
Electrostatics - a very brief summary January 29 2019

These notes provide a short summary of the key concepts of electrostatics. This serves two purposes.
First, it will help you make physical sense of some of the mathematical questions we will address in this
course. Second, it will explain a good part of the terminology used in the field of integral equations,
which is largely inspired from concepts in electrostatics.

All the derivations are inspired from J.P. Freidberg’s notes on Electrostatics for the NSE class
22.105 Electromagnetic Interactions at MIT.

Electrostatics is the field of electrodynamics that describes phenomena involving time-independent
distributions of charges and fields.

1 Force between charged bodies – Coulomb’s Law

1.1 Coulomb’s law for two charges

The starting point for these notes is a law that cannot be proved mathematically but that is instead
the result of a very large number of experiments and has never been proved wrong.

Coulomb’s law : The force F on a point charge q1 located at r1 due to another point charge q2

located at r2 is given by

F2→1 = kq1q2
r1 − r2
|r1 − r2|3

(1)

k is a constant of proportionality that depends on the system of units used. In all my notes, I will use
the SI system, in which F is written as

F2→1 =
q1q2

4πε0

r1 − r2
|r1 − r2|3

(2)

ε0 is called the permittivity of free space, and its value is ε0 ≈ 8.854× 10−12 farad per meter. The SI
unit of charge is the coulomb (C).

— As can be seen in Equation (2), for two charges of the same sign the force F is repulsive while
for two charges of opposite sign, the force is attractive.

— We can also readily see that |F2→1| = |F1→2| : the magnitude of the force q1 exerts on q2 is equal
to the magnitude of the force q2 exerts on q1, in agreement with Newton’s third law of motion.

1.2 Coulomb’s law for several charges

It is also experimentally verified that the total force produced on one charge by a number of other
charges is the vector sum of the individual two-body forces of Coulomb. In particular, if there are three
charges q1, q2 and q3, the force on q1 due to q2 and q3 is

F = F2→1 + F3→1 = q1

(
q2

4πε0

r1 − r2
|r1 − r2|3

+
q3

4πε0

r1 − r3
|r1 − r3|3

)
(3)

Note that the reason why in Equation (3) we chose the particular factorization in which q1 is taken
outside the parenthesis but not 1/4πε0 will be apparent in the next section.

2 Electric field

A useful way to think about the Coulomb force is to imagine that each charge produces a “Coulomb
force field” which acts on any charges present. For the situation given in Equation (2) we can say that
the electric field at any point r due to the charge q2 is

E(r) =
q2

4πε0

r− r2
|r− r2|3

(4)

The force on a point charge q located at r due to that electric field then is

F = qE(r) (5)
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In particular, for the charge q1 considered in Equation (2) we have

F2→1 = q1E(r1) =
q1q2

4πε0

r1 − r2
|r1 − r2|3

The introduction of E would not be particularly useful if we only considered situations with two
charges. It becomes very convenient when we consider a collection of charges. Then, the property of
vector addition for the Coulomb force means that the electric field due to a collection of charges is the
sum of the electric fields due to each charge separately :

E(r) =
∑
k

qk
4πε0

r− rk
|r− rk|3

(6)

The particular factorization chosen in Equation (3) now makes sense. The electric field at any point r
due to the presence of the charges q2 and q3 is

E(r) =
q2

4πε0

r− r2
|r− r2|3

+
q3

4πε0

r− r3
|r− r3|3

(7)

3 Continuous charge distributions

3.1 Electric field for a continuous charge distribution

In many situations of physical interest, we study macroscopic systems for which the number of
charged particles is of the order of 1020 or more, and one does not have detailed knowledge of the
charge strength and location at the microscopic level, but only so at the mesoscopic level. In these
situations, a sound approach is to replace the 1020 charges with a smooth, smeared out, continuous
distribution of charge, called the charge density, often written ρ, with the units Coulomb/m3.

