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The course MATH-GA 2210.001 provides an introduction to the Number Theory,
with analytic, algebraic and diophantine aspects. The analytic techniques allow to
provide a proof of some classical results on prime numbers. In the algebraic part
we will study the fundamental properties of local and global fields.
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Chapter 1

Analytical tools

1.1 Primes in arithmetic progressions
The goal of this section is to prove the Dirichlet theorem:

Theorem 1.1.1 (Dirichlet). Every arithmetic progression

a, a+ q, a+ 2q, . . .

in which a and q have no common factor, includes infinitely many primes.

1.1.1 Euler’s identity and existence of infinitely many primes

The series
∑

n≥1 n
−s converges uniformly for s in a compact in the half-plane Re s >

1, so that it defines an analytic function

ζ(s) =
∑
n≥1

1

ns

(introduced by Riemann in 1859.)

Proposition 1.1.2. The infinite product∏
p prime

(1− p−s)−1

converges uniformly on any compact in the half-plane Re s > 1 and defines an
analytic function verifying

ζ(s) =
∏
p

1

1− p−s
.

Proof. We express 1
1−p−s as a sum of a geometric series

1

1− p−s
=
∑
m≥0

1

pms
.
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Let X be a sufficiently big integer. Multiplying the identities above for primes ≤ X
we obtain:

ζ(s) =
∏
p≤X

1

1− p−s
=
∏
p≤X

∑
m≥0

1

pms
=

∑
n∈N(X)

1

ns
,

where N(X) is the set of positive integers having all prime factors ≤ X. Then for
Re s = t > 1 we have

|ζ(s)−
∏
p≤X

1

1− p−s
| ≤

∑
n/∈N(X)

1

ns
≤
∑
n>X

1

nt
.

To verify that the Euler product converges in remains to show that it is nonzero.
Let us show that ζ(s) 6= 0 for Re s > 1. We use the Talyor series expansion for the
principal definition of the complex logarithm: log(1 − p−s) = −

∑
m≥1

p−ms

m
, so that

for Re s > 1 we obtain
ζ(s) = exp(

∑
p

∑
m≥1

p−ms

m
)

is nonzero.

The expression above provides a method to show the infinity of prime numbers.
Write

log ζ(s) =
∑
p

∞∑
m=1

m−1p−ms. (1.1)

Since ζ(s)→∞ as s→ 1 from the right, and since∑
p

∞∑
m=2

m−1p−ms <
∑
p

∞∑
m=2

p−m =
∑
p

1

p(p− 1)
< 1.

it follows that
∑

p p
−s → ∞ as s → 1 from the right. This proves the existence of

an infinity of primes and, moreover, that the series
∑
p−1 diverges.

The proof Dirichlet theorem is inspired by the same idea, but with more involved
techniques. We first investigate some additional properties of the zeta function.

1.1.2 Zeta function

Proposition 1.1.3. Assume s > 1. Then lims→1(s− 1)ζ(s) = 1.

Proof. We have

(n+ 1)−s <

∫ n+1

n

t−sdt < n−s.

Taking the sum from 1 to ∞, one obtains

ζ(s)− 1 <

∫ ∞
1

t−sdt =
1

s− 1
< ζ(s).
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Hence 1 < (s− 1)ζ(s) < s. We ontain the result taking limit as s→ 1.

Corollary 1.1.4.
lnζ(s)

ln(s− 1)−1

s→1→ 1.

Proof. Denote r(s) = (s− 1)ζ(s). Then ln(s− 1) + lnζ(s) = ln r(s), so that

lnζ(s)

ln(s− 1)−1
= 1 +

ln r(s)

ln(s− 1)−1
.

By the proposition above, r(s) → 1 as s → 1. Hence ln r(s) → 0 and we deduce
the result.

Proposition 1.1.5.
lnζ(s) =

∑
p

p−s +R(s)

where R(s) is bounded as s→ 1.

Proof. By proposition 1.1.2, we have ζ(s) =
∏

p≤N(1− p−1)−1aN(s), with aN(s)→
1, N →∞.

We then have

lnζ(s) =
∑
p≤N

N∑
m=1

m−1p−ms + ln aN(s)

and, taking the limit for N →∞,

lnζ(s) =
∑
p

p−s +
∑
p

∞∑
m=2

m−1p−ms,

where the second sum is less then
∑

p

∑∞
m=2 p

−ms =
∑

p p
−2s(1 − p−s)−1 ≤ (1 −

2−s)−1
∑

p p
−2s ≤ 2ζ(2).

If s ∈ C, from the definition we see that ζ(s) is convergent for Re s > 1.

Proposition 1.1.6. The function ζ(s)− (s− 1)−1 can be continued to an analytic
function on {s ∈ C, Res > 0}.

Proof. Assume Re s > 1. Then, using the lemma below, one can write

ζ(s) =
∞∑
n=1

n−s =
∞∑
n=1

n(n−s − (n+ 1)−s) = s

∞∑
n=1

n

∫ n+1

n

x−s−1dx =

= s

∞∑
n=1

∫ n+1

n

[x]x−s−1dx = s

∫ ∞
1

[x]x−s−1dx = s

∫ ∞
1

x−sdx− s
∫ ∞

1

{x}x−s−1dx =
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= s
s−1
− s

∫∞
1
{x}x−s−1dx, where [x] is the integral part of a real number x and

{x} = x − [x] is its fractional part. Since 0 ≤ {x} ≤ 1 the last integral converges
and defines an analytic function for Re s > 0 and the result follows.

Lemma 1.1.7. Let (an), (bn) be two sequences of complex numbers such that
∑
anbn

converges. Let An =
∑n

1 ai and suppose Anbn → 0, n→∞. Then

∞∑
n=1

anbn =
∞∑
n=1

An(bn − bn+1).

Proof. Let SN =
∑N

n=1 anbn and A0 = 0. Then

SN =
N∑
n=1

(An−An−1)bn =
N∑
n=1

Anbn−
N∑
n=1

An−1bn =
N∑
n=1

Anbn−
N−1∑
n=1

Anbn+1 = ANbN+
N−1∑
n=1

An(bn−bn+1).

The resilt follows taking the limit as N →∞.

The following formula will be useful:

Corollary 1.1.8. For Re s > 0, N ≥ 1

ζ(s) =
N∑
n=1

1

ns
+
N1−s

1− s
− 1

2
N−s + s

∫ ∞
N

ρ(x)x−s−1dx,

with ρ(x) = 1
2
− {x}.

Proof. Write

ζ(s)− (
N∑
n=1

1

ns
+
N1−s

1− s
− 1

2
N−s + s

∫ ∞
N

ρ(x)x−s−1dx) =

=
s

s− 1
−

N∑
n=1

1

ns
− N1−s

1− s
+

1

2
N−s − s

∫ N

1

(x− [x])x−s−1dx+

∫ ∞
N

(−s)x−s−1

2
dx =

=
s

s− 1
−

N∑
n=1

1

ns
− N1−s

1− s
+

1

2
N−s −

∫ N

1

sx−sdx+
N−1∑
n=1

n(
1

ns
− 1

(n+ 1)s
)− 1

2
N s =

=
s

s− 1
−

N∑
n=1

1

ns
− N1−s

1− s
+
sN−s+1

s− 1
− s

s− 1
+

N−1∑
n=1

1

ns
− N − 1

N s
= 0.
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1.1.3 Characters

Let A be an abelian group.

Definition 1.1.9. A character on A is a group homomorphism A→ C∗. The set
of characters is denoted by Â.

Note that Â is an abelian group: if χ, ψ ∈ Â we define χψ by a 7→ χ(a)ψ(a).
The trivial character χ0, defined by χ0(a) = 1 for all a ∈ A, is the neutral element
of the group. Finally, for χ ∈ Â we define χ−1 as the character given by a 7→ χ(a)−1.

If A is a finite group of order n, we have an = e for any a ∈ A hence the values
of χ are the roots of unity and χ(a) = χ(a)−1 = χ−1(a).

Proposition 1.1.10. Let A be a finite abelian group. Then A ' Â.

Proof. Suppose first that A is cyclic, generated by an element g of order n. Then
any character χ is uniquely defined by its value χ(g). Since χ(g) is a root of unity,
there are at most n characters. Now, if ξn = e2πi/n and λ is a character such that
λ(g) = ξn, we obtain that the powers λk, k = 1, . . . n are distinct characters, hence
Â is a cyclic group generated by λ. In the general case, since any finite abelian
group is a direct product of cyclic groups, it is enough to check that if A ' A1×A2,
then Â ' Â1 × Â2, that we leave as an exercise.

Proposition 1.1.11. Let A be a finite abelian group and χ, ψ ∈ Â, a, b ∈ A. Then

(i)
∑

a∈A χ(a)ψ(a) = nδ(χ, ψ)

(ii)
∑

χ∈Â χ(a)χ(b) = nδ(a, b).

Proof. (i) We have
∑

a∈A χ(a)ψ(a) =
∑

a χψ
−1(a). It is enough to show that∑

a χ0(a) = n and
∑

a χ(a) = 0 if χ 6= χ0. The first assertion follows from the
definition of χ0. For the second, we have that there is b ∈ A, χ(b) 6= χ0(b) = 1.
Then

∑
a χ(a) =

∑
a χ(ba) = χ(b)

∑
a χ(a) and the result follows.

(ii The proof is similar to (i), using that if a is nonzero in A, there is a character
ψ such that ψ(a) 6= 0. We leave it as an exercise.

Definition 1.1.12. ADirichlet character modm is a character forA = (Z/mZ)∗

the group of units in the ring Z/mZ.

Note that Dirichlet characters mod m induce, and are induced from the charac-
ters χ : Z→ C∗ such that

(i) χ(n+m) = χ(n) for all n ∈ Z;

(ii) χ(kn) = χ(k)χ(n) for all k, n ∈ Z;
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(iii) χ(n) 6= 0 if and only if (n,m) = 1.

Since the order of the group (Z/mZ)∗ is the value of Euler’s function φ(m), there
are φ(m) Dirichlet characters mod m. The proposition above gives in this case:

Proposition 1.1.13. Let χ and ψ be Dirichlet characters modulo m and a, b ∈ Z.
Then

(i)
∑m−1

a=0 χ(a)ψ(a) = φ(m)δ(χ, ψ)

(ii)
∑

χ χ(a)χ(b) = φ(m)δ(a, b).

1.1.4 L-functions

Let χ be a Dirichlet character modulo m.

Definition 1.1.14. The Dirichlet L-function associated to χ is

L(s, χ) =
∞∑
n=1

χ(n)n−s.

Note that since |χ(n)n−s| ≤ n−s, the function L(s, χ) converges and is continu-
ous for s > 1.

Proposition 1.1.15. (i) L(s, χ) =
∏

p(1− χ(p)p−s)−1;

(ii) L(s, χ0) =
∏
p|m

(1− p−s)ζ(s).

(iii) lims→1(s− 1)L(s, χ0) = φ(m)/m. In particular, L(s, χ0)→∞ as s→ 1.

Proof. The statement (i) follows as in proposition 1.1.2. For(ii) write

L(s, χ0) =
∏

(p,m)=1

(1−χ0(p)p−s)−1 =
∏
p|m

(1−p−s)−1
∏
p

(1−p−s)−1 =
∏
p|m

(1−p−s)ζ(s)

using proposition 1.1.2 again. To establish (iii) we use proposition 1.1.3 and we
obtain

lims→1(s− 1)L(s, χ0) =
∏
p|m

(1− p−1) = φ(m)/m.

Proposition 1.1.16. Let χ be a nontrivial Dirichlet character modulo m. Then
L(s, χ) can be continued to an analytic function for Re s > 0.
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Proof. Let S(x) =
∑

n≤x χ(n). By lemma 1.1.7, we have

L(s, χ) =
∞∑
n=1

S(n)(n−s − (n+ 1)−s) = s

∞∑
n=1

S(x)

∫ n+1

n

x−s−1dx =

= s
∫∞

1
S(x)x−s−1dx. By lemma below, |S(x)| ≤ φ(m) for all x. Hence the above

integral converges and defines an analytic function for Re s > 0.

Lemma 1.1.17. Let χ be a nontrivial character modulo m. For any N > 0

|
N∑
n=0

χ(n)| ≤ φ(m).

Proof. Let N = qm+ r, 0 ≤ r < m. Since χ(n+m) = χ(n) and
∑m−1

n=0 χ(n) = 0 by
the orthogonality relations, we obtain

|
N∑
n=0

χ(n)| = |q
m−1∑
n=0

χ(n) +
r∑

n=0

χ(n)| ≤ |
r∑

n=0

χ(n)| ≤
m−1∑
n=0

|χ(n)| = φ(m).

We now study Gauss sums associated to Dirichlet characters.

Definition 1.1.18. For χ a Dirichlet character we defineG(s, χ) =
∑

p

∑
k≥1

χ(pk)p−ks

k
.

Note that since |χ(pk)p−ks

k
| ≤ p−ks and ζ(s) converges for s > 1, the same holds

for G(s, χ).

Proposition 1.1.19. (i) For s > 1, expG(s, χ) = L(s, χ);

(ii) G(s, χ) =
∑

(p,m)=1

χ(p)p−s +Rχ(s), where Rχ(s) is bounded as s→ 1;

(iii) ∑
χ

χ(a)G(s, χ) = φ(m)
∑

p≡a(m)

p−s +Rχ,a(s), (1.2)

where Rχ,a(s) is bounded as s→ 1.

(iv) lims→1G(s, χ0)/ln(s− 1)−1 = 1.

Proof. Note that for z ∈ C, |z| < 1 one has

exp(
∞∑
k=1

zk

k
) = (1− z)−1.

So that, for z = χ(p)p−s we obtain exp(
∑∞

k=1
χ(pk)p−ks

k
) = (1 − χ(p)p−1)−1 and we

deduce (i).
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The proof of (ii) is similar to propostion1.1.5. To get (iii), we multiply the both
sides of (ii) by χ(a) and sum over all Dirichlet characters modulo m:∑

χ

χ(a)G(s, χ) =
∑

(p,m)=1

p−s
∑
χ

χ(a)χ(p) +
∑
χ

χ(a)Rχ(s).

By proposition 1.1.13, we obtain∑
χ

χ(a)G(s, χ) = φ(m)
∑

p≡a(m)

p−s +Rχ,a(s),

where Rχ,a(s) is bounded as s→ 1, as required.
For (iv), we use that L(s, χ0) =

∏
p|m

(1− p−s)ζ(s). Hence G(s, χ0) =
∑

p|m ln(1−

p−s) + lnζ(s), so that the statement follows from Proposition 1.1.3.

In particular, from (i) we obtain that the series G(s, χ) provides a definition
for lnL(s, χ), with no choice of branch involved. Understanding the behaviour
of G(s, χ) for χ non trivial is the crucial technical step in the proof of Dirichlet
theorem. We present here a proof due to de la Vallée Poissin (1896).

Proposition 1.1.20. Let F (s) =
∏

χ L(s, χ) where the product is over all Dirichlet
characters modulo m. Then, for s real and s > 1 we have F (s) ≥ 1.

Proof. By definition, G(s, χ) =
∑

p

∑
k≥1

χ(pk)p−ks

k
. Summing over χ and using

Proposition 1.1.13, we obtain∑
χ

G(s, χ) = φ(m)
∑

pk≡1(m)

1

k
p−ks.

The right-hand side of this equation is positive, taking the exponential, we obtain∏
χ L(s, χ) ≥ 1.

Theorem 1.1.21. Let χ be a nontrivial Dirichlet character modulo m. Then
L(1, χ) 6= 0.

Proof. We first consider the case when χ is a complex character. By definition, for
s real, we have L(s, χ) = L(s, χ̄). Letting s → 1 we see that L(1, χ) = 0 implies
L(1, χ̄) = 0. Assume L(1, χ) = 0. Since L(s, χ) and L(s, χ̄) have zero at s = 1,
L(a, χ0) has a simple pole at s = 1 by Proposition 1.1.15(iii) and the other factors
are analytic at around s = 1 we obtain F (1) = 0. But from Proposition 1.1.20, for
s real and s > 1 we have F (s) ≥ 1, contradiction.

The case when χ is nontrivial real character (i.e. χ(n) = 0, 1 or −1) is more
difficult. For such character assume L(1, χ) = 0 and consider

ψ(s) =
L(s, χ)L(s, χ0)

L(2s, χ0)
.

11



Note that ψ(s) is analytic for Res > 1/2: in fact, the zero of L(s, χ) at s = 1
cancels the simple pole of L(s, χ0) and the denominator is analytic for Re s > 1/2.
Moreover, since L(2s, χ0) has a simple pole at s = 1 we have that ψ(s)→ 0, s→ 1/2.

Lemma 1.1.22. For s real and s > 1 we have ψ(s) =
∑∞

n=1 ann
−s where a1 = 1,

an ≥ 0 and the series is convergent for s > 1.

Proof. We have

ψ(s) =
∏
p

(1−χ(p)p−s)−1(1−χ0(p)p−s)−1(1−χ0(p)p−2s) =
∏
p|m

1− p−2s

(1− p−s)(1− χ(p)p−s)
.

If χ(p) = −1, the p-factor is equal to 1. Hence

ψ(s) =
∏

χ(p)=1

1 + p−s

1− p−s
.

We have 1+p−s

1−p−s = (1 +p−s)
∞∑
k=0

p−ks = 1 + 2p−s+ 2p−2s+ . . . . Applying lemma 1.1.23

below yields the result.

Expanding ψ(s) (as a function of a complex variable) as a power series around
s = 2, we obtain

ψ(s) =
∞∑
m=0

bm(s− 2)m.

Since φ(s) is analytic, the radius of convergence of this power series is at least 3/2.
We have

bm = ψ(m)(2)/m! =
∞∑
n=1

an(−ln n)mn−2 = (−1)mcm, cm ≥ 0.

Hence φ(s) =
∑∞

n=0 cm(2 − s)m and c0 = ψ(2) =
∑∞

n=1 ann
−2 ≥ a1 = 1. Hence for

s real in (1
2
, 2) we have ψ(s) ≥ 1, contradiction with ψ(s) → 0 as s → 1/2. This

finishes the proof of the theorem.

Lemma 1.1.23. Let f be a nonnegative function on Z such that f(mn) = f(m)f(n)
for all (m,n) = 1. Assume that there is a constant c such that f(pk) < c for all
prime powers pk. Then

(i)
∑∞

n=1 f(n)n−s converges for all real s > 1;

(ii)
∑∞

n=1 f(n)n−s =
∏

p(1 +
∑∞

k=1 f(pk)p−ks).

Proof. Let s > 1 and a(p) =
∑∞

k=1 f(pk)p−ks. Then

a(p) < cp−s
∞∑
k=0

p−ks = cp−s(1− p−s)−1,

12



so that a(p) < 2cp−s. Since for x > 0 we have 1 + x < exp x we deduce∏
p≤N

(1 + a(p)) <
∏
p≤N

expa(p) = exp
∑
p≤N

a(p) < exp(2c
∑
p

p−s) := M.

By the definition of a(p) and the multiplicativity of f we deduce

∞∑
n=1

f(n)n−s <
∏
p≤N

(1 + a(p)) < M.

Since f is nonnegative, we obtain (i). We deduce (ii) similarly to Proposition
1.1.2.

We now deduce as a corollary:

Proposition 1.1.24. If χ is a nontrivial character modulo m, then G(s, χ) remains
bounded as s→ 1 through real values s > 1.

Proof. Since L(1, χ) 6= 0 by theorem 1.1.21, there is a disk D around L(1, χ), not
containing 0. Let ln z be a single-valued branch of the logarithm, defined on D.
Let δ > 0 be such that L(s, χ) ∈ D for s ∈ (1, 1 + δ). Then for s in this interval
the exponential of both functions lnL(s, χ) and G(s, χ) is L(s, χ). Hence, there is
an integer N such that for s ∈ (1, 1 + δ) one has

G(s, χ) = 2πiN + lnL(s, χ),

so that lims→1G(s, χ) exists and is equal to 2πiN + lnL(1, χ), in particular G(s, χ)
is bounded.

