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Abstract
We design an algorithm that approximately re-
covers single cell data, for example, scRNA-seq
data for a small subset of genes, using aggregate
measurements, for example, unlabeled in-situ hy-
bridization data and RNA-seq data, from a sample.
The technical crux of our algorithm involves com-
pressed sensing based sparse recovery when the
measurement matrix is unknown, only its statisti-
cal distribution is known.

1. Introduction
The importance of single cell data is increasing as we try
to understand fundamental processes in biology and apply
them in medicine. However, the costs of gathering single
cell data are prohibitive, so a method to even approximately
recover single cell data from a small number of inexpensive
aggregate level measurements may prove useful. In this
paper, we explore one such idea using compressed sensing
type algorithms. We show, using simulations, that it is
possible to approximately recover the underlying single
cell distribution of RNA expression using ℓ1 minimization,
even when the problem does not fit the standard compressed
sensing paradigm.

To summarize our results: From a computational biology
perspective, our contribution is encapsulated in Algorithm 1
which uses compressed sensing without knowing the exact
measurement matrix, just its statistical properties, to approx-
imately reconstruct the original microscopic distribution
using only a few aggregate measurements of the sample.
For lack of data and resources, we don’t run experiments,
but we run simulations (in Section 3) using publicly avail-
able scRNA-seq data ((Bastidas-Ponce et al., 2019; Bergen
et al., 2020))1 as the ground truth, to see how Algorithm 1
and its derivatives may eventually perform in the real world.

1Google Research, USA. Correspondence to: Pratik Worah
<pworah@google.com>.

1Their data is available at https://scvelo.
readthedocs.io/en/stable/scvelo.datasets.
pancreas/ and https://github.com/theislab/
pancreatic-endocrinogenesis/

From a theoretical perspective, a full version of this paper
slightly generalizes a state of the art result in compressed
sensing for Gaussian matrices by (Raskutti et al., 2010).

1.1. Background

A typical genomic assay can fall somewhere on the granu-
larity spectrum of measuring single cell genomic data, for
example, scRNA-seq or fluorescence in-situ hybridization
(FISH) on the one hand; to mapping just the aggregate
average value, for example, RNA-seq, on the other hand.
Clearly, the former capture more information than the latter,
as they measure the entire distribution of gene expression
in a tissue, as opposed to just the average or total gene ex-
pression. FISH, in particular, has already found some use
in healthcare (see for example (Hu et al., 2014)). At the
same time methods like FISH have practical drawbacks. For
example, it requires elaborate sample preparation in order to
measure the fluorescence intensity (see (Haroon et al., 2013)
for the details involved in a one-off in-solution FISH).

The assay implied by Algorithm 1 does rely on in-situ hy-
bridization, but it does not require fluorescent markers or
labels. Moreover, since it does not rely on measuring in-
tensity, it should not require elaborate sample preparation
like FISH. All it requires is that the hybridization take place
first in the cellular compartments and then cellular compart-
ments be made permeable (say via detergents) to perform
RNA-seq to generate an observation – a co-ordinate for the
input vector y to Algorithm 1.

The high-level idea is that a small amount of the statistical
information of the single cell distribution is transferred to
the aggregate measurement via the hybridization reaction in
individual cellular compartments, see Assumption 2.2 for
formal details. Therefore, if we make enough independent
measurements then we may be able to approximately re-
cover the entire distribution from aggregate measurements
only, in certain circumstances.

2. Technical overview of our results and
methods

Problem formulation: Suppose we have a set of noisy mea-
surements C := {c1, ..., cN} corresponding to N ”cells”.
For example, the measurements could be the (spliced and

https://scvelo.readthedocs.io/en/stable/scvelo.datasets.pancreas/
https://scvelo.readthedocs.io/en/stable/scvelo.datasets.pancreas/
https://scvelo.readthedocs.io/en/stable/scvelo.datasets.pancreas/
https://github.com/theislab/pancreatic-endocrinogenesis/
https://github.com/theislab/pancreatic-endocrinogenesis/
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unspliced) RNA concentrations corresponding to Cpe (Car-
boxypeptidase E2) in a sample of N = 250 cells from the
pancreatic scRNA-seq data by (Bastidas-Ponce et al., 2019).
Suppose further that we bin (i.e., partition and round) the
concentrations into n intervals. For example, for the Cpe
sample, set n = 100, which gives: for values varying from
M1 := 0 to M2 := 35 – the minimum and maximum val-
ues in our sample, 100 bins (intervals) of width 0.35 each.
Let xM1 , xM1+1∗0.35, ..., xM2 denote the number of cells
with measurement values M1,M1+1∗0.35, ...,M2 respec-
tively. Thus the vector x represents the (non-normalized)
distribution of the measurement values. Note that tuple
of measurements C and the distribution x are unknown,
and the goal of this paper is to approximate x using few
measurements (i.e., small m).