When we replace discrete charges with a smeared-out charge distribution, the following transfor-
mations have to be made to calculate the electric field∑

k

→
∫

qk → ρ(x′)dx′

so that the electric field for a continuous charge distribution is given by

E(x) =
1

4πε0

∫
ρ(r

′
)

r− r
′

|r− r′ |3
dr

′
(8)

Note that a set of discrete charges as discussed in the previous section can also be described with a
charge density ρ by means of delta functions. For example, for the three charges q1, q2 and q3 discussed
above, at the locations r1, r2 and r3, we can write

ρ(r) =

3∑
k=1

qkδ(r− rk)

3.2 The Scalar Potential

Note that

∇
(

1

|r− r′ |

)
= − r− r

′

|r− r′ |3
(9)

This means that Eq.(8) can be written as :

E(r) = − 1

4πε0

∫
ρ(r

′
)∇
(

1

|r− r′ |

)
dr

′
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Since the gradient operates on r but not on the integration variable r
′
, we can take it out of the

integral.

E(r) = − 1

4πε0
∇
∫

ρ(r
′
)

|r− r′ |
dr

′
(10)

Eq.(10) then allows us to define the scalar potential φ

φ(r) =
1

4πε0

∫
ρ(r

′
)

|r− r′ |
dr

′
(11)

such that
E = −∇φ (12)

Eq.(12) obviously implies that the vector E satisfies

∇×E = 0 (13)

4 Differential form for the equations of electrostatics

If, for computational reasons, we wanted to avoid the integral expressions given above, and solve
for E by means of differential relations, Eq.(13) would not be enough to determine the electric field.
We now show that an additional relation for E can easily be obtained from Eq.(8).

We start by observing that, for r 6= r
′
,

∇ ·

(
r− r

′

|r− r′ |3

)
=

3

|r− r′ |3
− 2

3

2

(
r− r

′
)
·
(
r− r

′
)

|r− r′ |5
= 0 (14)

Using this information, one might at first think that ∇ · E = 0. This is incorrect, because Eq.(14)
is ill-defined when r = r

′
. In order to evaluate ∇ ·E properly, we have to use the divergence theorem,

and the concept of delta functions. The key idea is to calculate the following integral :∫
∇ ·

(
r− r

′

|r− r′ |3

)
dr

′

Because of Eq.(14), there will be no contribution to the integral anywhere except when r = r
′
.

Thus, we can calculate this integral over a sphere centered in r, of arbitrary radius R, and use the
spherical coordinates (u

′
, θ, φ), where u

′
= |r− r

′ |. According to the divergence theorem, we have :∫
∇ ·

(
r− r

′

|r− r′ |3

)
dr

′
= −

∫
∇

′
·

(
r− r

′

|r− r′ |3

)
dr

′
= −

∫
n

′
·

(
r− r

′

|r− r′ |3

)
dS

′
(15)

where n
′

represents the local unit normal vector to the sphere surface. In the spherical coordinates
we introduced, we have∫

n
′
·

(
r− r

′

|r− r′ |3

)
dS

′
= −

∫ π

0

∫ 2π

0

u
′

u′3
u

′2sinθdθdφ = −4π (16)

So that ∫
n

′
·

(
r− r

′

|r− r′ |3

)
dS

′
= 4π (17)

Combining Eq.(14) and Eq.(17), we conclude :

∇ ·

(
r− r

′

|r− r′ |3

)
= 4πδ(r− r

′
) (18)
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or, using Eq.(9),

∇2

(
1

|r− r′ |

)
= −4πδ(r− r

′
) (19)

where δ is the Dirac delta function.
Using Eq.(18), we obtain the desired differential form of Gauss’s law for E :

∇ ·E =
4π

4πε0

∫
ρ(r

′
)δ(r− r

′
)dr

′
=
ρ(r)

ε0
(20)

And finally Eq.(20) can be expressed as an equation for the electrostatic potential :

∇2φ = − ρ

ε0
(21)