1.1.5 Proof of Dirichlet theorem

Definition 1.1.25. Let S and T be two sets of positive integers, with T infinite.
The upper natural density and lower natural density of S in T are defined as

limsupN→∞
#{n ∈ S, n ≤ N}
#{n ∈ T, n ≤ N}

and liminfN→∞
#{n ∈ S, n ≤ N}
#{n ∈ T, n ≤ N}

.

If the upper and lower densities coincide, the common value is called the natural
density of S in T .

Definition 1.1.26. Let S and T be two sets of positive integers, with
∑

n∈T n
−1

divergent. The upper Dirichlet density and lower Dirichlet density of S in
T are defined as

limsups→+1

∑
n∈S n

−s∑
n∈T n

−s and liminfs→+1

∑
n∈S n

−s∑
n∈T n

−s .

13



If the upper and lower densities coincide, the common value is called the Dirichlet
density d(S) of S in T .

Note that Proposition 1.1.5 implies that a subset S of the set of all primes P
has Dirichlet density if

lims→1

∑
p∈S p

−s

ln(s− 1)−1

exists.
The following properties are straightforward:

Proposition 1.1.27. Let S ⊂ P.

(i) If S is finite, then d(S) = 0;

(ii) If S consists of all but finitely many primes, then d(S) = 1;

(iii) If S = S1 ∪ S2, where S1 and S2 are disjoint and d(S1) and d(S2) both exist,
then d(S) = d(S1) + d(S2).

We will prove a more precise statement of the Dirichlet theorem:

Theorem 1.1.28 (Dirichlet). Let a,m ∈ Z, (a,m) = 1. Let

P(a,m) = {p prime , p ≡ a mod m}.

Then d(P(a,m)) = 1
φ(m)

, in particular, this set is infinite.

Proof. Recall the identity (1.2):∑
χ

χ(a)G(s, χ) = φ(m)
∑

p≡a(m)

p−s +Rχ,a(s),

where Rχ,a(s) is bounded as s→ 1. We divide this identity by ln(s− 1)−1 and take
the limit as s → 1. By Proposition 1.1.24, the limit of the left-hand side is 1, and
the limit of the right-hand-side is φ(m)d(P(a,m)). We obtain d(P(a,m)) = 1

φ(m)

as claimed.

1.2 Zeta function
Deeper properties concerning the distribution of primes are related to the properties
of the zeta function. We continue investigating these properties using tools from
real and complex analysis.
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1.2.1 Fourier analysis

Definition 1.2.1. If f ∈ L1(R) we denote

f̂(y) =

∫
R
f(x)e−2πixydx.

Examples:

• (Fourier inversion formula) If f, f̂ ∈ L1(R), then f(x) =
∫
R f̂(y)e2πixydx.

• for f(x) = e−πx
2 one has f̂(y) = e−πy

2
, i.e. one could think about this function

as being ’self-dual’.

Let L ⊂ L1(R) be the vector space of twice continuously differentiable functions,
such that the functions f, f ′, f ′′ are rapidly decreasing (i.e. as x−(1+η) for some
η > 0.)

Theorem 1.2.2. (Poisson summation formula) For f ∈ L, we have∑
m∈Z

f(m) =
∑
n∈Z

f̂(n).

For the proof, see for example section 11.4.2 in [S. J. Miller and R. Takloo-Bighash,
An Invitation to Modern Number Theory]. The formula holds under weaker assump-
tions, but the version above is enough for applications here.

Recall that the Γ-function is defined for Re(s) > 0 by

Γ(s) =

∫ ∞
0

ts−1e−tdt.

One has the following properties (see the next section for some of proofs):

• Γ(n+ 1) = n! and Γ(1) = 1.

• Γ(s) has a meromorphic continuation to the entire complex plane with simple
poles at s = 0,−1,−2, . . . and the residue at s = −k is (−1)k

k!
.

• (reflexion formula) Γ(s)Γ(1− s) = π
sin(πs)

.

• (functional equation) Γ(s+ 1) = sΓ(s).

• (duplication formula) Γ(s)Γ(s+ 1
2
) = 21−2sπ

1
2 Γ(2s).

Definition 1.2.3. For Re(s) > 1 define ξ(s) = 1
2
s(s− 1)Γ( s

2
)π−s/2ζ(s).

The following analytic continuation theorem is of high importance.
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Theorem 1.2.4. (Analytic continuation of the zeta function) The function ξ(s) has
an analytic continuation to an entire function and satisfies the functional equation

ξ(s) = ξ(1− s).
Proof. By change of variables in the definition of the Gamma function we get∫ ∞

0

x
1
2
s−1e−n

2πxdx =
Γ( s

2
)

nsπ
s
2

.

Summing over n ∈ N, for Re(s) > 1, we obtain

π−
s
2 Γ(

s

2
)ζ(s) =

∫ ∞
0

x
1
2
s−1(

∞∑
n=1

e−n
2πx)dx =

∫ ∞
0

x
1
2
s−1w(x)dx,

where w(x) =
∞∑
n=1

e−n
2πx. Note that the absolute convergence of the sum justifies

that one could exchange the order sum-integral in the first equality.
Diving the last integral into two pieces for x > 1 (resp. x < 1) and changing

variables by x 7→ x−1 in the second we obtain:

π−
s
2 Γ(

s

2
)ζ(s) =

∫ ∞
1

x
1
2
s−1w(x)dx+

∫ ∞
1

x−
1
2
s−1w(

1

x
)dx.

By lemma below, one deduces from the functional equation for w(x) that

π−
s
2 Γ(

s

2
)ζ(s) =

1

s(s− 1)
+

∫ ∞
1

(x
1
2
s−1 + x−

1
2
s− 1

2 )w(x)dx.

Since w(x) is rapidly decreasing, the integral on the right converges absolutely for
any s and defines an entire function of s. The remaining assertions follow from
the location of poles of 1

s(s−1)
and the invariance of the right hand side of the last

equality under the change s 7→ 1− s.

Lemma 1.2.5. The function w(x) =
∞∑
n=1

e−n
2πx satisfies the functional equation

w(
1

x
) = −1

2
− 1

2
x

1
2 + x

1
2w(x).

Proof. Write w(x) = θ(x)−1
2

with θ(x) =
∑+∞

n=−∞ e
−πn2x. Note that this series is

converging rapidly for x > 0. By the Poisson summation formula, we have

θ(x−1) =
+∞∑

n=−∞

e−πn
2x−1

=
+∞∑

m=−∞

∫ +∞

−∞
e−πt

2x−1+2πimtdt = x
1
2 θ(x)

and the functional equation for w(x) easily follows.
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Remark 1.2.6. Using the duplication and the reflexion formulas for the Γ-function,
one could obtain the functional equation for the zeta function in the following form:

ζ(s) =
1

π
(2π)ssin

πs

2
Γ(1− s)ζ(1− s).

Corollary 1.2.7. ζ(−2m) = 0 for all m ∈ N.

Proof. The result follows from the analytic continuation and the fact that the Γ-
function has poles at −m, m ∈ N.

The zeros −2m of the zeta function given in the corollary above are called the
trivial zeros. For 0 ≤ Re(s) ≤ 1 the functional equation implies that zeros must
lie symmetrically around the critical line Re(s) = 1

2
. The Riemann Hypothesis

asserts that all zeros s of the zeta function with 0 ≤ Re(s) ≤ 1 lie on the critical
line.

1.2.2 Entire functions

In this section we discuss properties of entire functions with prescribed set of zeros.
More details could be found in [A.Karatsuba, Basic Analytic Number Theory.]

Theorem 1.2.8. Let a1, . . . an, . . . be an infinite sequence of complex numbers with

0 < |a1| ≤ |a2| ≤ . . . ≤ |an| ≤ . . .

and limn→∞
1
|an| = 0. Then there exists an entire function g : C → C whose set of

zeros coincide with set {an} (with multiplicities).

Proof. For n = 1, 2, . . . we set

un = un(s) = (1− s

an
)exp(

s

an
+

1

2
(
s

an
)2 + . . .+

1

n− 1
(
s

an
)n−1).

Consider the infinite product
∏∞

n=1 un(s). Let us show that the product converges
for any s 6= an, and defines an entire function g(s) with zeros a1, . . . an, . . .. Consider
a disk of radius |an| and the product

∏∞
r=n ur(s). It is enough to establish that this

product converges to an analytic function inside the disc |s| < |an|: in fact then the
product

∏∞
n=1 un(s) is an analytic function in this disk, having only zeros ai with

|ai| < |an| and since |an| → ∞, we deduce the theorem.
For |s| < |an|, r ≥ n we have

ln ur(s) = ln(1− s

ar
) +

s

ar
+

1

2
(
s

ar
)2 + . . .+

1

r − 1
(
s

ar
)r−1.

Hence for r = n, n+ 1, . . . and |s| < |an|,

ln ur(s) = −1

r
(
s

ar
)r − 1

r + 1
(
s

ar
)r+1 − . . .
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and
ur(s) = exp(−1

r
(
s

ar
)r − 1

r + 1
(
s

ar
)r+1 − . . .).

Hence it is enough to establish that the series

∞∑
r=n

[
1

r
(
s

ar
)r +

1

r + 1
(
s

ar
)r+1 + . . .] (1.3)

is absolutely convergent for |s| < |an|. But for any 0 < ε < 1
2
and |s| ≤ (1− ε)|an|

we have

|1
r

(
s

ar
)r +

1

r + 1
(
s

ar
)r+1 + . . . | ≤ 1

r
(1− ε)r +

1

r + 1
(1− ε)r+1 + . . . <

(1− ε)r

εr
.

hence, using proposition 1.2.9 below, the series (1.3) is absolutely convergent for
|s| ≤ (1− ε)|an|, so that we obtain that

∏∞
n=1 un(s) is analytic on C and we finish

the proof of the theorem.

Proposition 1.2.9. Let un(s), n ≥ 1 be an infinite sequence of analytic functions
on the domain Ω, such that

• un(s) 6= −1 for all n and s ∈ Ω;

• |un(s)| ≤ an for all n and s ∈ Ω and the series
∞∑
n=1

an converges.

The the infinite product
∞∏
n=1

(1 + un(s))

converges for any s ∈ Ω and defines an analytic function v(s) on Ω, such that
v(s) 6= 0 for s ∈ Ω.

Remark 1.2.10. If
∑∞

n=1
1

|an|1+s <∞, then the function

g(s) =
∞∏
n=1

(1− s

an
)exp(

∞∑
j=1

1

j
(
s

an
)j)

satisfies the conditions of the theorem above.
One could also show that any entire function has the form

g(s) = eh(s)sm
∞∏
n=1

(1− s

an
)exp(

∞∑
j=1

1

j
(
s

an
)j)

with h entire. This expression is more precise for functions of finite order.
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Definition 1.2.11. Let g(s) be an entire function and let M(r) = Mg(r) =
max|s|=r|g(s)|. We say that g is an entire function of finite order if there ex-
ists a > 0 such that M(r) < exp(ra) for r > r0(a) for some constant r0(a). We
then call α = inf a the order of g(s). If such a does not exists, we say that g is of
infinite order.

Definition 1.2.12. Let s1, . . . sn be a sequence of complex numbers, such that

0 < |s1| ≤ |s2| ≤ . . . ≤ |sn| ≤ . . . .

If there exists b > 0 such that
∑∞

n=1 |sn|−b < ∞ then we say that (sn) has a finite
order of convergence, and we call β = infb the order of convergence. If such b does
not exist, we say that the order of convergence of (sn) is ∞.
We have the following properties:

Theorem 1.2.13. Let g(s) be an entire function of finite order a, such that g(0) 6= 0
and let s1, . . . , sn be zeros of g with 0 < |s1| ≤ |s2| ≤ . . . ≤ |sn| ≤ . . . . Then

(i) the sequence sn has a finite convergence order β ≤ α;

(ii) g(s) = eh(s)sm
∏∞

n=1(1 − s
an

)exp(
∑p

j=1
1
j
( s
an

)j), where p ≥ 0 is the smallest
integer such that

∑∞
n=1 |sn|−(p+1) < ∞ and h(s) is a polynomial of degree

d ≤ α and α = max(d, β).

(iii) If, in addition, for any c > 0 there is an infinite sequence r1, . . . rn, . . . with
rn →∞ such that

max|g(s)| > exp(crαn), |s| = rn, n = 1, 2 . . .

then α = β and the series
∑∞

n=1 |sn|−β diverges.

1.2.3 Γ-function.

In this section we use the properties of entire functions to study the Γ-function. We
start with the following definition:

1

Γ(s)
= s · eγs

∏
n≥1

(1 +
s

n
)e−

s
n ,

where γ is the Euler constant

γ = limN→∞1 +
1

2
+

1

3
+ . . .+

1

N
− logN.

Proposition 1.2.17 below says that this definition coincides with the one in the pre-
vious sections.
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Proposition 1.2.14.

Γ(s) =
1

s

∏
n≥1

(1 +
1

n
)s(1 +

s

n
)−1.

Proof. From the definition of the infinite product and the Γ-function we have

1

Γ(s)
= slimm→∞exp(s(1 +

1

2
+ . . .+

1

m
− log(m))) · slimm→∞

m∏
n=1

(1 +
s

n
)e−s/n =

= slimm→∞m
−s

m∏
n=1

(1 +
s

n
) = slimm→∞

m−1∏
n=1

(1 +
1

n
)−s

m∏
n=1

(1 +
s

n
) =

= slimm→∞

m∏
n=1

(1 +
1

n
)−s(1 +

s

n
)(1 +

1

m
)s = s

∞∏
n=1

(1 +
1

n
)−s(1 +

s

n
).

Proposition 1.2.15. (i) Γ(s) = limN→∞
1·2·...·(n−1)ns

s(s+1)...(s+n−1)
.

(ii) Γ(s+ 1) = sΓ(s). In particular, Γ(n+ 1) = n!.

Proof. (i) is straightforward. For (ii), using the previous proposition, we obtain:

Γ(s+ 1)

Γ(s)
=

s

s+ 1
limm→∞

m∏
n=1

(1 + 1
n
)s+1(1 + s+1

n
)−1

(1 + 1
n
)s(1 + s

n
)−1

=

=
s

s+ 1
limm→∞

m∏
n=1

n+ 1

n

n+ s

n+ s+ 1
=

s

s+ 1
limm→∞

(m+ 1)(s+ 1)

m+ 1 + s
= s.

Proposition 1.2.16. For s ∈ C \ Z one has Γ(s)Γ(1− s) = π
sin(πs)

.

Proof. The function sin(πs) is an entire function of the first order, with zeros s =
0,±1,±2, . . .. By theorem 1.2.13, we can write

sin(πs) = seh(s)

∞∏
n=1

(1− s2

n2
),

with h(s) = as+ b. We take a logarithmic differential:

π
cos(πs)

sin(πs)
=

1

s
+ h′(s)−

∞∑
n=1

2s

n2 − s2
.

Taking limit for s→ 0 we obtain a = 0, i.e. h(s) = b.
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Next, sin(πs)
s

= c
∏∞

n=1(1− s2

n2 ). Taking limit for s→ 0 we obtain c = π, i.e.

sin(πs) = πs
∞∏
n=1

(1− s2

n2
).

By definition of the Γ function we have

Γ(s)Γ(−s) = − 1

s2

∞∏
n=1

(1− s2

n2
)−1 = − π

ssin(πs)

and from previous proposition, Γ(1− s) = −sΓ(−s). The result follows.

Proposition 1.2.17. Γ(s) =
∫∞

0
e−tts−1dt.

Proof. See Thm.4 p.53 in [A.Karatsuba, Basic Analytic Number Theory].

We list also additional properties of the Γ-function:

1. Γ(1
2
) =
√
π (exercise);

2. (Stirling’s formula) logΓ(s) = (s− 1
2
)log(s)− s+ log

√
2π +O( 1

|s|).

3. −Γ′(s)
Γ(s)

= 1
s

+ γ +
∑∞

n=1[ 1
n+s
− 1

n
.]

As a consequence,
Γ′(n)

Γ(n)
= −γ +

n−1∑
k=1

1

k
.

4. Γ(s)−1 is entire of order α = 1 and

Γ′(s)

Γ(s)
= log(s) +O(

1

|s|
).

1.2.4 Zeros of the zeta function

Let ξ(s) be defined as in theorem 1.2.4.

Theorem 1.2.18. • The function ξ(s) is an entire function of order 1 with
infinitely many zeros ρn such that 0 ≤ Reρn ≤ 1;

• the series
∑
|ρn|−1 diverges;

• the series
∑
|ρn|−1−ε converges for any ε > 0;

• the zeros of ξ(s) are nontrivial zeros of ζ(s).
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Proof. For Re(s) > 1 the zeta function, and, hence, the function ξ(s) has no zeros.
Theorem 1.2.4 implies that ξ(s) 6= 0 for Re(s) > 0 as well. Since ξ(0) = ξ(1) 6= 0,
zeros of ξ(s) coincide with nontrivial zeros of ζ(s).

To determine the order of ξ(s), we consider |s| → ∞. By corollary 1.1.8,
ζ(s) = O(|s|) for Re(s) ≥ 1

2
. Since |Γ(s)| ≤ ec|s| |ln|s|, the order of ξ is at most

one. But for s → +∞, lnΓ(s) ≡ s ln(s), so that the order of ξ(s) is 1. Theorem
1.2.13 imply that

∑
|ρn|−1, where ρn are zeros of ξ(s) is divergent. In particu-

lar, ξ(s) has infinitely many zeros, and the series
∑
|ρn|−1−ε is convergent for any

ε > 0.

Corollary 1.2.19. (i) ξ(s) = eA+Bs
∏∞

n=1(1− s
ρn

)e
s
ρn ;

(ii) nontrivial zeros of zeta-function are symmetric with respect to the lines Re(s) =
1
2
and Im(s) = 0.

In what follows we enumerate zeros of zeta function in an increasing order (with
respect to the absolute value).

Proposition 1.2.20.

ζ ′(s)

ζ(s)
= − 1

s− 1
+
∞∑
n=1

(
1

s− ρn
+

1

ρn
) +

∞∑
n=1

(
1

s+ 2n
− 1

2n
) +B0,

where ρn are all nontrivial zeros of ζ(s) and B0 is a constant.

Proof. It is enough to take the logarithmic derivative in corollary 1.2.19(i).

Theorem 1.2.21. Let ρn = βn + iγn, n = 1, 2, . . . are all nontrivial zeros of ζ(s),
T ≥ 2. Then

∞∑
n=1

1

1 + (T − γn)2
≤ c log T. (1.4)

Proof. For s = 2 + iT , one has

|
∞∑
n=1

(
1

s+ 2n
− 1

2n
)| ≤

∑
n≤T

(
1

2n
+

1

2n
) +

∑
n>T

|s|
4n2
≤ c0 log(T ), (1.5)

so that by proposition 1.2.20

−Re(ζ
′(s)

ζ(s)
) = Re(

1

s− 1
−B0 −

∞∑
n=1

(
1

s+ 2n
− 1

2n
))−

−Re
∞∑
n=1

(
1

s− ρn
+

1

ρn
) ≤ c1 log(T )−Re

∞∑
n=1

(
1

s− ρn
+

1

ρn
).
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From the Euler product expression (proposition 1.1.2), we have

−ζ
′(s)

ζ(s)
) =

∑
n≥1

Λ(n)

ns
, (1.6)

where Λ(n) = log(p), n = pk and 0 otherwise. Hence

|ζ
′(s)

ζ(s)
| = |

∞∑
n=1

Λ(n)

n2+iT
| < c2,

so that

Re

∞∑
n=1

(
1

s− ρn
+

1

ρn
) ≤ c3 log(T ).