While measurements, in this case RNA concentrations, can
take on a continuum of values, they typically tend to cluster
into a few values, in any snapshot, for informative genes.
Figure 1 illustrates this fact. Out of 4000 genes (post-
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Figure 1. RNA expression is clustered into few values for most
genes

filtering) in the murine pancreatic data-set of (Bastidas-
Ponce et al., 2019), fewer than 5% of them had more than
10% of co-ordinates values set as non-zero when measured
up to two significant figures of accuracy. Therefore, we
may think of x as a sparsely supported distribution, likely
characterizing various cell types.

Assumption 2.1. We assume that the unknown distribu-
tion to be recovered, i.e., x, is s-sparse, for some s ≃
logO(1)(n).

The critical question to consider is the nature of the noise in
the measurement set C. It’s critical because the noise dis-
tribution captures a small amount of statistical information
in each cellular compartment that will be passed on to the
aggregate measurement. Here’s where the biochemistry of

2Cpe is a gene involved in the synthesis of neuropeptides and
peptide hormones.

hybridization plays a role: For a cell i, the measurement ci
above (say the concentration for Cpe) would be made by an
in-situ hybridization oligonucleotide probe. Note that we
don’t need to observe the value of ci (for any i). All that
is needed is that the excess amounts of probe are present
in the cell i, so that fraction of the probe proportional to
ci hybridizes with Cpe RNA, in cell i. Of course, not all
probes will hybridize. Moreover, most probes will hybridize
independently of one another, and therefore one can expect
roughly Gaussian statistics. Therefore, we will work under
the following assumption:

Assumption 2.2. We assume that the mean fraction of
probes in any cell i that hybridize will be proportional to
its cellular concentration ci, the proportionality constant
depending on the forward and backward hybridization re-
action rates (of Cpe in our running example). Moreover,
the variance will also be proportional to the concentration
(of Cpe in our running example). Furthermore, we assume
that the distribution of c1, ..., cN is an independent multino-
mial (equivalently Gaussian, for our purposes) with mean
vector {k · c1, ..., k · cN} and variance {k′ · c1, ..., k′ · cN},
for proportionality constants k and k′ that can be estimated
empirically.

Finally, we repeat the noisy measurements above m times,
i.e., we take m samples C(1), ..., C(m) and we assume
that we can observe the sums: {

∑
i∈[N ] ci(j) : j ∈ [m]}

for C(1), .., C(m).3 The result is a m-dimensional vector
of observations y. The sums denote a simple aggregate
measurement, which tell us what total fraction of RNA
probes were hybridized. Note that the information about the
distribution x is now present in the mean and the variance
of each of the m observations in y.

In more mathematical terms, we have the following com-
pressed sensing problem at hand:

(V + Γ)x = y, (1)

where V is a m× n matrix corresponding to the means i.e.,

V =

(
M1 M1+1 M1+2 ...

...
...

. . .
M1 M1+1 M2

)

where we have assumed that M1 and M2 are the minimum
and maximum values of the ci; and Γ is a matrix of mean
zero independent binomial random variables corresponding
to the noise and captures the variances. Thus, by Assump-
tion 2.2, Γ is chosen (by nature) from a Gaussian random
ensemble of the form:(

N(0,k′M1) N(0,k′(M1+1)) N(0,k′(M1+2)) ...

...
...

. . .
N(0,k′M1) N(0,k′(M1+1)) N(0,k′M2)

)
3Notation: [N ] ≡ {1, 2, .., N}.
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where N(0, σ2) denotes a Normal random variable with
mean 0 and variance σ2, and for simplicity we have assumed
a partition of [M1,M2] into bins of width 1. Note vector
y is known (observations) and x (distribution) is unknown.
Moreover, while V is known, the values of the noise matrix
Γ are unknown – this differentiates our problem from a
standard compressed sensing problem, where the matrix
V + Γ is known.