5 Summary of electrostatics

The goal in electrostatics is to determine the potential φ or equivalently the electric field E due to a
distribution of fixed charges that do not vary in time. The relationship between E and φ is E = −∇φ,
and E and φ are determined in terms of the charge distribution ρ according to the following formulas

— Integral formulation

E(r) =
1

4πε0

∫
ρ(r

′
)

r− r
′

|r− r′ |3
dr

′

φ(r) =
1

4πε0

∫
ρ(r

′
)

|r− r′ |
dr

′

— Differential formulation
∇ ·E =

ρ

ε0

∇2φ = − ρ

ε0

— Boundary conditions

The formulations described above are not strictly equivalent, because of boundary conditions one
may give on E of φ.

By construction, the integral expression only applies to the calculation of the electric field and
electrostatic potential for free space boundary conditions. Other boundary conditions would re-
quire a modification of the formulation, in which the solution φtot would be written as the sum of
the free space solution φfs and of a homeogenous solution φh satisfying ∇2φ = 0 and constructed
such that φtot satisfies the desired boundary conditions.

In contrast, the differential formulation applies locally, and is therefore correct for any boundary
condition, which need to be specified for the solution to Poisson’s equation to be unique.

The boundary conditions depend on the physics problem of interest. A common boundary condi-
tion is that of a perfect conductor. The electric field inside a perfect conductor is identically zero,
which means that φ is a constant inside a perfect conductor. Thus, in the presence of a perfect
conductor, one wants to solve the Dirichlet boundary value problem :

∇2φ = − ρ

ε0
in Ω , φ = K on ∂Ω

where K is a constant.
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6 Free space Green’s function for Laplace’s equation

In the light of Eq.(19) and Eq.(11), we see that we may write the electrostatic potential as the
convolution

φ(r) =
1

ε0

∫
ρ(r′)GL(r, r′)dr′ (22)

where

GL(r, r′) =
1

4π

1

|r− r′|
(23)

is the free space Green’s function for Laplace’s equation.

The convolution in Eq.(22) takes a general form, which we will use for free-space solutions of other
partial differential equations. What will change, for these other partial differential equations, is the
form of the Green’s function G.

Note that for Poisson’s equation in two-dimensions, we may write

φ(r) =
1

ε0

∫
ρ(r′)GL(r, r′)dr′ , GL(r, r′) = − 1

2π
ln(|r− r′|) Two-dimensional case (24)

7 Layer potentials

7.1 Single layer potential

Consider the expression (22), and consider the particular case in which the charge distribution is
only nonzero on the surface ∂Ω of a domain Ω. In that case, the potential is given by the surface
integral

φ(r) =
1

ε0

∫
∂Ω

ρ(r′)GL(r, r′)dS(r′) (25)

This layer potential is called a single-layer potential, an expression which we will frequently use in a
much wider context in this course. We will write the expression above in the following concise manner

φ(r) = SL [ρ] :=
1

ε0

∫
∂Ω

ρ(r′)GL(r, r′)dS(r′) (26)

7.2 Double layer potential

Suppose now that the charge distribution is on two parallel surfaces separated by a distance δ,
and that the distribution on the first surface is ρ(r′)/δ and the distribution on the parallel surface
is −ρ(r′)/δ, forming a dipole configuration. For any δ, the electrostatic potential due to this charge
distribution is

φ(r) =
1

ε0

∫
∂Ω

ρ(r′)
[GL(r, r′)−GL(r, r′ + n(r′)δ)]

δ
dS(r′) (27)

where n is the normal vector to the first surface. Taking the limit δ → 0, we obtain what we call the
double-layer potential

φ(r) =
1

ε0

∫
∂Ω

ρ(r′)n(r′) · ∇GL(r, r′)dS(r′) (28)

which in this class we will write concisely as

φ(r) = DL [ρ] :=
1

ε0

∫
∂Ω

ρ(r′)n(r′) · ∇GL(r, r′)dS(r′) (29)
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