We deduce the theorem from the following inequalities

Re
1

s− ρn
= Re

1

(2− βn) + i(T − γn)
=

2− βn
(2− βn)2 + (T − γn)2

≥

≥ 0.5

1 + (T − γn)2

and Re1
ρ

= βn
β2
n+γ2n

≥ 0.

Corollary 1.2.22. The number of zeros ρn of the zeta function, such that

T ≤ |Im(ρn)| ≤ T + 1

is at most c log(T ).

Corollary 1.2.23. For T ≥ 2, one has
∑

|T−γn|>1

1
|T−γn|2 = O(log(T )).

Corollary 1.2.24. For −1 ≤ σ ≤ 2, s = σ + it, |t| ≥ 2, one has

ζ ′(s)

ζ(s)
=

∑
|t−γn|≤1

1

s− ρn
+O(log|t|).

Proof. The inequality 1.5 is valid for s = σ + it, |t| ≥ 2, −1 ≤ σ ≤ 2, so that

ζ ′(s)

ζ(s)
=
∞∑
n=1

(
1

s− ρn
+

1

ρn
) +O(log|t|).

We substract the same inequality for s = 2 + it:

ζ ′(s)

ζ(s)
=
∞∑
n=1

(
1

s− ρn
− 1

2 + it− ρn
) +O(log(|t|).
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If |γn − t| > 1, then

| 1

σ + it− ρn
− 1

2 + it− ρn
| ≤ 2− σ

(γn − t)2
≤ 3

(γn − t)2
.

Now the statement follows from the previous corollaries 1.2.22 and 1.2.23.

Theorem 1.2.25. (de la Vallée Poussin) There exists a constant c > 0 such that
the zeta function has no zeros for

Re(s) = σ ≥ 1− c

log(|t|+ 2)
.

Proof. The function ζ(s) has a pole at s = 1, hence for some γ0 there is no zeros s
with |s−1| ≤ γ0. Let ρn = βn+iγn be a zero of ζ with |γn| > |γ0|. For Re(s) = σ > 1
we have as in (1.6)

−ζ
′(s)

ζ(s)
=
∞∑
n=1

Λ(n)

ns
=
∞∑
n=1

Λ(n)n−σe−it log(n),

so that

−Reζ
′(s)

ζ(s)
=
∞∑
n=1

Λ(n)n−σcos(tlog(n)).

Since for all real φ we have

3 + 4cos φ+ cos 2φ = 2(1 + cos φ)2 ≥ 0,

we deduce
3
ζ ′(σ)

ζ(σ)
+ 4Re

ζ ′(σ + it)

ζ(σ + it)
+ (−Reζ

′(σ + i2t)

ζ(σ + i2t)
) ≥ 0. (1.7)

We will provide a majoration for each summand in the formula (1.7). By proposition
1.2.20 and corollary 1.2.22 for s = σ and 1 < σ ≤ 2 we obtain

−ζ
′(s)

ζ(s)
<

1

σ − 1
+B1,

where B1 is a constant. For s = σ + it, 1 < σ ≤ 2, |t| > γ0 we find, again by
proposition 1.2.20:

−Reζ
′(s)

ζ(s)
< Alog(|t|+ 2)−

∞∑
k=1

Re(
1

s− ρk
+

1

ρk
),

where A > 0 is an absolute constant. Since 0 ≤ βk ≤ 1, we have ρk = βk + iγk we
deduce

Re
1

s− ρk
= Re

1

σ − βk + i(t− γk)
=

σ − βk
(σ − βk)2 + (t− γk)2

,
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in addition Re 1
ρk

= βk
β2
k+γ2k

≥ 0. We deduce

−Reζ
′(σ + it)

ζ(σ + it)
< A log(|t|+ 2)− σ − βn

(σ − βn)2 + (t− γn)2

and
−Reζ

′(σ + it)

ζ(σ + it)
< A log(2|t|+ 2).

We now substitute these estimations in (1.7):

3

σ − 1
− 4

σ − βn
(σ − βn)2 + (t− γn)2

+ A1 log(|t|+ 2) ≥ 0

for A1 > 0 a constant. This inequality works for any t, |t| > γ0 and any σ, 1 < σ ≤ 2.
For instance, for t = γn, σ = 1 + 1

2A1 log(|γn|+2)
, so that

4

σ − βn
≤ 3

σ − 1
+ A1 log(|γn|+ 2),

βn ≤ 1− 1

14A1 log(|γn|+ 2)
,

and we finish the proof of the theorem.

Corollary 1.2.26. Let T ≥ 2 and c > 0 a constant. Then for

σ ≥ 1− c

2 log(T + 2)
, 2 ≤ |t| ≤ T

one has an estimation | ζ
′(s)
ζ(s)
| = O(log2T ), where s = σ + it.

Proof. Using corollary 1.2.24, we have

|ζ
′(s)

ζ(s)
| =

∑
|t−γn|≤1

1

s− ρn
+O(log(T )).

Hence
|ζ
′(s)

ζ(s)
| ≤

∑
|t−γn|≤1

1

|σ − βn|+ i(t− γn)
+O(log(T )).

Since βn ≤ 1− c
log(T+2)

and σ ≥ 1− c
2log(T+2)

, we have

|ζ
′(s)

ζ(s)
| ≤ 2

c
log(T + 2)

∑
|t−γn|≤1

1 +O(log(T )) = O(log2T ).

.
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1.3 Distribution of primes
Let π(x) =

∑
p prime ,p≤x

1. We will be interested in the asymptotic description of this

function. First we need some facts on the Dirichlet sums.

Definition 1.3.1. The Dirichlet series is a series of the form

f(s) =
∞∑
n=1

an
ns
, (1.8)

where the coefficients an are complex numbers and s = σ + it.
To the Dirichlet series one associates the function

Φ(x) =
∑
n≤x

an.

Theorem 1.3.2. [Tauberian theorem] Assume that the series (1.8) converges for
σ > 1, |an| ≤ A(n) where A(n) > 0 is a monotonic, increasing function and for
σ → 1 + 0 one has

∞∑
n=1

|an|n−σ = O((σ − 1)−α), α > 0.

Then for any b0 ≥ b > 1, T ≥ 1, x = N + 1
2
the following formula holds

Φ(x) =
∑
n≤x

an =
1

2πi

∫ b+iT

b−iT
f(s)

xs

s
ds+O(

xb

T (b− 1)α
) +O(

xA(2x)log(x)

T
).

In addition, the constant in the O-sign depends only on b0.

Proof. First we prove that

1

2πi

∫ b+iT

b−iT

as

s
ds = ε+O(

ab

T |log(a)|
) (1.9)

where ε = 1 if a > 1 and ε = 0 if 0 < a < 1. Let us consider the case a > 1 (we
left the case 0 < a < 1 as an exercise). Consider U > b and the rectangular path Γ
with sides [−U + iT,−U − iT ], [−U − iT, b− iT ], [b− iT, b+ iT ], [b+ iT,−U + bT ].

By Cauchy theorem, 1
2πi

∫
Γ
asds
s

= 1, so that

1

2πi

∫ b+iT

b−iT

asds

s
= 1 +R (1.10)

where R is the the integral on the left, upper and bottom sides. The integrals on
the upper and bottom sides have the same absolute value, so that on each of these
sides we have

1

2πi
|
∫
asds

s
| ≤ 1

2π

∫ b

−U

aσdσ√
T 2 + σ2

≤ ab

T log(a)
.
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Also we have for the left side

1

2π

∫
asds

s
≤ 1

2π

∫ +T

−T

a−Udt√
U2 + t2

= O(aU)→ 0

for U → ∞. Passing to the limit in (1.10) when U → ∞, we obtain the formula
(1.9).

The series (1.8) is absolutely convergent for s = b + it. We obtain, exchanging
the integral-sum:

1

2πi

∫ b+iT

b−iT
f(s)

xs

s
ds =

∞∑
n=1

an(
1

2πi

∫ b+iT

b−iT
(
x

n
)s
ds

s
) =

∑
n≤x

an +R,

where

R = O(
∞∑
n=1

|an|(
x

n
)bT−1|log x

n
|−1).

Note that, since x = N + 1/2, we have x/n 6= 1 for an integer n. We divide the
sum under the O-sign into two parts. For the first part, take x

n
≤ 1

2
or x

n
≥ 2,

so that |log x
n
| ≥ 2. From the assumptions

∑∞
n=1

|an|
nb

= O( 1
(b−1)α

), the first sum is
O( xb

T (b−1)α
). The remaining part is

∑
1
2
x<n<2x

|an|(
x

n
)bT−1|log x

n
|−1| ≤ T−1A(2x)2b

∑
1
2
x<n<2x

|logN + 0.5

n
|−1.

The summands with n = N − 1, N,N + 1 in the last sum are of order O(x) and for
the remaining part r we obtain

r ≤
∫ N−1

x/2

(log
N + 0.5

u
)−1du+

∫ 2x

N+1

(log
u

N + 0.5
)−1du = O(x logx).

and the theorem follows.

Now we are ready to prove the prime number theorem. Recall that we defined
Λ(n) = log(p) if n = pk and Λ(n) = 0 otherwise.

Theorem 1.3.3. There exists a constant c > 0 such that

ψ(x) =
∑
n≤x

Λ(x) = x+O(xe−c
√
ln(x));

π(x) =

∫ x

2

du

ln(u)
+O(xe−

c
2

√
ln(x)).
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Proof. For Re(s) > 1, using the Euler product argument (1.1) we write

−ζ
′(s)

ζ(s)
=
∞∑
n=1

Λ(n)

ns
.

Using theorem 1.2.4, in the previous theorem we could take α = 1, A(n) = log(n).
Consider b = 1 + 1

log(x)
,T= e

√
log(x). Then

ψ(x) =
1

2πi

∫ b+iT

b−iT
(−ζ

′(s)

ζ(s)
)
xs

s
ds+O(

xln2x

T
).

By theorem 1.2.25 and its corollary, for some constant c1 > 0, the zeta function has
no zeros with Re(s) = σ ≥ σ1 = 1 − c1

2log(T+2)
, |t| ≤ T , and ζ′(s)

ζ(s)
= O(log2T ) for

s = σ1 + iT, s = σ ± iT, σ1 ≤ σ ≤ b, s = b+ it. Consider the integral

J =
1

2πi

∫
Γ

(−ζ
′(s)

ζ(s)
)
xs

s
ds

along the rectangle Γ with sides [σ1 + iT, σ1 − iT ], [σ1 − iT, b − iT ], [b − iT, b +
iT ], [b+ iT ; , σ1 + iT ].

Since the only nontrivial pole inside Γ of the function (− ζ′(s)
ζ(s)

)x
s

s
is s = 1 with

residue x, we have
1

2πi

∫ b+iT

b−iT
(−ζ

′(s)

ζ(s)
)
xs

s
ds = x+R

with R the sum of integrals along the left, upper and bottom sides. We will estimate
these integrals. For the upper and bottom sides we have

| 1

2π i

∫ b+iT

σ1+iT

−ζ
′(s)

ζ(s)
)
xs

s
ds| ≤

∫ b

σ1

|ζ
′(σ + iT )

ζ(σ + iT )
)|x

σ

T
dσ = O(

xlog2T

T
),

and the integral by the left side is

| 1

2π i

∫ σ1+iT

σ1−iT
−ζ
′(s)

ζ(s)

xs

s
ds| = | 1

2π i

∫ T

−T

ζ ′(σ1 + it)

ζ(σ1 + it)
)
xσi+it

σ1 + it
dt| =

= O(xσ1log2T (

∫ 1

0

dt

σ1

+

∫ T

1

dt

t
)) = O(xσ1log3T ).

From the inequalities above, the definition of T and σ1 we deduce the first
assertion of the theorem.

Consider
S =

∑
n≤x

Λ(x)

log(n)
=
∑
p≤x

1 +
∑

n=pk,k≥2

Λ(x)

log(n)
.

In the second sum k ≤ log(x) and for a fixed k we have at most
√
x summands,

≤ 1. We deduce
S = π(x) +O(

√
xlog(x)). (1.11)
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In the lemma 1.3.4 below we put cn = Λ(n), f(x) = 1
log(x)

, i.e. C(x) =
∑

n≤x cn =

ψ(x) = x+O(xe−c
√
log(x)), f ′(x) = − 1

xlog2x
, so that we obtain

S =

∫ x

2

ψ(u)

ulog2u
du+

ψ(x)

log(x)
=

∫ x

2

du

log2u
+

x

log(x)
+R

with

R = O(

∫ x

2

e−c
√
log u du

log2u
+ xe−c

√
log x) =

= O(

∫ √x
2

du+

∫ x

√
x

e−c
√
log udu+ xe−c

√
log x) = O(xe−

c
2

√
ln(x))

and∫ x

2

du

log2u
+

x

log(x)
= − u

log(u)
|x2 +

∫ x

2

du

log(u)
+

x

log(x)
=

∫ x

2

du

log(u)
+

2

log 2
.

The theorem follows from this equality and (1.11).

Lemma 1.3.4. (Abel transform) Let f(x) be a continuously differentiable function
on the interval [a, b], cn be complex numbers and

C(x) =
∑
a<n≤x

cn.

Then ∑
a<n≤b

cnf(n) = −
∫ b

a

C(x)f ′(x)dx+ C(b)f(b).

Proof. We have

C(b)f(b)−
∑
a<n≤b

cnf(n) =
∑
a<n≤b

cn(f(b)− f(n)) =

=
∑
a<n≤b

∫ b

n

cnf
′(x)dx =

∑
a<n≤b

∫ b

a

cng(n, x)f ′(x)dx,

where g(n, x) = 1 for n ≤ x ≤ b and g(n, x) = 0 for x < n. To finish the proof of
the lemma we exchange the order integral-sum in the last sum and notice that∑

a<n≤b

cng(n, x) =
∑
a<n≤x

cn = C(x).
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Chapter 2

Local Fields

2.1 Absolute values
Consider the following congruence:

x2 ≡ 2 (mod 7n).

If n = 1, there are two solutions: x0 ≡ ±3 (mod 7). Consider now the case n = 2.
If

x2 ≡ 2 (mod 72),

we deduce in particular that x2 ≡ 2 (mod 7). Hence we are looking for the solutions
of the form x0 + 7t1. For example, for x0 ≡ 3 (mod 7), we obtain:

(3 + 7t1)2 ≡ 2(mod 72),

so that
t1 ≡ 1(mod 7) and x1 ≡ 3 + 7 · 1 (mod 72).

Similarly, for n = 3, we obtain x2 ≡ 3 + 7 · 1 + 72 · 2 (mod 73). Proceeding in the
same way, we obtain an infinite sequence

x0, x1, . . . xn, . . .

satisfying x0 ≡ 3 (mod 7), xn ≡ xn−1 (mod 7)n, x2
n ≡ 2 (mod 7n+1). This construc-

tion is similar to the approximate computation of
√

2 in R: one then is interested
in a sequence r1, r2, . . . , rn, . . . of rational numbers such that |r2

n − 2| < 1
10n

. In our
case, we are implicitely using a different «metric»: x2

n− 2 is divisible by 7n+1. This
example provides a motivation to study various absolute values (metrics) on a given
field K.

Definition 2.1.1. Let K be a field. An absolute value on K is a function
| | : K → R, satisfying the following properties:

• |0| = 0 and |x| > 0 for x 6= 0;
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• |xy| = |x||y|;

• (triangle inequality) |x+ y| ≤ |x|+ |y|.

We call | | : nonarchimedean if a stronger condition |x+y| ≤ max{|x|, |y|} holds.
Otherwise, we call the absolute value archimedean.

Remark 2.1.2. A classical ’archimedean’ property (introduced by Archimedes) is
that for any two positive real numbers x, y, there exists an integer n such that
x < ny. We will se that an absolute value is nonarchimedean precisely if this
property does not hold.

Definition 2.1.3. Let K be a field. A valuation on K is a function v : K →
Γ ∪ {∞}, where Γ is a commutative group (written additively) , satisfying the
following properties:

• v(x) =∞⇔ x = 0;

• v(xy) = v(x) + v(y);

• (triangle inequality) v(x+ y) ≥ min{v(x), v(y)}.

Remark 2.1.4. We also use the notation v : K∗ → Z for a valuation, where
K∗ = K \ {0} and where we exclude the value ∞ at 0.

Note that for v : K → Z ∪ {∞} a valuation and 0 < α < 1 a real number one
can associate a nonarchimedean absolute value | |v defined by

|x|v = αv(x).

Example 2.1.5. 1. If K = R, then we have the usual absolute value | | on K.
This absolute value is archimedian.

2. If K = C then |z| =
√
z · z̄ defines an archimedean absolute value. More

generally, if K is a number field and σ : K ↪→ C is a complex embedding of
K, then we have an archimedean absolute value |x|σ = |σ(x)| on K.

3. On any field K one can define a trivial absolute value by |x| = 1 for x 6= 0.

4. If k = Q and p is a prime, we have a p-adic valuation vp(x) = r if x = pr m
n
with

m and n prime to p and r > 0. We then define a nonarchimedian absolute
value |x|p = (1/p)vp(x).

5. if k = C(t) and a ∈ C, we define the absolue value vt−a as the order of van-
ishing at a: if x ∈ C(t) we can write x as x = (t− a)r P (t)

Q(t)
with P (t) and Q(t)

prime to t− a and r ∈ Z. We then define vt−a(x) = r.

In the other direction, if | | is an absolute value, then one can define v(x) =
−log|x|.
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Proposition 2.1.6. Let | | be a nontrivial nonarchimedean absolute value on a
field K and let v(x) = −log|x|. Then:

(i) v(xy) = v(x) + v(y)

(ii) v(x+ y) ≥ min{v(x), v(y)}.

If v(K∗) is discrete in R, then v is a multiple of a discrete valuation w : K∗ → Z.

Proof. The statements (i) and (ii) are straightforward. For the last statement, since
v(K∗) is discrete additive subgroup of R, one has v(K∗) = Z ·c for some c > 0 (take
c the minimal positive element in v(K∗) that exists since v(K∗) is discrete). Then
w = c−1v is a discrete valuation as claimed.

If the last property holds, we call | | a discrete absolute value.

Example 2.1.7. There exists nondiscrete nonarchimedian absolute values. For
example, if Q̄ is an algebraic closure of Q, then we will see that one can extend
the p-adic absolte value to Q̄. Then one should necessarily have |p1/n| = 1/ n

√
p →

1, n→∞.

Proposition 2.1.8. An absolute value | | is nonarchimedian if and only if it takes
bounded values on {m · 1,m ∈ Z}.

Proof. If | | is nonarchimedian, then, for m > 0 one has |m · 1| = |1 + 1 + . . .+ 1| ≤
|1| = 1. Also | − 1| = |1|.

Conversely, let N be an integer such that |m · 1| ≤ N. Then for x, y ∈ K we
have

|x+ y|n ≤
∑(

n

r

)
|x|r|y|n−r ≤ N(n+ 1)max{|x|, |y|}n.

Hence |x+ y| ≤ N1/n(n+ 1)1/nmax{|x|, |y|} and N1/n(n+ 1)1/n → 1, n→∞ (since
1
n
log n+1

N
→ 0).

Corollary 2.1.9. If charK > 0, then K has only nonarchimedian absolute values.

Proof. The set {m · 1,m ∈ Z} is finite if charK > 0.

Proposition 2.1.10. Let | | be a nonarchimedean absolute value on a field K.
Then:

• A = {x ∈ K, |x| ≤ 1} is a subring of K;

• U = {x ∈ K, |x| = 1} is a group of units of A;

• m = {x ∈ K, |x| < 1} is a unique maximal ideal of A.

