∈ A)→ 0
as n→∞.
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7.6 Experimental results

MNK1 and MNK2 are two structurally similar kinases responsible for cell signalling. Their inhibition
has been explored for certain cancer therapies (see for example, the survey [DMM+17]). In this
section, we describe an application of Algorithm 1 that selects for MNK2 binders which are MNK1
non-binders.

We use (roughly) the same set-up as in [MSK+20] (the exact details are elaborated in Supplementary
subsection 7.7). But, at a high level, we start with a train data-set S, labeled as hits (binders) and
non-hits (non-binders) for MNK2, and another labeled set T which consists of just MNK1 non-hits
(non-binders)7. Let PS and PT denote the distribution of weights on the examples in the two data-sets.
We assume PS and PT are uniform in our experiment section, but their set of support is different.
Next, we used α = 0.95 in Algorithm 1 to reweigh the MNK2 binders in S for training using T
(the MNK1 non-binders). In theory, this should bring the limiting distribution of network weights,
that results from training on reweighed PS , "closer" to that which can be obtained from training on
PT . That’s our experimental model. For the baseline model, we simply skip the reweighing step in
Algorithm 1 and train the network using SGD.

7.7 Further details about the experimental setup

Below we provide some more details of our experiments beyond the high level description in the main
paper. We use a scaled down but otherwise same setup as in [MSK+20]. The experiment consists of
two sets of training data:

1. Baseline data: The baseline training set consists of labeled disynthon examples divided into
five classes: (1) Non-hit, (2) Matrix binder, (3) Promiscous hit, (4) Non-competitive hit (5)
Competitive hit. Of these five, the class of interest is competitive hit and has about 1,200
molecules. The overall training set size is approximately 250K labeled disynthons (similar
to, but a scaled down version of [MSK+20]) for MNK1 and MNK2 combined.8

2. Experiment data: This is exactly the same as baseline data, except for one caveat: molecules
that are competitive binders to MNK2 and close to non-hits to MNK1 in the molecular
fingerprint space, have their weights increased in the loss function, using the transportation
algorithm (Algorithm 1) described in the previous section. In other words, small molecules
close to non-hits to MNK1 are weighted relatively higher amongst the competitive binders
to MNK2.

3. We use a holdout of our labeled data-set, that consists of about 7K small molecules that
belong to the labeled set of: MNK2 binders, and MNK1 binders or MNK1 non-binders;
to compute the selectivity of our algorithm. About 40% of this set was labeled MNK2
binders and MNK1 non-binders. For both models we obtain a set of top 100 molecules in
the holdout data that are predicted to be the strongest binders to MNK2.

7.8 Neural network predictions

In this subsection we discuss the accuracy and predictions of our neural network.

Definition 7.2. Given a model that predicts MNK2 binders vs non-binders and an inference data-set
of known MNK2 binders, predict the top 100 molecules that are the most likely to be selective for
MNK2 over MNK1. Define selectivity as the fraction of those top 100 molecules that don’t bind to
MNK1.

Figure 4, reproduced from the introduction, compares the reweighed and baseline model selectivity.

We measure the success of our reweighing experiment using two metrics:

7These labeled training data-sets are proprietary and can’t be disclosed, as was the case in [MSK+20]. Hence
we train on proprietary data-sets, but perform inference on publicly available data-sets (Enamine and MCULE
catalogs). to validate the model prospectively, we experimentally tested our top predicted selective molecules
from the publicly available Enamine catalog, which results in 2 molecules (of 43 tested) verified to be selective
by single point of concentration assays at 10µM. See Subsection 7.9 for more details.

8Because of our reliance on proprietary disynthon libraries, the training data-sets can’t be open sourced, as
was the case in [MSK+20].
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Figure 4: Selectivity of reweighed (using Algorithm 1) and baseline (without reweighing) neural nets.
Note that this increase in selectivity from 54% to 95% came without any significant change in the
MNK2 hit vs no-hit validation loss.

1. The change in the AUC for MNK2 binder vs non-binders: Increasing the weight of a subset
of non-competitive binders means that we deliberately introduce training-test distribution
skew in our data. This has the potential to impact AUC negatively. However, we found that
our AUC stayed around 0.6 for the MNK2 binder vs non-binder classification, and did not
change significantly between baseline and experiment.

2. The increase in selectivity of MNK1 non-hits: We measure this as the proportion of MNK1
non-hits and MNK2 competitive hits in our top 100 molecules ranked by model scores from
a labeled set of 7K molecules that were known to be MNK2 competitive hits. The result is
shown in Figure 4.
The reweighed data was 95% selective as opposed to 54% for baseline. This means that
95 of the top 100 MNK2 competitive hits predicted by our model were MNK1 non-hits,
and the remaining 5 were MNK2 hits and either MNK1 hits or matrix binders. A similar
interpretation holds for the baseline evaluation, which was 54% selective.

7.8.1 Model properties

Next, we want to investigate any clustering behavior of small molecules in the holdout set, i.e., how
higher weighted molecules, by Algorithm 1, are distributed relative to each other in the chemical
fingerprint space. In order to visualize the effect, we compute and plot the histogram of mean
Tanimoto similarity9 for each of the top 100 binders, in the baseline model, with the remaining 99
of the top 100 molecules in the baseline model, in Figure 5. Similarly, we compute and plot the
histogram of mean Tanimoto similarity between each of the top 100 binders in the reweighed model,
with the remaining 99 of the top 100 molecules in the reweighed model, in Figure 6.

