

Algebra I. Homework 6. Due on November 5, 2020.

1. Find the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} .
2. Let K be a field, let $P \in K[x]$ be a polynomial of degree 3, and let L be the splitting field of L over K . What are the possible values of $[L : K]$? Give a proof that you list all possible values, and for each value give an example.
3. Let $K = \mathbb{Q}(x)$ be the field of rational functions in one variable x over \mathbb{Q} . Let $K_1 \subset K$ be the field $K_1 = \mathbb{Q}(x^2)$ (of rational functions in x^2) and let $K_2 = \mathbb{Q}(x^2 - x)$.
 - (a) Show that K is algebraic over K_1 and K_2 (write explicitly the minimal polynomial of $x \in K$ over these fields).
 - (b) Show that K is not algebraic over $K_1 \cap K_2$ (compute $K_1 \cap K_2$).
4. Let \mathbb{F}_{p^n} be a finite field with p^n elements. Write \mathbb{F}_9 as a splitting field of an irreducible polynomial over \mathbb{F}_3 .
5. Let k be a field. Let $J = (x^2 + y^2 - 1, y - 1) \subset k[x, y]$ be the ideal generated by $x^2 + y^2 - 1$ and $y - 1$.
 - (a) Find $V(J)$;
 - (b) Find a function $f \in I(V(J))$ such that f is not in J .
 - (c) Describe $I(V(J))$.