The absolute value | | is discrete if and only if the ideal m is principal.
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Proof. The first three properties are straightforward. Assume | | is discrete and let
v, w be valuations as in Proposition 2.1.6. Then m is generated by any element π
with w(π) = 1. Conversely, if m = (π) is principal, then v(K∗) = Zv(π).

An absolute value | | defines a metric on K, where we put

d(x, y) = |x− y|

for the distance function. Then we have a topology on K with

B(x, r) = {y ∈ K, |y − x| < r}, r > 0

the fundamental system of open neighborhoods of x.

Example 2.1.11. If K = Q, the p-adic valuation on K defines the p-adic topol-
ogy: two rational numbers are «close» if their difference is divisible by a large
power of p.

Proposition 2.1.12. Let | |1, | |2 be two absolute values on a field K, with | |1
nontrivial. The following conditions are equivalent:

(i) | |1 and | |2 define the same topology;

(ii) |x|1 < 1⇒ |x|2 < 1;

(iii) |x|2 = |x|a1 for some a > 0.

Proof. (iii)⇒ (i) is obvious, for (i)⇒ (ii) note that |x|n = |x|n hence xn → 0 ⇔
|x| < 1, hence (i) implies |x|1 < 1⇒ |x|2 < 1. Let us show that (ii)⇒ (iii). Since | |1
is nontrivial, there exists y ∈ K such that |y|1 > 1. Let a be such that |y|2 = |y|a1.
Note that a > 0 by (ii).

Let x ∈ K∗ and let b ∈ R be such that |x|1 = |y|b1. It is enough to establish
that |x|2 = |y|b2. Let m/n > b be a rational number. Then |x|1 = |y|b1 < |y1|

m
n , so

that |xn/ym|1 < 1. By (ii) we deduce |xn/ym|2 < 1, so that |x|2 < |y|
m
n
2 . Since this

is true for all rational numbers m/n > b, we deduce that |x2| ≤ |y|b2. By a similar
argument for rationals m/n < b we deduce |x2| ≥ |y|b2, this finishes the proof of
(iii).

Definition 2.1.13. The absolute values | |1 and | |2 are equivalent if they satisfy
the equivalent conditions of the proposition above. A place of K is an equivalence
class of absolute values on K.

In the case K = Q we have a complete list of absolute values:

Theorem 2.1.14 (Ostrowski). Let | | be a nontrivial absolute value on Q. Then

(i) If | | is archimedean, then | | is equivalent to | |∞ : x 7→ |x| the usual absolute
value in R.
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(ii) If | | is nonarchimedean, then | | is equivalent to | |p for exactly one prime p.

Proof. Let m,n > 1 be integers. Write

m = a0 + a1n+ . . .+ arn
r,

where the ai are integers, 0 ≤ ai < n, nr ≤ m and r ≤ log(m)/log(n). In particular,

|ai| ≤ |1|+ . . .+ |1| = ai|1| = ai ≤ n.

Let N = max{1, |n|}. Then:

|m| ≤
∑
|ai||n|i ≤

∑
|ai|N r ≤ (1 + r)nN r ≤ (1 +

log(m)

log(n)
)nN

log(m)
log(n) .

Replacing m with mt for t an integer and letting t→∞, we obtain:

|m| ≤ (1 +
tlog(m)

log(n)
)1/tn

1
tN

log(m)
log(n)

and |m| ≤ N
log(m)
log(n) .

Assume that for some n one has |n| < 1. Then N = 1 and the inequality
above implies that |m| ≤ 1 for all integers m. In particular, the absolute value is
nonarchimedean by Proposition 2.1.8. Let A and m be as in Proposition 2.1.10. By
definition of A, we have Z ⊂ A. Then m∩Z is a prime ideal in Z, hence m∩Z = (p)
for some prime p. Then |m| = 1 if m is not divisible by p, so that |α

β
pr| = |p|r if

α, β are integers prime to p. If a is such that |p| = (1/p)a, then |x| = |x|ap.
Assume now that for all integers n > 1 we have |n| > 1. Then N = |n| and

we obtain |m|
1

log(m) ≤ |n|
1

log(n) . Inverting the roles of m and n, we get |n|
1

log(n) ≤
|m|

1
log(m) , so that

c := |m|
1

log(m) = |n|
1

log(n) .

If a = log(c), then |n| = |n|a∞ for all integers n > 1, hence, by multiplicativity of
| |, for all rationals.

Remark 2.1.15. Similarly, if K is a number field, we have a complete list of places
of K. Assume that K has r1 real embeddings and r2 pairs of conjugated complex
embeddings. Then the places of K are in one-to-one correspondence with, on the
one hand, the r1 real embeddings and r2 pairs of complex embeddings, correspond-
ing to archimedean absolute values (infinite places ofK), and on the other hand, the
nonzero prime ideals of OK , corresponding to the nonarchimedean absolute values
(finite places of K).

Again in the case K = Q recall the Chinese reminder theorem: if n1, . . . nk
are integers that are pairwise coprime, then the system of congruences

x ≡ ai (mod ni), i = 1, . . . , k
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has a solution, unique modulo N = n1 · . . . · nk.
The following statement of the weak approximation theorem could be seen

as a generalization of the Chinese reminder theorem in the context of valued fields.

Theorem 2.1.16. Let | |1, | |2,. . . | |k be nontrivial inequivalent absolute values on
a field K, and let a1, . . . ak be elements of K. For every ε > 0, there is an element
x ∈ K such that

|x− ai|i < ε for all i.

Proof. We start with the following two lemmas:

Lemma 2.1.17. In the notation of the theorem, there is an element a ∈ K such
that |a|1 > 1 and |ai| < 1 for i 6= 1.

Proof. If k = 2, since | |1, and | |2 are inequivalent, there are two elements b and c
such that

|b|1 < 1, |b|2 ≥ 1, |c|1 ≥ 1, |c|2 < 1.

Then x = c
b
works.

By induction, assume the lemma holds for n − 1 absolute values. Then there
are two elements b and c such that

|b|1 > 1, |b|i < 1, i = 1, . . . n− 1, |c|1 > 1, |c|n < 1.

If |b|n < 1, we can take x = b. If |b|n = 1, then x = cbr works for sufficiently large
r. If |b|n > 1, then x = cbr

1+br
works for sufficiently large r.

Lemma 2.1.18. In the notation of the theorem, there is an element a ∈ K that is
close to 1 for the value | |1 and close to 0 for the values | |i, i 6= 1.

Proof. Consider x as in the previous lemma and put xr = xr

1+xr
. Then

|xr − 1|1 =
1

|1 + xr|1
≤ 1

|x|r1 − 1
→ 0, r →∞.

For i ≥ 2 we have

|xr|i =
|x|ri
|1 + x|ri

≤ |x|ri
1− |x|ri

→ 0, r →∞.

To prove the theorem, consider bi, i = 1, . . . n close to 1 for | |i and close to 0
for | |j, j 6= i. Then x = a1b1 + . . .+ anbn works.
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Corollary 2.1.19. Let | |1, | |2,. . . | |k be nontrivial inequivalent absolute values on
a field K. If |a|r1 . . . |a|rk = 1 with ri ∈ R for all a ∈ K∗, then ri = 0 for all i.

Proof. If there is ri 6= 0, consider x such that |x|i is sufficiently large and |x|j is
sufficiently small for j 6= i, on then cannot have |x|r1 . . . |x|rk = 1, contradiction.

2.2 Completions
Let K be a field and | | a nontrivial absolute value on K.

Definition 2.2.1. A sequence (an) of elements of K is a Cauchy sequence if for
every ε > 0 there is an integer N > 0 such that |am − an| < ε ∀m,n > N .

Definition 2.2.2. A field K is complete if every Cauchy sequence converges in
K.

Theorem 2.2.3. Let K be a field and | | a nontrivial absolute value on K. Then
there is a complete valued field (K̂, | |) and a homomorphism K → K̂ preserving the
absolute value, satisfying the following universal properety: every homomorphism
K → L with (L, | |) complete valued field, preserving the absolute value, extends
uniquely to a homomorphism K̂ → L.

Proof. We construct K̂ as the set of limits of Chauchy sequences in K. More pre-
cisely, let (an) and (bn) be two Cauchy sequences in K. We say that these sequences
are equivalent if lim|an − bn| = 0. Define K̂ to be the set of equivalence classes of
Cauchy sequences in K. One has the addition and the multiplication on K̂ induced
by the addition and the multiplication on K and one verifies that K̂ is a field.
The canonical map K → K̂ sends a ∈ K to the Cauchy sequence (a, a, . . . a). A
homomorphism K → L extends to K̂ → L by mapping the Cauchy sequence in K
to its limit in L.

If | | corresponds to a valuation v, we will write Kv for the completion K̂ and
Ôv for the ring of integers in Kv. For p-adic valuation on Q we will write Qp for
the completion and Zp for the ring of integers in Qp.

In the case of a discrete nonarchimedean value, we have the following description:

• Let A and m be as in Proposition 2.1.10. Let π be a generator of the maximal
ideal m (equivalently, π is an element of K with largest value < 1). We call
π a uniformizing parameter and k = A/m the residue field of K. Up to
changing | | by an equivalent one we may assume that |π| = 1. Then the set
of values |K| = {|π|m,m ∈ Z} ∪ {0} = Z.

• |K̂| = |K| = Z: in fact, if a ∈ K̂ and if (an) is a Cauchy sequence convergeing
to a, then |an| → |a|. But |K∗| is discrete, so that |a| ∈ |K∗|.
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• If Â = {a ∈ K̂, |a| ≤ 1} and m̂ = {a ∈ K̂, |a| < 1}, then Â (resp. m̂) is the
set of limits of Cauchy sequences in A (resp. in m), so that Â (resp. m̂) is the
closure of A (resp. m) in K̂. Also π generates Â.

• For every integer n, the map A/mn → Â/m̂n is an isomorphism : in fact

mn = {a ∈ A, |a| ≤ |π|n = {a ∈ A, |a| < |πn−1}

is closed and open in A. The injectivity follows from the fact that it is closed
and the surjectivity follows from the fact that m̂n open.

Proposition 2.2.4. Let S be a set of representatives for A/m. Then the series

a−nπ
−n + . . .+ a0 + a1π + . . .+ amπ

m + . . . , ai ∈ S

is a Cauchy series. Every Cauchy series is of this form, in particular, any element
of K̂ has a unique representative in the form above.

Proof. Let xN =
N∑

i=−n
aiπ

i. Then xN is a Cauchy sequence.

Conversely, let α ∈ K̂. Then α = πnα0 with α0 a unit in Â, since |K̂| = |K|.
Then, by the definition of S, there exists a0 ∈ S such that α0 − a0 ∈ m̂, so that
α0−a0
π
∈ Â, so there exists a1 ∈ S with α0−a0

π
− a1 ∈ m̂. One then constructs

inductively a2, a3, . . . such that

α0 = a0 + a1π + a2π
2 + . . .

and we obtain the existence. Note that |
∑
aiπ

i| = |πm|, where am is the first
nonzero coefficients. Hence

∑
aiπ

i = 0 if and only if ai = 0 for all i and we obtain
the uniqueness.

Example 2.2.5. We can think about elements of Qp as a series

a−np
−n + . . .+ a0 + a1p+ a1p

2 + . . . , 0 ≤ ai < p.

In terms of limits, Zp = lim←−Z/pnZ.

Example 2.2.6. The completion of the field k(t) with respect to the absolute value
induced by the valuation vt (the order of vanishing at 0) is the field k((t)) of formal
power series over k.

In the remaining part of this paragraph we study a the fundamental results
on solving polynomial equations in complete valued fields. In what follows K is a
complete discretely valued field ans A is the corresponding ring of integers.

Lemma 2.2.7. Let f ∈ A[x] and let a0 is a simple root of f(x) mod π. Then there
is a unique root a of f(x) congruent to a0 mod π.
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Proof. We will construct inductively a sequence (an) such that f(an) ≡ 0 (mod
πn+1). By assumption, we have a0. Put

an+1 = an + hπn+1.

Then
f(an + hπn+1) = f(an) + hπn+1f ′(an) + . . . .

We take
h = −f(an)

πn+1
f ′(an)−1 mod π.

This is possible since f(an) ≡ 0 (mod πn+1) and f ′(an) = f ′(a0) (mod π), which is
nonzero.

The sequence (an) is a Cauchy sequence and its limit a in K is the root of f ,
as required. This root is unique, since from the construction a mod πn is uniquely
determined for each n.

Theorem 2.2.8 (Newton’s lemma). Let f(x) ∈ A[x] and let a0 ∈ A such that
|f(a0) < |f ′(a0)|2. Then there is a root a ∈ A of f(x) such that |a − a0| ≤
|f(a0)/|f ′(a0)|2.

Proof. The sequence (an) defined inductively by an+1 = an − f(an)
f ′(an)

is a Cauchy
sequence converging to a root of f(x).

Theorem 2.2.9 (Hensel’s lemma). Let f(x) ∈ A[x] and f̄(x) be the image of f
in k[x]. Assume that f is monic and that f̄ factors as f̄ = g0h0 with g0 and h0

monic relatively prime in k[X]. Then f factors as f = gh with g and h monic such
that ḡ = g0 and h̄ = h0. The polynomials g and h are uniquely determined and
(g, h) = A[x].

Proof. We first prove the uniqueness of g and h. Assume we have g′ and h′ monic
such that ḡ′ = g0 and h̄′ = h0 and f = g′h′. From the lemma below, (g, h′) = A[x],
so there exist r, s ∈ A[x] with gr + h′s = 1. We deduce

g′ = g′gr + g′h′s = g′gr + ghs,

and so g divides g′. Since these polynomials are both monic and of the same degree,
they must be equal. Then h′ = h, since f = gh = gh′.

Let us now prove the existence of f and g. We know that f − g0h0 ∈ πA[x]. We
construct by induction polynomials gn, hn such that f − gnhn ≡ 0 mod πn+1A[x]
and gn ≡ g0, hn ≡ h0 mod πA[x]. Then we claim that there are two polynomials
u, v ∈ A[x] with deg u < deg g0 and deg v < deg h0 and such that f − (gn +
πn+1u)(hn + πn+1v) ≡ 0 mod πn+1A[x], i.e.

uhn + gnv ≡ (f − gnhn)/πn+1 mod πA[x].
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In fact, the lemma below provides such polynomials since g0 and h0 are monic
and relatively prime. Passing to the limit, we obtain the factorisation of f as re-
quired.

Lemma 2.2.10. If f, g ∈ A[x] are such that f̄ and ḡ are relatively prime and
f is monic, then (f, g) = A[x]: there exist u, v ∈ A[x] with degu < degg and
degv < degf such that uf + vg = 1.

Proof. Put M = A[x]/(f, g). Note that M is a finitely generated A-module since f
is monic. Since f̄ and ḡ are relatively prime, we have (f̄ , ḡ) = k[x], hence

(f, g) + mA[x] = A[x].

We deduce that mM = M . By Nakayama’s lemma, M = 0. We deduce that
there exist u, v ∈ A[x] with uf + vg = 1. It remains to insure that one can
assume that degu < degg and degv < degf . In fact, if degv ≥ degf write
v = fq + r with degr < degf . Then (u + qg)f + rg = 1, so that we also must
have degu+ qg < degg.

Remark 2.2.11. By induction, a factorisation of f into a product of relatively
prime polynomials in k[x] lifts to A[x]. In particular, xp − x splits into p distinct
factors in Zp[x]. We deduce that Zp contains (p− 1) roots of unity. More generally,
if the residue field k = A/m is finite with q elements, then K contsains q roots of
the polynomial xq−x. If S is the set of this roots, we have a bijection S → k, a 7→ ā,
preserving the multiplication. We call the set S Teichmüller representatives of
the elements of k.

2.3 Locally compact fields
A valued field K carries a natural topology, as explained in the previous section.
We now study the compactness properties of K.

Proposition 2.3.1. Let K be complete with respect to a nonarchimedean discrete
absolute value. Let A be the ring of integers in K and let m be maximal ideal in A.
Then A is compact if and only if A/m is finite.

Proof. Put S the set of representatives of A/m.
Assume first that A is compact. Since m = {x ∈ K, |x| < 1} is open in K and

A is disjoint union of sets s+ m, s ∈ S, we deduce that S must be finite since A is
compact.

Assume now that S is finite. Recall that every element of A could be written
as s0 + s1π + s2π

2 + . . .. The number of finite sums s0 + s1π + s2π
2 + . . . + snπ

n

is finite and any element of A is at distance πn+1 of such element. We deduce that
for any r > 0 there is a finite covering of A by open balls of radius r (A is totally
bounded). Thus A is complete and totally bounded, hence compact.
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Definition 2.3.2. A local field is a field K with a nontrivial absolute value | |
such that K is locally compact.

Note that a local field, being locally compact, is complete. We have a full
classification of local fields:

Proposition 2.3.3. Let K be a local field. Then

(i) If the absolute value | | of K is archimedean, then K is isomorphic to R or
C and | | is equivalent to the usual absolute value.

(ii) If K is a nonarchimedean local field of zero characteristic, then K is isomor-
phic to Qp.

(iii) A nonarchimedian local field of characteristic p > 0 is isomorphic to the field
k((t)) of the formal power series over a finite field k, and the absolute value
is equivalent to the absolute value induced by the order of vanishing vt at 0.

Proof. For (i), note that Q ⊂ K and the restriction of | | to Q is archimedean,
hence is the usual absolute value. Hence K contains R, and we may even assume
that K contains C, adjoining a root of −1, if necessary. Assume there is x ∈ K \C
and let c ∈ C be the closest element to x. Put x′ = x−c, then |x′−z| ≥ |x′|∀z ∈ C.
We deduce, for ζ a primitive nthroot of unity, that |x′n− zn| = |x′− z||x′− ζ| . . . ≥
|x′ − z||x′|n−1. If |z| < 1, letting n → ∞, we obtain |x′| ≥ |x′ − z|. Hence
|x′− z| = |x′|. Taking x′− z in place of x′, we obtain |x′− 2z| = |x′|. By induction,
|x′ − nz| = |x′|, and we obtain a contradiction with the archimedean property.

For (ii), note that Q ⊂ K and the restriction of the absolute value of K to Q
is nonarchimedean, hence should be equivalent to a p-adic absolute value. Hence
Qp ⊂ K. Since the residue field ofK is finite by the previous proposition, we deduce
that K is a finite extension of Qp.

For (iii), since the residue field k = S of K is finite, one verifies that the map
K → k((T )),

∑
siπ

i 7→
∑
siT

i is an isomorphism of valued fields.

Remark 2.3.4. In the case (ii) the absolute value is equivalent to a (unique)
extension of the p-adic absolute value to K.

2.4 Extensions

2.4.1 Basic facts

Let K be a field, complete with respect to a discrete absolute value | |K and let
L/K be a finite separable extension. One then wonders if one could extend the
absolute value to L. Later in this course we will prove the following:

Theorem 2.4.1. The absolute value | |K extends uniquely to a discrete absolute
value | |L on L. In addition, L is complete and the absolute value is characterized
by |β|L = |NmL/K(β)|

1
n
K.
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Let A (resp. B) be a valuation ring for K (resp. L), i.e. A = {x, |x| ≤ 1},
mA (resp. mB) is the maximal ideal. Sometimes we will also write mK (resp. mL).
Then A ⊂ B, mA ⊂ mB and we have an extension of residue fields kA ⊂ kB. Let πA
(resp. πB) be the uniformizing parameter for A (resp. for B). Then, viewing πA as
an element of B, one could write

πA = uπeB

where e > 0 is the ramification index of the extension L/K and u is a unit in B.

Definition 2.4.2. We say that the extension L/K is unramified if e = 1 and that
it is totally ramified if e = [L : k].