We find that the molecules in the experimental model are more similar to each other than the baseline
model (mean similarity increases from 0.32 to 0.53), and hence are "packed" more closely together.

One potential reason for the top binders in the experimental model to be clustered together could be
that Algorithm 1 is increasing the weight on the (likely small) portion of chemical space of MNK2
binders which are in the vicinity of MNK1 non-binders. In order to support this assertion, we compute
the mean ECFP6 Tanimoto similarity for each of the top 100 binders in the baseline model with the
top 100 binders of the reweighed model, and vice versa (Figures 8 and 9 respectively). We observe
that the mean similarity score for the former, in Figure 8, is clearly bifurcated into two parts with
means around 0.2 and 0.5 respectively. The right peak of 30 small molecules mostly comes from the
54 molecules that were MNK1 non-binders. This means that a subset of the top 100 MNK2 binders
in baseline are much more similar to the top 100 MNK2 binders in the reweighed model. This leads
us to the following remark.

9Tanimoto similarity (Jaccard distance) of two molecules ranges in [0, 1], with higher values indicating more
similarity.
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Figure 5: Clustering of top molecules in base model

Figure 6: Clustering of top molecules in reweighed model

Figure 7: How spread out are top 100 molecules in baseline and reweighed models, by themselves

Remark 7.3. Figures 5, 6, 8 and 9 are consistent with the following hypothesis: Algorithm 1 is
successfully highlighting a closely packed portion of the chemical space of MNK2 binders that are
non-binders to MNK1, while the top MNK2 binders in the baseline model are relatively more spread
out in the chemical fingerprint space.

7.9 Wet-lab results

Due to proprietary reasons we can not make our code and data public. However, to ensure a degree of
verifiability of our results, about fifty of the top predicted selective small molecules from the enamine
catalog were synthesized and experimentally tested for binding properties to MNK1 and MNK2. This
subsection discusses those results.

We selected 50 of the top predicted small molecules that should bind to MNK2 but not to MNK1
from the enamine catalog of 1.9 Billion small molecules, for synthesis and experimental testing.
The selection process essentially filtered out any small molecule that was above a ECFP6 Tanimoto
similarity of 0.3 with respect to an already selected (higher score) small molecule in the top predicted
selective molecules. At 10µM concentration, it was found that 2 out of 4310 (roughly 5%) of
predicted small molecules reduced the enzyme activity of MNK2 below 50% but not that of MNK1.
The full table of activities for all 43 molecules is given in Section 7.10.
Remark 7.4. Note that most small molecules that bind to MNK2 will also bind to MNK1 be-
cause of structural similarities. Admittedly, our training set is an order of magnitude smaller
than that in [MSK+20] and the number of molecules experimentally verified is also an order of
magnitude smaller than [MSK+20]. However, if the result scales up, then the 5% experimentally

10Seven molecules could not be synthesized and tested.
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Figure 8: Mean Tanimoto Similarity for each top molecule in base with reweighed model (note the
bifurcation).

Figure 9: Mean Tanimoto Similarity for each top molecule in reweighed with base model

Figure 10: How spread out are top 100 molecules in the two models, relative to each other

verified success rate, in predicting selectivity against two targets simultaneously, may be further
compared with the 30% success rate for predicting binders against single targets using similar ML
approaches [MSK+20].

The names of the two molecules in Figure 2 are:

1. For C(NC=1N=CC=C(OC=2C=CC=CC2)N1)C=3C=CC(=CC3)C=4C=CC=NC4, the IU-
PAC name is:
4-phenoxy-N-[4-(pyridin-3-yl)phenyl]methylpyrimidin-2-amine,

2. For C(C1CCN(CC1)C=2C=NC=C(OC3CCCCC3)N2)C=4C=CC=NC4, the IUPAC name
is:
2-(cyclohexyloxy)-6-4-[(pyridin-3-yl)methyl]piperidin-1-ylpyrazine.

On average the model predicts molecules which are better binders to MNK2 than MNK1, as can be
seen by the plot of the enzyme activity of the forty three small molecules below.

The full list of wet-lab tested molecules and the enzyme activities at 10µM concentration of the
small molecule is given in the appendix Section 7.10.
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Figure 11: Average enzyme activities; lower y-values indicate better binders

7.10 Smiles from wet-lab experiment

We selected fifty molecules from the top predicted binders for MNK2 and non-binders for MNK1,
from the enamine catalog. The selection ensured that the ECFP6 Tanimoto similarity between any
two wet-lab tested molecules was at most 0.3. This was done in order to ensure sufficient diversity
among the selected compounds for experimental testing.

The smiles with activities for all forty three (seven molecules could not be tested) wet-lab tested
molecules are given in Figure 12. The mean activation value for the MNK1 columns was 96 and that
for the MNK2 columns was 88, thus on average the molecules bind more to MNK2 than MNK1.
Note that for single point of concentration assays the results can be noisy so that the difference is
likely not statistically significant for sample of size 43.
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Figure 12: Columns denote % enzyme activities relative to DMSO control. Each compound was
tested twice against each kinase, at a concentration of 10µM. Reactions were carried out at Km ATP
according to the RBC Km binning structure. Control compound, Staurosporine, was tested in 10-dose
IC50 mode with 4-fold serial dilution starting at 20µM with IC50 for MNK1: 1.19E-7 and MNK2:
1.8E-8. Note lower column values indicate a better binder.
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