2.1. Compressed sensing with unknown measurement
matrix

Suppose we replaced Γ by an independent sample with the
same statistics. So let Γ̃ be a sampled noise matrix and Γ
the actual noise implied by the experiment. Both have the
same distribution by construction, but they are independent
of each other. Similarly, let x be the actual probability
distribution and x̃ be a probability distribution that is the
solution of Equation 2. Suppose x̃ = x + ∆ for some ∆.
Then we have from our problem set-up:

(V + Γ̃)x̃ = (V + Γ)x (2)
(V + Γ̃)(x+∆) = (V + Γ)x (3)

(V + Γ̃)∆ = Γx− Γ̃x. (4)

Since x is s-sparse and each row of Γ and Γ̃ consists of
independent Gaussians, the Hoeffding bound (see for ex-
ample (Dembo & Zeitouni, 1998)) implies the following
observation on the noise and hence can be used to bound
the reconstruction error (which is given in a full version of
this paper).

Lemma 2.3. The ℓ2 norm of (V + Γ̃)∆, i.e., the magnitude
of η, is O(ms), where the constants in the O(·) notation
depends on the range of our measurements.

2.1.1. ALGORITHM

Lemma 2.3 implies that we may solve the following com-
pressed sensing problem to recover x:

Γ̃x = y = Γx+ η, (5)

where the ℓ2 norm of the noise term ϵ is O(ms), and we
require that x ≥ 0. Here we have used a (known) matrix Γ̃
with a similar distribution as the (unknown) matrix Γ. Note
that the bound by (Raskutti et al., 2010) shows that m =
O(log n) samples suffice to reconstruct the sparse vector in
the problem formulated thus far. If we have several instances
of the problem where Γ̃ and Γ are drawn repeatedly and
independently then it is natural to expect that averaging
over the solution of several such instances may lead to a
reasonable approximation of the (unknown) x.

This discussion prompts the averaging method in Algo-
rithm 1. In the algorithm, we assume that M1 and M2

Algorithm 1 Approximate reconstruction of distribution
1: Input: Measurement vector y ∈ Rm, consisting of m

(noisy) aggregate observations, a guess of the sparsity s
of the unknown distribution to be found, k – the averag-
ing parameter, and η – a parameter that upper bounds
the ℓ2 norm of the noise.

2: Output: An approximation of the underlying n-
dimensional probability distribution that generated y.
▷ Begin algorithm:

3: Center the observations y around 0 (by subtracting the
mean ȳ from each co-ordinate). Set y′ = y − (ȳ, .., ȳ).

4: Sample a m × n random Gaussian ensemble Γ. The
variance matrix of each row being a diagonal matrix,
with the diagonal: (vM1, v(M1 + 1), ..., vM2). Here v
is a constant that is set so that the total variance of each
row equals the variance of the co-ordinates of y.

5: The constraint in the compressed sensing problem is:
∥Γ̃z − y′∥2 ≤ η. Solve the convex program to recover
z.

6: Sort all coordinates of z in inverse order, and set all but
first s to 0, to obtain zs.

7: Repeat steps 3, 4 and 5 k ≃ log n times; compute
zs(1)+...+zs(k)

k , zero out all but its s largest values, nor-
malize its mass to 1 so the resulting p̃ is a probability
distribution supported on s points and return it.

denote the minimum and maximum values of the observa-
tions are known.

In fact, we can further optimize our reconstruction algorithm
as follows: We introduce new types of hybridization probes
so that a probe can bind upto two Cpe RNA segments si-
multaneously in the cell compartments, and then eventually
count the total number of such ”doubly” hybridized probes.
This generates a measurement corresponding to

∑
i∈[N ] c

2
i

as opposed to
∑

i∈[N ] ci – a quadratic (non-linear) measure-
ment. Since we assume a Gaussian noise model where the
noise (variance) is proportional to the concentration of the
product (see Assumption 2.2), the corresponding variances
will also scale as

∑
i∈[N ] c

2
i .

There’s nothing unique about quadratics, other different non-
linear function based probes can be designed and used. Sup-
pose that F denotes the set of non-linear functions that can
be successfully implemented using hybridization probes –
permissible non-linear functions. Then following (2) above,
Algorithm 1 can be modified so that the rows of measure-
ment matrices Γ are picked according to a set of Normal
distributions with variances specified by functions in F . Let
M be the set of such permissible covariance matrices. A
longer discussion about permissible measurement probes is
given in the appendix.
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3. Simulations on pancreatic scRNA-seq data
In this section, we provide details of our simulation and
some examples of recovered distributions and error esti-
mates as well.