We will also establish the following:

Theorem 2.4.3. In the notations above,

[L : K] = e[kB : kA].

Corollary 2.4.4. If Ω is infinite (separable) extension (for example, a separable
closure), then | |K extends uniquely on Ω.

Proof. The corollary follows from Theorem 2.4.1, since | |K extends uniquely to
each finite extension.

2.4.2 Unramified extensions

Theorem 2.4.5. Let L/K be an algebraic extension and let l/k be the corresponding
extension of residue fields. Assume K and k are perfect.

(i) There is a one-to-one correspondence between the finite unramified extensions
K ′ ⊂ L of K and the finite extensions k′ ⊂ l of k.

(ii) Moreover, K ′ is Galois over K iff k′ is Galois over k. In this case, there is a
canonical isomorphism Gal(K ′/K) ' Gal(k′/k).

Proof. (i) We first establish the surjectivity: for k′/k of degree n write k′ = k[α]
and f minimal polynomial of α. We may assume that f is the reduction
modulo the maximal ideal of A, of a polynomial P ∈ A[x]. By Newton’s
lemma, there exists β ∈ L with P (β) = 0 and β ≡ α mod mL (in particular,
β /∈ mL). Then K ′ = K[β] is of degree n and has residue field extension k′/k,
so that by theorem 2.4.3, we have e = 1. We left the injectivity property as
an exercise: in fact, if K ′, K” have the same residual extension k′/k, then one
easily shows that K ·K”/K also has the residual extenion k′/k and this leads
to a contradiction for the degree.
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(ii) If K ′/K is Galois, then the Galois group preserves A′ and the maximal ideal
mA′ , so that there is a map

Gal(K ′/K)→ Aut(k′/k).

If k′ = k[α] with minimal polynomial ḡ that lifts to g ∈ A[X], we obtain, by
Newton lemma again, that there is a root β of g with β ≡ α mod mL. Then g
splits inK ′ sinceK ′/K is Galois, so that ḡ splits in k′. If β1, . . . βn are the roots
of g and β̄1, . . . β̄n are the roots of ḡ, then the action of Gal(k′/k) is induced by
the action of Gal(K ′/K), this gives an isomorphism Gal(K ′/K)→ Gal(k′/k).
Conversely, if K ′/K is Galois, then for k′ = k[α], β a lift of α, Hensel lemma
shows that all the conjugates of β are in K ′ = K[β], so that K ′/K is Galois.

Corollary 2.4.6. There is K0 ⊂ L an extension of K such that K0 contains all the
unramified extensions of K. If k is finite, then K0 is obtained by adjoining roots of
unity.
If L = K̄, we obtain maximal unramified extension Knr of K and, a finite extension
K ′/K is unramified iff K ′ ⊂ Knr. The residue field of Knr is k̄.

2.4.3 Totally ramified extensions

Definition 2.4.7. A polynomial f ∈ K[x] is Eisenstein, if

f(x) = a0x
n + . . .+ an−1x+ an

with |a0| = 1, |ai| < 1, |an| = |π|.
Equivalently, in the definition above we ask that v(a0) = 0, v(ai) > 0 and

v(an) = 1 for the normalized valuation on K corresponding to | |K (i.e. v(π) = 1).

Proposition 2.4.8. A finite extension L/K is totally ramified if L = K[α] with α
a root of an Eisenstein polynomial.

Proof. Assume that α is a root of an Eisenstein polynomial. Let n be the degree of
the extension L/K. Then we deduce that v(αn) = 1, for the valuation extending
the valuation v on K, i.e. v(α) = 1

n
, so that e ≥ n, using Theorem 2.4.3, we deduce

e = n.
Conversally, if L/K is totally ramified, then if α generates mL, we have that
1, α, . . . , αn−1 all have different valuations, so that the relation an + an−1α + . . . +
a1α

n−1 = 0 is impossible. Since the degree of L/K is n, we have a relation
an + an−1α+ . . .+ a1α

n−1 + αn = 0 and comparing the absolute values of the sum-
mands we deduce that the polynomial f(x) = xn+. . .+an−1x+an is Eisenstein.
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2.4.4 Ramification groups and Krasner’s lemma

Let L/K be a finite Galois extension. Assume that the residue field k of K is
perfect. Put G = Gal(L/K).

Definition 2.4.9. G0 = {σ ∈ G, |σα−α| < 1∀α ∈ B} is called the inertia group.

Theorem 2.4.10. Let L/K be a Galois extension and assume that the residue field
extension l/k is separable. Then the fixed field K0 = LG0 is the largest unramified
extension of K in L, G0 is normal and

G/G0 = Gal(K0/K) = Gal(l/k).

Proof. Note that G0 is indeed normal: if σ, τ ∈ G, then

|τ−1στα− α| = |σ(τα)− τα|,

so that if σ ∈ G0, then τ−1στ ∈ G0. If K ′ is the largest unramified extension in L,
then σK ′ is also unramified, for any σ : K ′ → K̄ preserving K, so that by maxi-
mality, σK ′ = K. We deduce that K ′ is Galois and that we have an isomorphism
Gal(K ′/K) ' Gal(l/k) and G0 is the kernel of the map G→ Gal(l/k), so that K0

is the fixed field.

Proposition 2.4.11. [Krasner’s lemma] Let K be complete with respect to a nonar-
chimedian absolute value. Let α, β ∈ K̄ with α separable over K[β]. If α is closer
to β than any conjugate of α (over K), then K[α] ⊂ K[β].

Proof. It is enough to show that for σ : K[α, β] ⊂ K̄ fixing K[β], one has σα = α.
Note that σβ = β (by assumption) and σ preserves | |, so that

|σα− β| = |σα− σβ| = |α− β|.

We deduce
|σα− α| = |σα− β + β − α| ≤ |α− β|.

But α is closer to β than any of its conjugate, so that we deduce σα = α.
If now K is of characteristic zero and if h(x) ∈ K[x], with h(x) =

∑
cix

i, we
define

||h(x)|| = max{|ci|}.

Next, if f is monic irreducible, with

f(x) =
∏

(x− αi), αi ∈ K̄

and g is a polynomial such that ||f − g|| is small enough, we have for β a root of g
that

|(f − g)(β)| = |f(β)| =
∏
|β − αi|.
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In particular, if ||f − g|| is small enough, there should exist αi with |β − αi| small
enough, so that we may arrange that β is closer to αi than any congugate of αi:

|β − αi| < |αi − αj|, i 6= j.

Then Krasner’s Lemma says that K[α] ⊂ K[β] and by a degree argument we obtain
K[α] = K[β].

We obtain:

Proposition 2.4.12. Let F be a monic irreducible polynomial in K[x]. Then for
any g monic, sufficiently close to f , we have that g is also irreducible and for each
root β of g there exists αi a root of f such that

|β − αi| < |αi − αj|

for any i 6= j and αi’s are the roots of f . For such α, we have K[α] = K[β].

Corollary 2.4.13. Let K/Qp be a finite extension. Then there is a finite extension
L/Q, contained in K and such that

[L : Q] = [K : Qp] and L ·Qp = K.
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Chapter 3

Dedekind rings

3.1 Dedekind rings
This section is devoted to some general properties of rings and ideals.

3.1.1 Fractional ideals

Fix an integral ring A and let K be its field of fractions. Recall the following
notions:

• A is noetherian if any increasing sequence of ideals stabilizes: for I1 ⊆ . . . ⊆
In ⊆ ... ideals of A there is N > 0 such that IN = Im for any m ≥ N . This
property is equivalent to the following: any ideal of A is generated by a finite
number of elements.

• A is integrally closed if any element x of K, that is integral over A (i.e. x is a
root of a monic polynomial with coefficients in A) is in A. For example, Z is
integrally closed, A = Z + Z[

√
−3] is not, x = 1+

√
−3

2
is not in A and verifies

the equation x2 − x + 1 = 0. If L is a field containing A, the set of elements
of L that are integral over A is a ring that we call integral closure of A in
L.

Let I ⊂ K be an A-module (we do not assume that I is an ideal of A, i.e. that
I ⊂ A).

Definition 3.1.1. I−1 = {x ∈ K |xI ⊂ A} and R(I) = {x ∈ K |xI ⊂ I}. We call
I a fractional ideal if I 6= 0 and if there exists a ∈ A with aI ⊂ A. Note that
I 6= 0 is fractional iff there exists a ∈ K with aI ⊂ A.

Definition 3.1.2. A fractional ideal I is invertible if II−1 = A.
Let I1 and I2 be two fractional ideals with I1 ⊂ a−1

1 A, I2 ⊂ a−1
2 A, a1, a2 ∈ A.

The following properties are straightforward:

1. I1 + I2, I1I2, I1 ∩ I2 are fractional ideals contained in (a1a2)−1A.
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2. I = {x ∈ K, |xI2 ⊂ I1} is a fractional ideal: in fact, I 6= 0 and for v 6= 0 ∈ I2

we have a1vI ⊂ A.

3. Applying the previous property to I1 = I and I2 = A, we obtain that I−1
1 is

fractional; applying it to I1 = I and I2 = I we obtain that R(I1) is fractional.

4. if A is noetherian, then any fractional ideal is of finite type.

Another important notion is the localization.

Definition 3.1.3. Let p be a prime ideal of A. The localization Ap of A is the
subring of K of elements u

v
with u ∈ A and v ∈ A \ p.

We have the following properties:

1. Ap is local ring (i.e. it has a unique maximal ideal);

2. p = pAp ∩ A.

3. More generally, if I ⊂ Ap is an ideal, then I = (I ∩A)Ap: in fact, we have an
inclusion (I ∩ A)Ap ⊂ I, and for another direction for x ∈ I we could write
x = u

v
with u ∈ A and v ∈ A \ p, since v is invertible in A we deduce that

u ∈ I ∩ A. Hence x ∈ (I ∩ A)Ap.

4. If A is integrally closed, then Ap is integrally closed as well: let x ∈ K be
integral over Ap. Then

xn +
an−a
b
xn−1 + . . .+

a0

b

with b ∈ A \ p and ai ∈ A. Hence bx is integral over A, hence bx ∈ A and
x ∈ Ap.

3.1.2 Discrete valuation rings

Recall that if A is a local ring with the (unique) maximal ideal generated by one
element m = (π), then we can define a discrete valuation v : K∗ → Z, v(x) = r if
x = uπr with r ∈ Z and u ∈ A∗ \m.

Proposition 3.1.4. Let A be an integral noetherian, integrally closed ring, such
that A has a unique nonzero prime ideal. Then A is a discrete valuation ring.

Proof. It is enough to show that A is principal. Let m be the maximal ideal of A.
We divide the proof into several steps:

1. If x ∈ m, then A[ 1
x
] = K. In fact, it is enough to prove that any prime ideal

of A[ 1
x
] is zero, this will imply that it is a field, hence equals to K. Let p be

a prime ideal of A[ 1
x
]. Note that x /∈ p since x is invertible. The ideal p ∩ A

is a prime ideal in A, and it is different from m since x ∈ m. By assumption,
p∩A = 0. But if y

xn
∈ p, we may assume y ∈ A, so that y ∈ p∩A = {0}. We

then have that p = 0.
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2. Let z be a nonzero element of A. If x ∈ m, there exists n ≥ 0 such that
xn ∈ zA. By the previous step K = A[ 1

x
], hence for z ∈ K there exists n such

that xnz ∈ A.

3. mm ⊂ zA for some m. In fact, since A is noetherian, m is generated by a
finite number elements, call them x1, . . . xk. Then m = kn with n such that
xni ∈ zA (from the previous step) works.

4. m−1 6= A. In fact, assume z ∈ m and m minimal for the previous step. Let
y ∈ mm−1 \zA (exists by minimality). Then m y ⊂ zA, so that y/z ∈ m−1 \A.

5. mm−1 = A. Note that mm−1 is a sub A module containing m, hence it equals
m or A. Let t ∈ m−1 \A. Since A is integrally closed, t is not integral over A.
Hence the sequence of A-modules

A ⊂ A+ At ⊂ A+ At+ At2 ⊂ . . .

is strictly increasing. Since A is noetherian, it is not included in any A-module
of finite type, in particular, in m−1 (since it is a fractional ideal, it is of finite
type). Then there is a minimal n such that tn /∈ m−1. Hence tnm is not in
A, hence not in mm−1 and tm. Hence tn−1m is not included in m. We deduce
that mm−1 is not contained in m, hence mm−1 = A by maximality of m.

6. m is principal. Since mm−1 = A, there exists an element u ∈ A \ m with
u = vw, v ∈ m, w ∈ m−1. Then u is invertible (since m is maximal). Let
t ∈ m. Then t = (tw/u)v. Since w ∈ m−1, we have that tw ∈ A. We then
have t ∈ vA. Hence m is generated by v, hence principal.

7. ∩nmn = 0. Since m is principal, we could write m = (π). The ideal I = ∩nπnA
is prime, in fact, if xy ∈ I with x ∈ πnA and y ∈ πmA we have ( x

πn
)( y
πm

) ∈
∩nπnA, so that either x ∈ πn+1A or y ∈ πm+1A, by induction x ∈ I or y ∈ I.
But I is different from m: if not, we would have πA = π2A and A = πA, that
is not possible. Hence I=0 as claimed.

8. A is principal. Let I ⊂ A be an ideal. Let N be maximal integer such that
I ⊂ mn. Then I = πNA.

This finishes the proof of the proposition.

Let A be a noetherian and integrally closed ring. Assume p is a minimal and
maximal prime ideal. Then Ap is a discrete valuation ring with maximal ideal pAp.
We denote vp the corresponding valuation. Note that the fractional ideals of Ap are
pn, n ∈ Z.

3.1.3 Dedekind rings

Let A be an integral noetherian ring.
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Proposition 3.1.5. The following properties are equivalent:

(i) A is integrally closed and any prime ideal of A is maximal;

(ii) For any prime nonzero ideal p of A the localization Ap is a discrete valuation
ring.

(iii) Any fractional ideal of A is invertible.

Proof. (i) ⇒ (ii). We’ve proved that Ap is noetherian and integrally closed. Any
prime ideal of Ap comes from an ideal (hence prime) of A, and hence is maximal.
By previous section, Ap is a discrete valuation ring.

(ii) ⇒ (iii). Let I be a fractional ideal of A. Consider II−1: assume it is
strictly contained in A. Then it is contained in some prime ideal p of A. Write
I = (a1, . . . ar). Let x ∈ Ap with IAp = xAp. Write ai = xui

vi
with ui ∈ A and

vi ∈ A \ p. Let v =
∏
vi ∈ A \ p. Since vai/x ∈ A we have v/x ∈ I−1. Hence

v ∈ II−1Ap ⊂ pAp. But pAp ∩ A = p, so that v ∈ p, contradiction.
(iii)⇒ (i). Let us show that A is integrally closed: if x ∈ K is integral over A,

the ring A[x] is of finite type over A and is contained in K. Hence it’s a fractional
ideal. We have A[x]2 = A[x], hence

A[x] = A[x](A[x]A[x]−1) = A[x]A[x]−1 = A,

since A[x] is invertible. Let p be a prime ideal in A, let m be a maximal ideal
containing p. The fractional ideal m−1p is contained in A, hence (m−1p)m = p.
Since p is prime, p = m or pm−1 ⊂ p. Assume the later case. Since A is strictly
included in m−1, we deduce

m−1 ⊂ pp−1m−1 ⊂ pp−1 = A,

since p is invertible, contradiction.

Definition 3.1.6. An integral noetherian ring satisfying the equivalent conditions
of the proposition above is called Dedekind ring.

Examples. Z is a Dedekind ring, k[t] is Dedekind, k[t1, t2] is not a Dedekind
ring.

Let A be a Dedekind ring and p a maximal ideal of A. Let I be a fractional
ideal of K (or, more generally, a nonempty subset). We set

vp(I) = infx∈Ivp(x).

One easily verifies that vp(I) is well defined and is in Z.
Since any fractional ideal of a Dedekind ring A is invertible, the set of fractional

ideals of A is the multiplicative group, that we denote by I(A).

Proposition 3.1.7. The group I(A) is isomorphic to a free abelian group generated
by nonzero prime ideals. More precisely, for I be a fractional ideal in K we have

I =
∏
p

pvp(I).
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Proof. We first show that any ideal I of A is a product of prime ideals in A. In
fact, let p1 be a prime ideal in A, containing I. Then I ⊂ Ip−1

1 ⊂ A. If I is not a
product of maximal ideals, we construct an increasing sequence

I ⊂ Ip−1
1 ⊂ Ip−1

1 p−1
2 ⊂ . . . ,

but this sequence should be finite since A is noetherian, contradiction.
Let now p be a maximal ideal of Z and let

ip : I(A)→ I(Ap)

be the map I 7→ IAp. It is a group homomorphism. Let p′ 6= p be a prime ideal of
A. Then ip(p′) = Ap. In fact, p′ is not contained in the maximal ideal of Ap, the
ideal of Ap generated by p′ is then equals to Ap.

Let us show that I(A) is generated by maximal ideals of A. Let I be a fractional
ideal of A. Let t ∈ A with tI ⊂ A. From above, the ideals tI and tA are products
of maximal ideals. Since I is invertible, it is a quotient of these products.

Now we show that the subgroup of I(A) generated by prime ideals is free: if
not, A =

∏
prp with rp ∈ Z almost all zeros. Let p0 be a prime ideal in A such that

rp0 is nonzero. Then

Ap0 = ip0(A) = ip0(p
rp0
0 ) = prp0Ap0 6= Ap0 .

Let I be a fractional ideal of K, then I =
∏

p p
rp . We have

ip(I) = prpAp = (pAp)
rp .

Hence rp = vp(IAp) = vp(I), and we finish the proof of the proposition.

Note that a Dedekind ring A is not necessarily factorial, hence we do not have
a unique factorization for elements in A, but we have this decomposition property
for ideals in A.

Definition 3.1.8. A principal fractional ideal of A is an ideal of type aA with
a ∈ K. The ideal classes group is the quotient of I(A) by the subgroup of principal
ideals.

Corollary 3.1.9. Let A be a Dedekind ring with K the field of fractions. Let x ∈ K.
We then have vp(x) = 0 for all but finitely many maximal ideals p in A.

Corollary 3.1.10. Let A be a discrete valuation ring, then I(A) = Z.

Corollary 3.1.11. Let A be a Dedekind ring, then the maps ip define an isomor-
phism between I(A) and the direct sum I(Ap) over maximal ideals of A.

Note that for I1, I2 fractional ideals, and p a prime ideal in a Dedekind ring A,
one has the following properties:

1. vp(I1I2) = vp(I1) + vp(I2);

2. vp(I1 + I2) = min(vp(I1), vp(I2));
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3. vp(I1 ∩ I2) = max(vp(I1), vp(I2));

4. vp(I1 ∩ I−1
2 ) = vp(I1)− vp(I2).

Proposition 3.1.12. Let A be a Dedekind ring with K field of fractions. Let I
be a finite set and let (xi)i∈I (resp. (ni), resp. (pi)) be a family of elements of K
(resp. of integers, resp. of maximal ideals of A). Then there is y ∈ K such that
vpi(y − xi) ≥ ni for i ∈ I and vp(y) ≥ 0 for any p 6= pi, i ∈ I.

Proof. Assume first xi ∈ A. We may assume ni ≥ 0 (up to replacing by zero the
negative ones). We could also assume that only one element xi0 is nonzero. In fact,
let yi0 be the solution in this case, then the general solution is y =

∑
yi.

We have A = p
ni0
i0

+
∏

i 6=i0 p
ni . Hence xi0 = y + z with y in the first term and z

in the second. Then y works.
In general case (without assumption xi ∈ A) we set xi = ai/s with ai ∈ A and

s ∈ A. We will find y = a/s with a determined by conditions vpi(a−ai) ≥ ni+vpi(s)
and vp(a) ≥ vp(s) for p distinct from pi. This is the same problem as in the previous
case with a biggest family of prime ideals.

3.2 Extensions

3.2.1 Extensions of Dedekind rings

Let L/K be a finite extension of fields. Let x ∈ L. Recall that the trace (resp. the
determinant) of the linear map

L→ L, y 7→ xy

is denoted by TrL/K(x) (resp. NL/K(x)) and is called the trace (resp. the norm) of
x. If L′ = K(x) is a Galois extension of K, then

TrL′/K(x) =
∑

σ∈Gal(L′/K)

σ(x)

and
NmL′/K =

∏
σ∈Gal(L′/K)

σ(x).

Assume that A is an integral noetherian and integrally closed ring with field of
fractions K. Let L be a finite separable extension of degree n. Let B be the integral
closure of A in L. Note that B ∩K = A since A is integrally closed.

Proposition 3.2.1. B is an A-module of finite type.

Proof. We will show that B is included in an A-module of finite type. Since A
is noetherian, we then deduce that B is of finite type over A. Let M be a sub
A-module of L. LetM∗ be the set of elements x ofM , such that TrL/K(xy) ∈ A for
any y ∈M . If M is free, then M∗ is free (since the bilinear form (x, y)→ Tr(xy) is
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nondegerate for a separable extension). Let X be a family of elements of B, forming
a basis of L as a K-vector space. Let V be a free A-module generated by this base.
Then the image of B by the map Tr is contained in A by definition, and we have
an inclusion:

V ⊂ B ⊂ B∗ ⊂ V ∗

and we deduce that B is of finite type.

Corollary 3.2.2. B is integrally closed.

Proof. It follows from the fact that A is integrally closed and B is of finite type
over A.

Proposition 3.2.3. The field of fractions of B is L.

Proof. If x ∈ L a root of a polynomial P (x) = anX
n + . . .+ a1X + a0, then anx is

integral over A, so that x is a quotient of two elements in B.

Theorem 3.2.4. If A is a Dedekind ring, then B is a Dedekind ring.

Proof. From propositions above, it only remains to prove that the localization of B
at any nonzero prime ideal is a discrete valuation ring, so that it is enough to show
that any prime nonzero ideal of B is maximal. If p is a prime ideal in B, that is
not maximal, there is a maximal ideal m of B containing p. Then p∩A and m∩A
are prime ideals in A, so that they should coincide since A is Dedekind. We obtain
a contradiction by the lemma below.

Lemma 3.2.5. Let A ⊂ B be two rings with A ⊂ B and B integral over A. Let
p ⊂ q be prime ideals of B. If p ∩ A = q ∩ A, then P = Q.

Proof. Assume that the inclusion p ⊂ q is strict, let x ∈ q \ p. Since x is integral,
there is a monic polynomial P (X) = Xn + an−1X

n−1 + . . . + a0 with coefficients
in A such that P (x) ∈ p, we choose P of minimal degree > 1. Since p is prime,
a0 ∈ q∩A = p∩A. Hence (P (x)− a0)/x ∈ p since p is prime. Contradiction, since
P is of minimal degree.

Recall that if L/Q is a finite extension, then the ring of integers of L is the
integral closure of Z in L.

Corollary 3.2.6. The ring of integers of a number field is a Dedekind ring.

Proof. We apply the proposition above to A = Z.
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3.3 Decomposition of ideals
Let A,B,K,L be as before and p ⊂ B be a nonzero prime ideal. Let

q = p ∩ A.

Definition 3.3.1. We say that p | q (p divides q). For the ideal qB of B, we define

ep = vp(qB)

the ramification index in the extension L/K.
By definition,

qB =
∏
p | q

pep ,

we say that q ramifies in B if there exists p with ep 6= 1.

Definition 3.3.2. The residual degree of p in L/K is

fp = [B/p : A/q].

Definition 3.3.3. The extension L/K is totally ramified if there is a unique
prime ideal p dividing q and fp = 1. If B/p is separable extension A/q and ep = 1,
we say that L/K is unramified.

Proposition 3.3.4. Let q ⊂ A maximal ideal, then

[L : K] = [B/qB : A/q] =
∑
p | q

epfp.

Proof. For the second equality, we write

qB =
∏

p
epi
i ⊂ . . . ⊂ p2p

ep1
1 ⊂ p

ep1
1 ⊂ . . . ⊂ p2

1 ⊂ p1 ⊂ B

with all intermediate quotients of dimension 1 over B/pi, hence of dimension fpi
over A/q. Each quotient of dimension fpi appears ep times, hence [B/qB : A/q] =∑
p | q
epfp.

The first equality holds if A is principal since a basis of the A-module B is also
the basus of B/p as A/q-module (any nontorsion finite type module over a principal
ring is free). For the general case denote A0 = Aq, it is a discrete valuation ring,
with field of fractions L. Denote B0 the integral closure of A0 in L, then it is easy
to check that B0 = AqB. By the case when A principal we deduce

[L : K] = n = [B0/qB0 : A0/qA0].
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Write
qB0 =

∏
i

(B0pi)
epi .

By construction, B0pi are prime ideals of B0. Hence

[B0/qB0 : A0/q] =
∑

epi [B0/B0pi : A0/q].

Here B0/B0pi ' B/pi and A0/q ' A/q and we deduce the result.

3.3.1 Galois case

Assume L/K is Galois. Then

Proposition 3.3.5. Let q ⊂ A be maximal ideal. The group Gal(L/K) acts tran-
sitively on the set of prime ideals of B dividing q.

Proof. Let p ⊂ B be such that p | q. Then the image p′ of p under the Gal(L/K)-
action is contained in B and is a sub-B-module of L. Hence p′ is a prime ideal
dividing q.

For the transitivity, let x ∈ p and p′ ⊂ B with p′ | q. By the approximation
lemma we can choose such x such that x does not belong to all conjugates of p′
distinct from p. Then NL/K(x) =

∏
σ(x) ∈ p∩A, hence NL/K(x) ∈ q∩A = p′ ∩A,

hence NL/K(x) ∈ p′ and there exists σ ∈ Gal(L/K) such that x ∈ σ(p′), so that
σ(p′) should be equal to p′, by the choice of x.

Corollary 3.3.6. The invariants ep and fp depend only on q. If gq is the number
of prime ideals of A dividing q, then

[L : K] = gqeqfq.

3.3.2 Explicit factorisation

Let A,B,K,L be as above. Assume B = A[α].

Proposition 3.3.7. Let p ⊂ A be a prime ideal. If f is minimal irreducible poly-
nomial of α and f̄(α) =

∏
P̄i(x)ei factorisation in A/p with P̄i irreducible monic,

then
pB =

∏
βeii

is the factorisation of p and βi = pB + Pi(α)B, where Pi ∈ A[X] irreducible, that
lifts P̄i.
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Proof. Let ᾱ be a root of P̄i. Then

β := ker(A[α]→ Ā[ᾱ])

satisfies
pB + P (α)B ⊂ β.

If b = g(α) ∈ β with g ∈ A[x] (i.e. b ∈ B), then

ḡ = Ph

with h̄ ∈ Ā[x], so that g − Ph has coefficients in p and g(α) ∈ pB + P (α)B.
Now, if e′i is the ramification index of βi, then fβi = deg P̄i. But f(α) = 0, so

that f(x)−
∏
P ei
i ∈ pA[x], i.e.

∏
Pi(α)ei ∈ pB and

βeii ⊂ pB + Pi(α)eiB,

hence ∏
βeii ⊂ pB +

∏
Pi(α)eiB ⊂ pB =

∏
β
e′i
i .

We deduce that ei ≥ e′i, but∑
eifi = deg f = [L : F ] =

∑
e′ifi,

so that ei = e′i.

The following lemma on ideals containing an integer will be also useful:

Lemma 3.3.8. Let A be a ring and let I be an ideal of A. Let M,N ∈ Z be two
relatively prime integers, such that MN ∈ I. Then I = JJ ′ where J = I + MA
and J ′ = I +NA.

Proof. We observe that JJ ′ = I2 + NI + MI + MNA. But I ⊂ NI + MI (since
M and N are relatively prime, by Bezout theorem), hence I = NI + MI. Since
MN ∈ I and I2 ⊂ I, so that JJ ′ = I, as claimed.

3.3.3 Complement: extensions of valued fields

Using properties of the Dedekind rings, we can now establish theorem 2.4.1. Let K
be a field, complete with respect to a discrete absolute value | |K and let L/K be a
finite separable extension.

Theorem 3.3.9. The absolute value | |K extends uniquely to a discrete absolute
value | |L on L. In addition, L is complete and the absolute value is characterized
by |β|L = |NmL/K(β)|

1
n
K.
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Proof. Let A be the discrete valuation ring in K, and let B be its integral closure in
L. Let p be the maximal ideal of A. Then B is a Dedekind ring, and the absolute
values of L extending | |p correspond to the ideals of B lying over p. Assume that
there are distinct prime ideals p1 and p2 in B dividing p. Then there is an element
β ∈ B such that p1 ∩ A[β] 6= p2 ∩ A[β] (for instance for β ∈ p1 \ p2). Let f(X)
be the minimal polynomial of β over K. Since f is irreducible and A is complete,
Hensel’s lemma shows that the image f̄(X) in k[X], k = A/p should be a power
of an irreducible polynomial. Then A[β]/pA[β] = k[X]/(f̄) is a local ring, and we
obtain a contradiction since A[β] contains two prime ideals containing p.

Hence | |p extends uniquely to an absolute value | |L on L. Similarly, | |p also
extends uniquely to an absolute value | |L′ on a Galois closure L′ of L. For each
σ ∈ Gal(L′/K), consider the map L → C, β 7→ |σβ|′L. This is again an absolute
value on L, and so the uniqueness implies that |β|L = |σβ|L′ , so that

|β|L = |NmL/K(β)|
1
n
K .

Let us show that L is complete. If e1, . . . en is a basis of B as an A-module, and let
am be a Cauchy sequence in L. Then am =

∑
aimei and each sequence aim is also a

Cauchy sequence (for a fixed i, hence converges in K, so that am converges in L.
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Chapter 4

Number fields

In this section we will investigate the properties of finite extensions of Q and their
rings of integers. We will apply and extend the general results from the previous
chapter.

4.1 Geometry of numbers
In this section we review classical results on lattices in Rn, this theory was initiated
by Minkowski in 1896.

4.1.1 Lattices in Rn

Let V be the vector space Rn, we do not specify the norm on V (since they are all
equivalent). Recall the following notions:

1. D ⊂ V is discrete if for any real number r > 0, the set {v ∈ D, |v| ≤ r} is
finite;

2. a lattice in V is a discrete subgroup L of V that generates V as an R-vector
space.

For example, L1 = Z2 in R2, or L2 = {(a, b) ∈ Z2, a ≡ 2b mod 3}.

Exercise: Find a Z-basis of L2.

If e = e1, . . . en is a basis of V , we denote:

L(e) = {m1e1 + . . .+mnen, |m1,m2, . . .mn ∈ Z}

and we denote
Π(e) = {

∑
viei, | vi ∈ [0, 1]} ⊂ V.

Theorem 4.1.1. Let L ⊂ V be a subgroup. The following conditions are equivalent:

(i) L is a lattice;
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(ii) L is generated over Z by a finite number of elements, forming an R-basis of
V . In particular, any lattice in Rn admits a Z-basis with n elements.

Proof. The proof is divided into following steps:

(i) L(e) is a lattice and any element of V could be written in a form v = λ(v)+x(v)
with λ(v) ∈ L(e) and x(v) ∈ Π(e).

(ii) if for e = {e1, . . . en} a basis of V we have that ei ∈ L, then L(e) is of finite
index in L and there is an integer N ≥ 1 such that L ⊂ 1

N
L(e).

(iii) L = L(e) for e a basis in V such that | det(e1, . . . en) | is minimal for the set
B of all the bases in V with ei ∈ L.

The part (i) is standard. We just note that to see that L(e) is discrete one can
use the norm |

∑
i viei| = supi|vi| on V .

To show (ii) first observe that L(e) ⊂ L. Let v ∈ L and write v = λ(v) + x(v)
with λ(v) ∈ L(e) and x(v) ∈ Π(e), hence x(v) = v − λ(v) ∈ L ∩ Π(e) which is a
finite set since L is a lattice. Hence

N = |L/L(e)| ≤ |L ∩ Π(e)| <∞.

By Lagrange theorem, this N works.
To show (iii), we first observe that B is nonempty. We fix e = {e1, . . . en} ∈ B,

then L(e) ⊂ L and let N be as in (ii). Then any element in L could be written
as
∑

i
mi
N
ei with mi ∈ Z. In particular, for f ∈ B, we have det(f) ∈ N−ndet(e)Z.

This set is discrete, hence there exists e ∈ B with | det(e) | minimal. To show
that L = L(e) by the part (i) it is enough to show that Π(e) ∩ L = ∅. Let
v =

∑
viei ∈ Π(e) ∩ L, 0 < vi < 1. Let 1 ≤ i ≤ n. If vi 6= 0, then v, e1, . . . , êi, . . . en

is in B. We compute the determinant:

|det(v, e1, . . . , êi, . . . en)| = |videt(e)| < det(e).

contradiction with the choice of e.

We deduce as a corollary:

Corollary 4.1.2. Let L ⊂ Rn be a lattice generated over Z by a = {a1, . . . am}.
The following conditions are equivalent:

(i) a is a Z-basis of L;

(ii a is a basis of V ;

(ii) m = n. In particular, all the Z-bases of L have the same cardinality n.

We now investigate how to change the basis of a lattice L.
Let

GLn(Z) = {A ∈Mn(Z),∃B ∈Mn(Z), AB = In}.
The following properties are easy to verify:
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Proposition 4.1.3. (i) GLn(Z) = {A ∈Mn(Z), det(A) = ±1}.

(ii) Let e and f are two bases of V and let P be the change of basis matrix from
e to f . Then L(e) = L(f) iff P ∈ GLn(Z).

In particular, (a, b), (c, d) ∈ Z2 generate Z2 iff ad− bc = ±1.

The decomposition in the part (i) of theorem 4.1.1 leads to the following more
general notion:

Definition 4.1.4. Let L be a lattice in Rn and let X ⊂ Rn is a (Lebesgue) mea-
surable set. We say that X is a fundamental domain for the action of L if any
v ∈ Rn could be written, in a unique way, as v = λ+ x.

There exists many fundamental domains for L, for example, Π(e) is a funda-
mental domain of L(e) with measure |det(e1, . . . en)|, for e = {e1, . . . en}.

Lemma 4.1.5. Let L be a lattice of V , X, Y ⊂ V two mesurable subsets. Assume
that X is a fundamental domain of V and that for x, y ∈ Y we have

x− y ∈ L⇒ x = y.

Then µ(Y ) ≤ µ(X).

Proof. Since X is a fundamental domain, by definition we have a decomposition:

V =
⊔
λ∈L

(X + λ).

Then
Y =

⊔
λ∈L

(Y ∩ (X + λ)),

hence
µ(Y ) =

∑
λ∈L

(µ(X ∩ (Y − λ)).

By hypothesis, Y and Y − λ are disjoint, hence the right hand side is at most
µ(X).

In particular, all the fundamental domaines of L have the same (nonzero)
mesure, that equals to the mesure of Π(e) for e a basis of V such that L = L(e).
We call this mesure covolume covol(L) of the lattice L.

Proposition 4.1.6. Let L ⊂ Rn be a lattice and let L′ ⊂ L be a subgroup. The
following are equivalent:

• L′ is a lattice;

• L′ is of finite index in L.
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If these assumptions are satisfied, then covol(L′) = |L/L′|covol(L).

Proof. The equivalence of (i) and (ii) follows easily from the proof of theorem 4.1.1.
We show that covol(L′) = |L/L′|covol(L). Let h = |L/L′|. Then

L =
h⊔
i=1

(L′ + λi).

for λi ∈ L. Let X be a fundamental domain for L and let

X ′ =
h⊔
i=1

(X + λi),

then µ(X ′) = hµ(X) (since the Lebesgue mesure is invariant under translations),
and X ′ is a fundamental domain for L′:

Rn =
⊔
λ∈L

(X + λ) =
h⊔
i=1

⊔
λ′∈L′

(X + xi + λ′) =
⊔
λ′∈L′

(X ′ + λ′).

For example, for L = {(a, b) ∈ Z2, a ≡ 2b mod 3}, we could use that we have a
map

Z2 → Z/3Z, (a, b) 7→ a− 2b,

that is surjective and has kernel L, hence Z2/L ' Z/3Z and by the proposition
above we obtain covol(L) = 3.

The following property will be very important for the applications.

Theorem 4.1.7. (Minkowski) Let C ⊂ V be a mesurable subset, convex and
symmetric (i.e. for x ∈ C we have −x ∈ C). Let L be a lattice in V . If
covol(L) < µ(C)/2n, or if C is compact and covol(L) ≤ µ(C)/2n, then the in-
tersection L ∩ C contains a nonzero element.

Proof. Let L′ = 2L, then L′ is a lattice and covol(L′) = 2ncovol(L).
In the first case, assume covol(L) ≤ µ(C)/2n. Then lemma 4.1.5 says that there

are distinct x, y ∈ C with x − y ≤ 2L ∩ C. Since C is convex and symmetric, x−y
2

is in C ∩ L nonzero, as claimed.
In the second case, if C is compact and covol(L) ≤ µ(C)/2n, then we introduce

for ε > 0 the set
Cε = {v ∈ V, ∃c ∈ C, |v − c| < ε}.

It is an open convex symmetric domain, with mesure > µ(C). By the previous case,
(L \ {0}) ∩ Cε 6= ∅. Since L is discrete, this set is also finite, and decreasing ε it
becomes smaller (with respect to the natural inclusion), hence equals to a (hence
nonempty) set (L \ {0}) ∩ C.
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4.1.2 Applications in arithmetics

In this paragraph we will use the properties of lattices developped above, to establish
various classical results in arithmetics.

Theorem 4.1.8. (Fermat, Euler) Let p be a prime number, p ≡ 1 mod 4. Then
there exists a, b ∈ Z with p = a2 + b2.

Proof. First note that −1 is a square modulo p by assumption p ≡ 1 mod 4. We
introduce the following lattice:

L = {(a, b) ∈ Z2, a ≡ ub mod p},

where we fix u ∈ Z with u2 ≡ −1 mod p. We consider the map

ψ : Z2 → Z/pZ, (a, b) 7→ a− bu.

It is a surjective map with kernel L. Hence L is a lattice in R2 of covolume p, by
proposition 4.1.6. Note that for any (a, b) ∈ L, we have

a2 + b2 ≡ (u2 + 1)b2 ≡ 0 mod p.

Let C(r) = {(x, y) ∈ R, x2 + y2 ≤ r}. Using that 2pπ > 4covol(L) = 4p
and Minkowski’s theorem 4.1.7, we deduce that L ∩ C(2p) 6= {0}. But then
0 < a2 + b2 < 2p and a2 + b2 ≡ 0 mod p, the only possibility is that p ≡ a2 + b2.

A similar argument leads to the following:

Theorem 4.1.9. Let d ≥ 1 be an integer and let p > 0 be an integer such that −d
is a square modulo p. Then at least one integer in the following list:

p, 2p, 3p, . . . , hp,

where h is the integral part of 4
√
d
π
, is of the form a2 + db2.

Proof. We first note that the condition that −d is a square modulo p is necessary
in order to have that p | a2 + db2. As in the previous theorem, let u ∈ Z with
u2 ≡ −d mod p and let

L = {(a, b) ∈ Z2, a ≡ ub mod p}.