The plots in Figures 2 and 3 use a uniform random sample
of N = 250 cells from the ≃ 4000 cells in the original
data (Bastidas-Ponce et al., 2019). We assume n = 100, i.e.,
range of expression values for any single gene (say Cpe) are
rounded into 100 bins, for computational tractability reasons
we keep n small. The original distribution of a gene like
Cpe for our sample of 250 cells would then be the histogram
of: number of cells/N (y-axis) vs (rounded) gene expression
value (x-axis). Recall that, from Figure 1, most genes will
have sparse histograms i.e., they typically take only a few
different values in our snapshot. Therefore, we assume spar-
sity parameter s = 20 in Algorithm 1, for our simulations.
Figures 2 and 3 show the actual and reconstructed histogram
(using Algorithm 1, and few samples, i.e., m).

Genes like Cpe and Nnat play a role in hormone secretion so
they are 0 valued for non-secretory cells, and the latter as a
group are far more numerous than any individual subgroup
of secretory cells. So they would completely overwhelm all
other bars/values in the histogram. Therefore, we remove
the bucket corresponding to 0 value from our input. In any
actual practice, we would need to separate out secretory and
non-secretory cells before we ran an algorithm like ours.

We provide further details about our experimental set-up,
especially the non-linear functions, corresponding to custom
probes, used in reconstructing the data in the appendix.

Remark 3.1. In Figure 4, we plot the reconstruction error
as a function of sample size (m). It is worth noting that 20
samples were enough for Cpe reconstruction to converge.
This suggests that the Wasserstein distance between recov-
ered and original distributions can behave much better than
the ℓ1 distance, used in standard compressed sensing, which
grows linearly in m (cf. Lemma 2.3).

4. Discussion
This work proposes an algorithm to approximately recon-
struct single cell distribution from a small number of aggre-
gate measurements. On the algorithmic side, we propose
an algorithm. A full version of this paper, submitted else-
where, extends current compressed sensing results to show
formal bounds for its performance and correctness. We
use simulations using publicly available scRNA-seq data
from (Bastidas-Ponce et al., 2019) as the ground truth, to
compare the original and approximately reconstructed dis-
tributions, where the latter is computed using our algorithm.
Due to limited resources we could not verify the simulations
in actual experiments using custom hybridization probes.
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Figure 2. Recovered and original distributions using ℓ1 minimization algorithm with a better optimized experiment design for Cpe
(N = 250, n = 100,m = 10, s = 20).
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Figure 3. Recovered and original distributions using ℓ1 minimization algorithm with a better optimized experiment design for Nnat
(N = 250, n = 100,m = 10, s = 20).
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Figure 4. Error (measured by 1-Wasserstein distance between re-
constructed and original distributions) as a function of sample size
(m). Based on the trends, the error for Cpe decreases with m.
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A. Permissible probes
Suppose we can design probes that hybridize with two RNA strands as opposed to one, then the concentration of ”doubly”
hybridized product formed is

∑
i∈[N ] c

2
i . Therefore, the mean and variance are proportional to

∑
i∈[N ] c

2
i . So we can

essentially measure quadratic functions of cellular concentrations using appropriate hybridization probes. We say f(x) = x2

is a permissible function and ensembles of the form:4N(0,k′M2
1 ) N(0,k′(M1+1)2) N(0,k′(M1+2)2) ...

...
...

. . .
N(0,k′M2

1 ) N(0,k′(M1+1)2) N(0,k′M2
2 )


lead to a permissible measurement matrix corresponding to the permissible covariance matrix: Diag(k′M2

1 , ..., k
′M2

2 ).
5

Similarly we can measure third moments also. It is likely that we can’t compute higher moments than three, as the chances
of any meaningful amount of hybridization would be too small. On the other hand, we can also design probes that bind to
our target RNA T or a background RNA B, but not both. If we know that the levels of B are constant in most cells then
we can effectively measure using functions of the form a

b+cT
, where cT is the concentration of our target RNA in the cell

compartment, and a and b are constants depending on the background RNA used. They correspond to covariance matrices
of the form Diag( a

b+M1
, a
b+M1+1 , ...,

a
b+M2

).

Therefore, it is likely that a rich set of ”low degree” probes can be constructed. In our simulation, we used the following
class of measurement functions:

F := {x, x2,
a

b+ x
,

a

(b+ x)(c+ x)
,

a′

b′ + x
, x3}.

Let Fi denote the ith element of F . Of course, nothing prevents us from repeating the same measurement twice, for example,
F1, F1, F1, F1, F1. But it will have diminishing returns as the smallest positive singular value will be smaller as well. In
particular, for our experiments with m = 10, we used the sequence of measurements: F1, F2, ..., F6, F1, F2, .., F4.

4We have assumed bins of width 1 for simplicity.
5Notation: Diag denotes the diagonal matrix with the specified diagonal.