Similarly, we obtain that L is a lattice of covolume p with a2 + db2 ≡ 0 mod p for
any (a, b) ∈ L. Denote

C(r) = {(x, y) ∈ R, x2 + dy2 ≤ r},

its volume is π r√
d
. Using Minkowski’s theorem, there is a nonzero element in L ∩

C(4
√
d

π
p). If (a, b) ∈ Z2 is such element, then a2 + db2 = kp, where k is an integer

such that 0 < k ≤ 4
√
d

π
p.

As a corollary, we obtain:
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Corollary 4.1.10. (i) A prime p is of the form p = a2 + 2b2 iff p ≡ 1, 3 mod 8.

(ii) A prime p 6= 3 is of the form p = a2 + 3b2 iff p ≡ 1 mod 3.

(iii) Let p be a prime. Then p (resp. 2p) is of the form a2 + 5b2 iff p ≡ 1, 9 mod
20 (resp. p ≡ 3, 7 mod 20).

Proof. (i) It is enough to observe that in the theorem above h = 1 for d = 2.

(ii) By the theorem above, p or 2p is of the form a2 +3b2, by an argument modulo
4, we see that 2p is impossible.

(iii) By quadratic reciprocity, −5 is a square modulo p iff

p ≡ 1, 3, 7, 9 mod 20.

We obtain the result again by an argument modulo 4.

As another application we obtain Lagrange’s theorem:

Theorem 4.1.11. (Lagrange)Any positive integer is a sum of four squares.

Proof. We use the classical fact that −1 is a sum of two squares in Z/nZ if n has
no square factors. Let u, v ∈ Z with 1 + u2 + v2 ≡ 0 mod n. Then one verifies that

L = {(a, b, c, d) ∈ Z4, c ≡ au+ bv mod n, d ≡ av − bu mod n}

is a lattice in Z4 of covolume n2, for any (a, b, c, d) ∈ L, we have a2 +b2 +c2 +d2 ≡ 0
mod n. If

C(r) = {x1, x2, x3, x4) ∈ R4,
∑

x2
i < r, }

then the mesure of C(r) is π2

2
r2. Then we can apply Minkowski’s theorem to get

that L ∩ C(2n) 6= {0}, and n = a2 + b2 + c2 + d2 for an element (a, b, c, d) in this
intersection.

More generally, we will be interested in values of integral quadratic forms.

Definition 4.1.12. A binary integral quadratic form is a function q : Z2 → Z
such that

q(x, y) = ax2 + bxy + cy2

for a, b, c ∈ Z.

• We say that q represents n ∈ Z if there exists (x, y) ∈ Z such that q(x, y) =
n; for n = 0 the condition (x, y) 6= (0, 0) is required.

• The discriminant of the form q is

disc(q) = b2 − 4ac.
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• We say that two forms q, q′ are equivalent (resp. properly equivalent)
and we write q ≡ q′ if there exists A ∈ GL2(Z) (resp. and det(A) = 1) with
q′(x, y) = q(A(x, y)).

We write q = (a, b, c) for the form q as above. Note that the integers a, b, c
depend only on q since a = q(1, 0), b = q(0, 1) and c = q(1, 1)− a− b. If disc(q) < 0
we will always assume that q is positive, i.e. a > 0. We will always assume that
a, b, c are relatively prime, and we will say that n is represented primitively if x
and y are relatively prime. It is easy to see that the set of integers represented by
a form q depend only on the equivalence class of q.

Theorem 4.1.13. (Lagrange) An integer n is primitively represented by a quadratic
form of discriminant D iff D is a square modulo 4n.

Proof. If D is a square mod 4n, then D = b2 − 4nc for some b, c ∈ Z. Then
q = (n, b, c) represents primitively n.

For the converse, we use the lemma below: q is properly equivalent to (n, b, c),
but then discr(q) = discr(n, b, c) = b2−4nc, so that discr(q) is a square mod 4n.

Lemma 4.1.14. An integer n is primitively represented by a form q iff q is properly
equivalent to a form (n, b, c) with −|n| < b ≤ |n|, if n 6= 0.

Proof. Let n = q(u) with u primitive (i.e. the coordinates of u are relatively prime).
Then there is a vector v ∈ Z, such that (u, v) is a basis of Z2 and det(u, v) = 1.
Then the form q′(x, y) = q(ux + vy) is properly equivalent to q and satisfies q′ =
(n, ∗, ∗). Using the following proper equivalences, we obtain a form (n, b, c) properly
equivalent to q′ with −|n| < b ≤ |n|:

(a, b, c) ∼ (a,−b, c) ∼ (a, b+ 2a, c+ b+ a) ∼ (a, b− 2a, c− b+ a).

Theorem 4.1.15. Let D ∈ Z and let p be a prime such that D is a square modulo
4p. Then there is a unique, up to equivalence, quadratic form q of discriminant D
such that p is represented by q.

Proof. As in the previous theorem, p is represented by a form of type (p, b, c) with
−p < b ≤ p. Note that we have

(p, b, c) ∼ (p,±b, c),

and we may assume 0 ≤ b ≤ p, so that D = b2 − 4pc and c = b2−D
4p

. Hence we only
need to show that there is a unique integer b with 0 ≤ b ≤ p and D ≡ b2 mod 4p.
It is straightforward if p = 2, so that we assume that p is odd. If b, b′ satisfy these
conditions, then we have b2 ≡ (b′)2 mod 4p, hence b = ±b′ mod p since p is a prime,
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hence b′ = b or b′ = p− b, but we also have b ≡ b′ mod 2 and we deduce b = b′.

The theorem above could be viewed as a motivation to investigate the forms
of a given discriminant. Note first that if D is a discriminant of a binary integral
quadratic form, then one should have

D ≡ 0, 1 mod 4.

We then consider the following forms:

q(x, y) = x2 − D

4
y2, D ≡ 0 mod 4, and q(x, y) = x2 + xy +

1−D
4

y2, D ≡ 1 mod 4.

We call the forms above a principal form of discriminant D.

Theorem 4.1.16. (Lagrange) Up to equivalence (resp. proper equivalence), there
is a finite number of quadratic forms of a given discriminant.

Proof. We leave the case D is a square as an exercise. It is then enough to show
that a form q with discriminant D is properly equivalent to a form (a, b, c) with
−|a| < b ≤ |a| ≤ |c|. The finiteness then follows, since there is a finite number of
such triples.

Note that 1 ≤ |a| ≤
√
|D|
3
, since

4|a|2 ≤ 4|ac| = |b2 −D| ≤ |a|2 + |D|.

Let now q be a form of discriminant D and let V = {|x|} with x represented
primitively by q, this set is nonempty and does not contain 0 since D is not a square,
hence we can choose |a| = minV and u ∈ Z2 primitive with a = q(u). By lemma
4.1.14, q is properly equivalent to (a, b, c) and −|a| < b ≤ |a|. We also have |a| ≤ |c|
from the choice of u, since c is primitively represented by (a, b, c), and hence by q.

The theorem above allows to introduce the following notions:

Definition 4.1.17. We denote Cl(D) the set of proper equivalence classes of
quadratic forms of disriminant D, we denote P (D) the set of proper equivalence
classes of primitive quadratic forms of disriminant D and h(D) = |P (D)|.

Corollary 4.1.18. If h(D) = 1, then any odd prime p such that D is a square mod
p is represented by a principal form of discriminant D.

We have also the following result, that we state here without proof, for forms of
negative discriminant:

Theorem 4.1.19. (Stark, Heegner, Baker) If D < 0, then h(D) = 1 iff

D ∈ {−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163.}
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4.2 Rings of integers of number fields

4.2.1 Number fields

Recall that a number field is a finite extension L of Q. We also denote Q̄ ⊂ C
the algebraic closure of Q in C: Q̄ = {x ∈ C,∃P ∈ Q[X], |P (x) = 0}.

For K a number field and x ∈ Q̄ we denote Px,K the minimal polynomial of x
over K. As in section 3.2.1, for L/K an extension of number fields, we consider the
linear map

L→ L, y 7→ xy,

we define its trace TrL/K(x) (resp. norm NL/K(x)) and we call it the trace (resp.
the norm) of x. We also denote χx,L/K the characteristic polynomial of this map.
The following properties are standard:

• χx.L/K = P r
x,K where r = [L : K(x)];

• TrL/K(x) =
∑

σ∈Gal(L/K)

σ(x)

• NmL/K =
∏

σ∈Gal(L/K)

σ(x)

• χx,L/K(X) =
∏

σ∈Gal(L/K)

(X − σ(x)).

Definition 4.2.1. Let L/K be a degree n extension of number fields. The dis-
criminant of a family e1, . . . , en of elements of L is the determinant of the n × n
matrix TrL/K(eiej), we denote it discL/K(e1, . . . en), note that it is an element of
K.

Proposition 4.2.2. Let L/K be a degree n extension and let e = {e1, . . . , en} ∈ L.
Then

(i) discL/K(e1, . . . en) 6= 0 iff e1, . . . en is a K-basis of L.

(ii) If f = {f1, . . . , fn}, f = Pe with P ∈Mn(K) is another family, then

discL/K(f1, . . . fn) = det(P )2discL/K(e1, . . . en).

(iii) discL/K(e1, . . . en) = discrL/K(σi(ej))
2.

(iv) if L = K(x) and if x1, . . . xn ∈ C are the conjugates of x, then

discK(x)/K(1, x, . . . xn−1) =
∏
i<j

(xi − xj)2 = (−1)
n(n−1)

2 NK(x)/K(P ′x,K(x)).

Proof. The statements (i) and (ii) are standard linear algebra properties, for (ii) we
use that TrL/K =

∑n
k=1 σk , so that TrL/K(eiej) = (σi(ej), σi(ej))

t, that leads to
the Vandermode determinant compuration.

Let K be a number field and let OK be the ring of integers of K: it is the
integral closure of Z in K. The following properties follow from section 3.2.1:
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(i) For x ∈ OK we have Px,K , χx,K/Q ∈ Z[X], TrK/Q(x), NK/Q(x) ∈ Z.

(ii) OK is a Dedekind ring.

We also have the following structural property:

Theorem 4.2.3. (Dedekind) Let K be a number field and let n = [K : Q]. Then
there exists e1, . . . en ∈ OK forming a basis of OK over Z, i.e. OK =

∑n
i=1 Zei.

Proof. By a primitif element theorem, we can write K = Q(x), and, up to multi-
plying x by in integer, we may assume that x is integral over Z, so that we have
Z[x] ⊂ OK . Consider now z ∈ OK . Then one checks that d = discK/Q(1, x, . . . xn−1)
is a nonzero integer. From the inclusions

Z[x] ⊂ OK ⊂
1

d
Z[x]

we deduce that OK is a sublattice of 1
d
Z[x] and hence it could be generated by n

elements.

We call an integral basis of K a family as in the theorem above. Using propo-
sition 4.2.2(ii) we easily see that absolute value |discrK/Q(e1, . . . en)| of the discrim-
inant of an integral basis does not depend on a choice of the integral basis, we call
it the discriminant of K.

We now determine the rings of integers in two particular cases of number fields.

Proposition 4.2.4. Let d ∈ Z \ {0, 1} with no square factors and let K = Q(
√
d).

Then

OK =

{
Z + Z[

√
d], d ≡ 2, 3 mod 4;

Z + Z[1+
√
d

2
], d ≡ 1 mod 4.

Proof. The inclusions ⊃ are straightforward: in the second case, for α = 1+
√
d

2
,

note that α2 − α + 1−d
4

= 0. The inclusions ⊂ follow from the fact that for
x = a+ b

√
d ∈ OK we have that the norm and the trace of x are in Z.

We have that if K = Q(
√
d), with d ∈ Z \ {0, 1} without square factors, then

disc(K) = d or 4d, corresponding to d ≡ 1 mod 4 or not (exercise). Note that a
polynomial x2 + ax+ b ∈ Z[x] with discriminant D = a2 − 4b is irreducible modulo
p > 2 iff D is a not a square modulo 4p, and has a double root iff p divides D. This
observation, proposition above and proposition 3.3.7 then allow to deduce

Corollary 4.2.5. Let d ∈ Z \ {0, 1} be without square factors, let K = Q(
√
d) and

let D = disc(K). Then

• if p|D, then there is a prime ideal P ⊂ OK containing p with (p) = P 2;

• if D is not a square modulo 4p, the ideal (p) is prime;

• if (p,D) = 1 and D is a square modulo 4p, then (p) = PP ′ where P and P ′
are two distinct prime ideals.
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4.3 Ideal classes
In this section we will be interested in the group Cl(A) of ideal classes.

4.3.1 Canonical embedding

Let K be a number field and let n = [K : Q]. Then we have n embeddings K ↪→ C.
If σ is such embedding and if σ(K) ⊂ R we call σ a real embedding. If not,
then composition of σ and the complex conjugation provide another embedding,
different from σ. We could then write n = r1 + 2r2, where r1 is the number of real
embeddings σ1, . . . σr1 , and r2 is the number of complex conjugated embeddings
σr1+1, σ̄r1+1, . . . σr2 , σ̄r2 .

Definition 4.3.1. The canonical embedding of K is a map τ : K → Rr1 × Cr2

defined by
ι(x) = (σi(x))i=1,...r1+r2 .

We identify C with R2 via the basis {1, i}.

Lemma 4.3.2. Let e1, . . . en be the Q-basis of K. Then ι(e1), . . . ι(en) is an R-basis
of Rr1 × Cr2 and generates a lattice of covolume

2−r2|discK/Q(e1, . . . en)|
1
2 .

Proof. Consider an R-basis f of Rr1×Cr2 , consisting of elements (0, 0, . . . , 0, ∗, 0, . . . 0),
where ∗ = 1 (resp. 1 or i) if its place is ≤ r1 (resp. > r1.)

Let P be a matrix of vectors ι(ej) in this basis. If r2 = 0, then |det(P )| =

|det(σj(ei))| = |discK/Q(e1, . . . en)| 12 6= 0. In general,(
1 i
1 −i

)(
Reσ(e1) . . . Reσ(en)
Imσ(e1) . . . Imσ(en)

)
=

(
σ(e1) . . . σ(en)
σ̄(e1) . . . σ̄(en)

)
so that |det(P )| = 2−r2|det(σj(ei))| = 2−r2|discK/Q(e1, . . . en)| 12 .

Theorem 4.3.3. ι(OK) is a lattice in Rr1 × Cr2.

Proof. Using the lemma above, the ring OK contains a Q-basis of K, the image
of this basis, hence ι(OK) generates Rr1 × Cr2 . It remains to show that ι(OK) is
discrete. Consider a norm on V that is a sup norm with respect to the basis f , as in
the proof of lemma above. Let r > 0. If x ∈ OK such that ι(x) < r, then |σ(x)| < r
for σ real and |Reσ(x)|, |Imσ(x)| < r for σ complex, so that |σ(x)| <

√
2r. Since x

is annihilated by its characteristic polynomial
∏

(X − σ(x)) ∈ Z[x], the coefficients
of this polynomial are bounded with respect to r, since these are integers, only a
finite number of such polynomials is possible, hence ι(OK) is discrete.
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In particular, if A ⊂ OK is an additif subgroup containing a Q-basis of K, then
ι(A) is a sublattice of ι(OK). In particular, A is of finite index covol(ι(A))

covol(ι(OK))
in OK ,

and has a Z-basis of n elements:

Proposition 4.3.4. Let K be a number field and let A ⊂ OK be an additif subgroup
containing a Q-basis of K. Then

(i) A has a Z-basis of n = [K : Q] elements.

(ii) If disc(A) ∈ Z is a discriminant of a Z-basis of A, then

|disc(A)|
1
2 = covol(ι(A))2r2(K).

(iii) If B is a subgroup of OK containing A, then A is of finite index in B, that
equals to

|disc(A)| 12
|disc(B)| 12

.

4.3.2 Finiteness

Definition 4.3.5. An order in a number field K is a subring A ⊂ OK containing
a Q-basis of K.

For example, if α is an algebraic integer, then Z[α] is an order in Q(α).

Let A be an order in a number field K and let I be an ideal in A, then we define
a norm of I by the formula

N(I) = |A/I|.
Proposition 4.3.6. For any nonzero ideal I ⊂ A and z ∈ A nonzero, N(zI) =
|N(z)|N(I). In particular, N(zA) = |N(z)|.

Proof. Let a = (a1, . . . ar1+r2 ⊂ Rr1 × Cr2) with ai 6= 0 for any i and let

da : Rr1 × Cr2 → Rr1 × Cr2 , da((xi)) = (aixi).

The map da multiplies the Lebesgue mesure by

n(a) :=

r1∏
i=1

|ai|
r2∏
i=1

|ar1+i|2.

We then deduce that ι(zI) = dι(z)(ι(I)). Hence

covol(zI) = n(ι(z))covol(ι(I))

but n(ι(z)) = |N(z))|.

Now the results from the previous section allow to establish the following im-
portant theorem:
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Theorem 4.3.7. (Minkowski) Let A be an order in K and let I be a nonzero ideal
in A, then there exists a nonzero x ∈ I, such that

|N(x)| ≤ C(r2, n)N(I)|disc(A)|
1
2 ,

where
C(r, n) = (

4

π
)r
n!

nn

is the Minkowski constant and r2 is the number of pairs of conjugated complex
embeddings of K.

Proof. We view ι(I) as a lattice in Rr1 × Cr2 , where ι is a canonical embedding.
Consider the following norm on V :

|(xi)| =
r1∑
i=1

|xi|+ 2

r1+r2∑
i=r1+1

|xi|

and for any real t > 0 consider

Ct = {v ∈ V, |v| ≤ t},

it is a compact, convex and symmetric domain. Note then

|N(x)| ≤ n−n|ι(x)|n

for any x ∈ K, since

(

r1∏
i=1

|xi|
r1+r2∏
i=r1+1

|xi|2)
1
n ≤ 1

n
(

r1∑
i=1

|xi|+ 2

r1+r2∑
i=r1+1

|xi|).

We also easily see (exercise) that we have for the Lebesque mesure of Ct that

µ(Ct) = 2r1(
π

2
)r2
tn

n!
.

Consider now t such that µ(Ct) = 2ncovol(ι(I)). By Minkowski’s theorem 4.1.7,
we have that there is a nonzero element, that we denote ι(x), in ι(I), such that
|ι(x)| ≤ t, hence

N(x) ≤ n−ntn =
n!

2r1(π
2
)r2nn

2ncovol(τ(I)) = (
4

π
)r2

n!

nn
N(I)2r2covol(ι(A)).

As a corollary, we obtain:

Proposition 4.3.8. Let A be an order in a number field K. There exists an integer
C ≥ 1 such that for any nonzero ideal I of A there is a nonzero element x ∈ I with
|I/Ax| ≤ C.
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Proof. The result follows from the Minkowski theorem above, with C ≤ C(r2, n)|disc(A)| 12 .
In fact, the kernel of the canonical projection A/xA→ A/I is exactly I/xA, so that

|I/xA||A/I| = |A/xA|.

But |A/I| = N(I) and |A/xA| = N(xA) = |NK/Q(x)| by proposition 4.3.6, so that
Minkowski theorem gives

|I/Ax| ≤ C(r2, n)|disc(A)|
1
2 .

Definition 4.3.9. Let A be an order in a number field. The smallest integer C
satisfying the conditions of proposition 4.3.8 is denoted C(A).

These results allow to establish the central result of this section:

Theorem 4.3.10. (finiteness of the class number) If A is an order in a number
field K, then Cl(A) is finite.

Proof. Let I be a nonzero ideal of A and let x ∈ I be as in proposition 4.3.8. If N
is the cardinality of the finite group I/Ax, then NI ⊂ Ax. We then see

NA ⊂ N

x
I ⊂ A.

In particular J = N
x
I is an ideal of A equivalent to I, and J is in between NA and

A. But the ring A/NA is finite and hence there is only a finite number of ideals
containing N .

Corollary 4.3.11. If A is an order in the number field K, then C(A) ≤ C(r2, n)|disc(A)| 12 ,
where n = [K : Q].

Corollary 4.3.12. (Minkowski) If K 6= Q, then |disc(K)| ≥ π
3
(3π

4
)n−1. In particu-

lar, disc(K) 6= ±1.

Proof. We apply theorem theorem 4.3.7 to A = I = OK and we use that for any
nonzero x ∈ OK , we have that N(x) is a nonzero integer, so that |N(x)| ≥ 1. This
implies that

|disc(K)| ≥ C(r2, n)−2 ≥ an, with an = C(
n

2
, n)−2,

since r2 ≤ n
2
and π < 4. But then a2 = π2

4
and an+1

an
= π

4
(1 + 1

n
)2n ≥ 3π

4
for n > 1,

hence the conclusion.
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4.4 Applications

4.4.1 Quadratic fields

In this section, we consider, with more elementary techniques, the case of

AD = Z + Zα,

were D ≡ 0, 1 mod 4 and D < 0, where we set α =
√
D/4 if D ≡ 0 mod 4, or

α = 1+
√
D

2
, if D ≡ 1 mod 4. Here, as a choice of

√
D, we consider the root with

positive imaginary part. We then have a norm map: N(z) = zz̄, i,e,

N(x+ yα) =

{
x2 − D

4
y2, D ≡ 0 mod 4;

x2 + xy + 1−D
4
y2, D ≡ 1 mod 4.

In particular, we see that the function (x, y) → N(x + yα) is a principal form of
the discriminant D.

Using the norm map, one obtains the following standard properties:

• The units of AD are the elements u ∈ AD such that N(u) = 1.

• The element π ∈ AD is irreducible iff no proper divisor of N(π) is of type
N(z) for z ∈ AD. In particular, this holds if N(z) is prime.

• AD has a factorization property (but the factorization is not necessarily unique!)

Recall the notion of an euclidean ring:

Definition 4.4.1. A ring A is euclidean if there is a map (an euclidean function)
φ : A \ {0} → N, such that for any nonzero a, b ∈ A there are q, r ∈ A such that
a = bq + r and, if r 6= 0, then φ(r) < φ(b).

In some cases the ring AD is euclidean:

Theorem 4.4.2. If D ∈ {−3,−4,−7,−8,−11}, then AD is euclidean for the eu-
clidean function N . In particular, AD is principal and factorial. For other values
of D, the ring AD is not euclidean (for any euclidean function).

Proof. Consider first the case when D ∈ {−3,−4,−7,−8,−11}. Observe that it is
enough to show that for any z ∈ Q(α) there exists t ∈ AD such that N(z − t) < 1.
In fact, then for a, b ∈ AD nonzero and if t ∈ AD, such that N(a

b
− t) < 1, then

N(a − tb) < N(b) (by multiplicativity of the norm), so that N : AD → N defines
the euclidean function. We now verify the approximation property. Fix x, y ∈ R
and let q(x, y) = N(x+ αy). We show more generally that there are u, v ∈ Z such
that q(x − u, y − v) < 1. Assume D ≡ 0 mod 4. Then we can take u, v ∈ Z such
that |x− u|, |y − v| ≤ 1

2
, so that

q(x− u, y − v) = (x− u)2 − D

4
(y − v)2 ≤

1− D
4

4
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and the last value is smaller than 1 if D = −4,−8. Assume d ≡ 1 mod 4, then note
that

4q(x, y) = (2x+ y)2 −Dy2.

Take v ∈ Z such that |y− v| ≤ 1
2
, then u ∈ Z such that |2u+ v−2x−y

2
| ≤ 1. We then

have 4q(x− u, y − v) ≤ 1− D
4
that is < 4 as soon as −D < −12, that finishes the

analysis for D ∈ {−3,−4,−7,−8,−11}.
Now assume that D is not in the set above. Assume that AD has an euclidean

function f . Let x ∈ A be nonzero and not a unit, such that f(x) is minimal.
Then any a ∈ AD is of the form bx + r with r = 0 or r ∈ A∗D. In particular,
N(x) = N((x)) ≤ 1 + |A∗D|. But |D| > 4, so that we observe that A∗D = {±1},
so that N(x) ∈ {2, 3}. In particular, the principal form of the discriminant −D
represents 2 or 3. Hence |D/4| ≤ 3 if D ≡ 0 mod 4 and |D| ≤ 12 if D ≡ 1 mod
4. The only remaining case is A−12 = Z[

√
−3], but this ring cannot be euclidean,

since it is not factorial.

More generally, one can show that for d < 0, the ring Z[
√
d] is principal

iff d = −1 or −2. And if d ≡ 1 mod 4, then Z[1+
√
d

2
] is principal iff d ∈

{−3,−7,−11,−19,−43,−67,−163}.
In the case D > 0 it is an open problem to determine if the ring AD (defined

similarly as for D < 0), is euclidean.

4.4.2 Cl(D) versus Cl(AD)

We keep the same notations (D,α,AD, N) as in the previous section. Recall that
we defined:

Cl(D) := the set of proper equivalence classes of integral quadratic
forms of discriminant D.

Theorem 4.4.3. (Dedekind) There is bijection Cl(AD)→ Cl(D), I 7→ qI .

Proof. The proof will occupy the rest of this section. We proceed by several steps,
defining the maps between Cl(AD) and Cl(D).

Step 1. For an ideal I with a fixed basis we will associate a quadratic form.
Since I ⊂ AD is an ideal, we can view I as a lattice in C, hence I has a basis of
two elements u, v. Up to changing v by −v, we may assume that the determinant
of (u, v), in the basis 1, i, is positive, we call such a basis direct. We then define:

qu,v(x, y) =
1

N(I)
N(xu+ yv).

Then

1. qu,v has integral values: for z = xu+yv, we have an inclusion of ideals (z) ⊂ I,
hence N(z)|N(I) by definition.
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2. qu,v is an integral quadratic form: qu,v(x, y) = ax2 + bxy + cy2, with

a =
N(u)

N(I)
, c =

N(v)

N(I)
, b =

TrQ(
√
D)/Q(uv̄)

N(I)
,

since N(z) = zz̄.

step 2. We now investigate properties of qu,v:

1. Discrimimant: By definition of N and AD, we have that N is a principle
form with disciminant D, and I = Zu + Zv has index N(I), by proposition
4.3.4, N |I has discriminant DN(I)2. But qu,v = 1

N(I)
N |I , so its discriminant

is D.

2. On what q depends: we will show that q depends only on the class of
I in Cl(AD). First, if u′, v′ is another direct basis of I, then by definition

1
N(I)

N(xu′ + yv′) is properly equivalent to q. Next, for an equivalent ideal zI
with z ∈ AD nonzero, we have that zI has a direct basis zu, zv, so that

1

N(z)
N(xzu+ yzv) =

N(z)

N(zI)
N(xu+ uv) =

1

N(I)
N(xu+ yv).

step 3. From quadratic forms to ideals:

q = ax2 + bxy + cy2 = a((x+
b

2a
)2 − D

4a2
y2) = qN(x+ τy),

where

τ =
b+
√
D

2a
.

With this choice of τ we see that 1, τ is a direct basis and

aτ =
b+
√
D

2
∈ α + Z

(since b ≡ D mod 2), hence aτ ∈ AD and we can define

I(q) = aZ + aτZ.

step 4. Properties of I(q): computing the norm. First note that I(q) is an
ideal: we need only to check that aα and aατ are in I(q). Since aτ ∈ α + Z, we
have that

aτ − α ∈ Z,

hence aα ∈ a2τ + aZ is in I(q). For aατ it is enough to check that (aτ)2 ∈ I(q),
but aτ 2 − bτ + c = 0, so that (aτ)2 = abτ − ac is in I(q).

Now we claim that N(I) = a. In fact, AD has basis {1, α}, but aτ − α ∈ Z,
hence AD also has basis {1, aτ}. By definition, I(q) has basis {1, aτ}, so that
AD/I ' Z/aZ and N(I) = a.
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step 5. Comparing I(q) and qu,v: for the direct basis {a, aτ} of I(q) we have
that the associated form is

1

a
N(ax+ aτy) = aN(x+ τy) = q(x, y).

Next, if we change q by a properly equivalent form, we check that I(q) ∼ I(q′): in
fact, let eh− fg = 1, then

q′(x, y) = q(ex+ fy, gx+ hy) = a′N(x+ τ ′y),

where a = N(e + τg) and τ ′ = f+τh
e+τg

. A direct verification shows that Im τ ′ > 0.
By definition I(q′) = a′Z + a′τ ′Z. Then we check that

(e+ τg)I(q′) = a′(Z(f + τh) + Z(e+ τg)) = a′(Z + τZ) = I(q).

step 6. We now finish the proof that Cl(AD) is bijective to Cl(D). We have
defined two maps I → qI and q → I(q). It is enough to verify that if q = qI , then
I(q) = I. Indeed, by definition, if I has a basis u, v, then

qu,v(x, y) =
1

N(I)
N(ux+ vy) = aN(x+ τy),

where a = N(u)
N(I)

, τ = v
u
. Hence

I(qu,v) = aZ + aτZ,

so that N(I) · I(q) = ūI and I(qu,v) = I.

4.4.3 Equation y2 = x3 + k

We consider an example of applications to diophantine equations.

Theorem 4.4.4. Let k < 0 be without square factors, k ≡ 2, 3 mod 4. Assume that
the order of the group Cl(OK) is not a multiple of 3. Then the equation y2 = x3 +k
has at most two solutions.

Proof. Let A = Z[
√
k] and note that A is the ring of integers of Q(

√
k) since k is

not 1 mod 4. Then in A the equation factorizes:

(y +
√
k)(y −

√
k) = x3.

We can also view this equation in terms of principal ideals

II ′ = (x)3,

where I = (y +
√
k) and I ′ = (y −

√
k).
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We first check that I and I ′ are relatively prime ideals. Let D = I + I ′ be their
greatest common divisor. Then 2y, 2k ∈ D. Since k has no square factors, x, y, k
are pairwise relatively prime. In particular, (2y, 2k) = 2 and then 2 ∈ D by Bezout
theorem. The ideals containing 2 are 2A,A, and a prime ideal P = 2A +

√
kA or

2A + (
√
k + 1)A, depending on k is even or not, in addition P 2 = (2). The case

D = 2A is not possible since y +
√
k /∈ 2A, so that D = P . Since P 2 = (2) and

y ±
√
k /∈ 2A, we see that vP (I) = vP (I ′) = 1. But then

vP (II ′) = 3vP (x) = vP (I) + vP (I ′) = 2

a contradiction.
Hence I and I ′ are relatively prime. Since II ′ is a cube of an ideal in A, we

deduce that I = J3 for some ideal J . But I = J3 is principal, hence the order of the
class [J ] in Cl(A) divides 3. Since the order of the group Cl(A) is not a multiple
of 3, we deduce that J is principal.

Let a, b ∈ Z such that J = (a+ b
√
k). The identity I = J3 implies that y +

√
k

is a cube of an element a+ b
√
k, up to multiplication by a unit. But any unit in A

is a cube, we may thus assume that we have the following identity:

y +
√
k = (a+ b

√
k)3 = a3 + 3kab2 + (3a2b+ kb3)

√
k.

In particular, 1 = b(3a2 + kb2), so that b = ±1 and −k = 3a2 − b. If k is not
of this type, we deduce that there is no solutions. And if −k = 3a2 − b, only one
value of b and two values of a are possible. We have y = a3+3ka and x = a2−k.

4.4.4 An example of computation of Cl(OK)

In this section we discuss an example of computation of Cl(OK). We will show that

Cl(Z[
1 +
√
−47

2
]) ' Z/5Z.

Note that A = Z[1+
√
−47

2
] is the ring of integers of the field Q(

√
−47), since −47

has no square factors and ≡ 1 mod 4. We have disc(OK) = −47 and Minkowski’s
theorem insures that any ideal class has an ideal containing an integer 1 ≤ N ≤
C(1, 2)

√
47 < 5.

Hence we are interested to determine all ideals I containing 1, 2, 3 and 4. If
1 ∈ I, we have I = A, so that we only need to determine ideals dividing 3 and
4. We first determine prime ideals containing 2 and 3. Let α = 1+

√
−47

2
and

P = Pα,Q = x2 − x+ 12. We have

P ≡ x(x− 1) mod 2, 3,

so that we have two prime ideals containing 2 and 3: D = (2, α) and D′ = (2, α−1),
as well as T = (3, α) and T ′ = (3, α−1). We have (2) = DD′ and (3) = TT ′. Hence
the ideals containing (4) = D2D′2 are 4A,A,D2, (D′)2, D2D′ = 2D′ and 2D. The
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ideals containing (3) are 3A,A, T, T ′. We then deduce that Cl(A) is generated by
the classes of D,D′, T, T ′, but D′ is inverse of D and T ′ is an inverse of T , so that
we finally have that Cl(A) is generated by the classes of D and T .

In order to find a relation between these classes, we will first search for norms
of type 2a3b and then decompose them into prime ideals.

Recall that N(x + yα) = x2 + xy + 12y2 = 1
4
(2x + y)2 + 47

4
y2. In particular,

N(α) = 12 and N(4 + α) = 32. Note that α ∈ D, α ∈ T , but α /∈ D′ (if not, we
would have D = D′). We deduce that (α) = D2T , hence [T ] = [D]−2. Similarly,
(4 + α) = D5, hence [D] is of order diving 5, hence 1 or 5, but it is not principle
since 2 is not a norm. We then deduce, as claimed:

Cl(Z[
1 +
√
−47

2
]) ' Z/5Z.

4.5 The Dirichlet formula
For the last chapter we come back to the analytic techniques and we introduce the
Dedekind ζ-functions associated to number fields.

Definition 4.5.1. Let K be a number field. TheDedekind ζ-function associated
to K is the function

ζK(s) =
∑
I

1

N(I)s
,

where I runs over all nonzero ideals of OK .

The Euler product argument leads to the following expression:

Proposition 4.5.2. ζK converges absolutely for Re(s) > 1 and defines in particular
a holomorphic function on this half-plan. If Re(s) > 1, then

ζK(s) =
∏
p

1

1−N(p)−s
,

where the product is over all prime ideals p of K and is absolutely convergent.

Proof. Let an be the number of ideals of OK with norm n. Then a1 = 1 and the
multiplicativity of the norm implies that anm = anam if m and n are relatively
prime. Hence, for any prime number p and for Re(s) > 0, we have∏

p|p

1

1−N(p)−s
=
∑ api

pis
. (4.1)

We now show the absolute convergence: recall that for a given prime p we have
at most [K : Q] prime ideals p of OK containing p, and for such ideal p we have
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N(p) = pf with f ≥ 1. In particular, |(1−N(P )−s)−1−1| ≤ 2p−σ, if σ = Re(s) > 0.
Hence for σ = Re(s) > 1 we have∑

p

∑
p|p

|(1−N(p)−s)−1 − 1| ≤ 2[K : Q]
∑
p

p−σ < 2[K : Q]ζ(σ) <∞

and the theorem follows (see also proposition (1.2.9).)

As a corollary, we obtain that for Re(s) > 1 the function ζK(s) coincides with
the Dirichlet series

ζK(s) =
∑ an

ns
,

where an is the number of nonzero ideals of OK of norm n. For example, for
K = Q(i), we have OK = Z[i] and any ideal of OK is principal, containing exactly
4 = |Z[i]∗| distinct generators. In addition N((a+ bi)) = a2 + b2 and hence

ζQ(i)(s) =
∑
n≥1

an
ns

where 4an is the number of possibilities to write n as a sum of two squares.
Let now K be an imaginary quadratic field and D = disc(OK). Let, as before,

hK be the number of ideal classes of OK . Also denote

wK = |O∗K |.

Theorem 4.5.3. (Dirichlet) If K is an imaginary quadratic field, then ζK(s) ex-
tends (uniquely) to a meromorphic function for Re(s) > 1

2
and has a unique pole at

s = 1, this pole is simple and

Res=1ζK(s) =
2πhK

wK |disc(OK)| 12
.

Proof. Let an be the number of ideals of OK of norm n and, for C ∈ Cl(OK) we
denote

an,C = |{I ∈ C,N(I) = n}|.

Then an =
∑

c∈Cl(OK) an,C . In order to count the ideals we use lemmas 4.5.4, 4.5.5
below. We claim that then

n∑
i=1

ai,C =
2π n

wK |D|
1
2

+O(n
1
2 ) (4.2)

when n → ∞. Indeed, let J be an ideal in the class C−1. By lemma 4.5.4 below,
we want to count principal ideals in J of norm ≤ nN(J): any such ideal has wK
generators and, since N(z) = N((z)), we just need to count elements z of the lattice
J ⊂ C such that |z| ≤

√
nN(J). Then the claim follows from lemma 4.5.5 below
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and the fact that J is of covolume 1
2
N(J)|D| 12 . Now the theorem follows easily from

the asymptotics (4.2). Indeed, we obtain∑
n≤N

an = O(N),

so that ζK is absolutely convergent for Re(s) > 1, and holomorphic. More precisely,
if we denote, for Re(s) > 1,

ζK(s)− 2πhK

wK |D|
1
2

ζ(s) =
∑
n≥1

bn
ns
, (4.3)

then the claim implies that
∑
k≤n

bk = O(n
1
2 ). Hence the series

∑
bn
ns

is convergent

and holomorphic for Re(s) > 1
2
. We then see that the identity (4.3) is the indentity

between two meromorphic functions for Re(s) > 1
2
. We then deduce the formula

using that the ζ-function has a simple pole with residue 1 at s = 1.

Lemma 4.5.4. Let C be a class of ideals in OK , J be an ideal of OK in the class
C−1 and let n ≥ 1 be an integer. The map

I 7→ IJ

is a bijection between the set of ideals of norm n in the class C and the set of
principal ideals included in J and having norm nN(J).

Proof. If I ∈ C, then [I][J ] = 1, so that IJ is principal, of norm N(I)N(J), from
the multipicativity of the norm. The map I 7→ IJ is injective since J is invertible.
Finally, if I ′ ⊂ J is principal of norm nN(J), there is a unique I with I ′ = IJ and
we have N(I) = n (from the multiplicativity of the norm), and [J ] = [I]−1: the
map is also surjective.

Lemma 4.5.5. Let L ⊂ C be a lattice. If f(r) = |{z ∈ L, |z| ≤ r}|, then

f(r) =
πr2

covol(L)
+O(r), r 7→ ∞.

Proof. We identify C with R2 via the basis 1, i. Let

B(r) = {z ∈ C, |z| ≤ r},

where r is a real number r > 0. If L = L(e) we fix Π = Π(e), its surface is covol(L).
Let δ be such that Π ⊂ B(δ). Then we have

C =
⊔
v∈L

(v + Π).
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Let n(r) be the number of translates v+ Π with v ∈ L, strictly included in B(r). If
(v + Π) ∩B(r) 6= ∅, note that v + Π is strictly included in B(r + δ). In particular,

n(r) ≤ f(r) ≤ n(r + δ),

and
covol(L)n(r) ≤ πr2 ≤ covol(L)n(r + δ).

We then obtain the result for r > δ since

π(r − δ)2 ≤ covol(L)f(r) ≤ π(r + δ)2.

The Dirichlet theorem generalizes for any number field. The analogous formula,
that we give without proof here, is due to Dedekind. We denote wK the number of
roots of unity in OK . We assume that K has r1 real embeddings and r2 pairs of
complex embeddings.

Theorem 4.5.6. (Dedekind) The function ζK(s) is holomorphic for Re(s) > 1 and
extends (uniquely) to a meromorphic function for Re(s) > 1− 1

[K:Q]
and has a simple

pole at s = 1, such that

Res=1ζK(s) =
2r1+r2πr2hKRK

wK |disc(OK)| 12
,

where RK is a certain constant (the regulator of K).
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