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1 Introduction

Before describing the current lay of the land in modern computational science (at least with
regard to PDEs and classical physics-driven problems), it is worth pointing out what is necessary
to understand the following lecture notes. We will assume that the reader has a strong grasp of
linear algebra and multi-variable calculus, a working knowledge of the basic theorems and ideas
in complex analysis, and at least some exposure to ordinary and partial differential equations. Of
course, proficiency in computer programming (preferably C, Fortran, or Matlab) will prove
invaluable if any of the algorithms in these notes are to be implemented. Remember, the level of
work required to implement a fast algorithm is not an excuse to avoid implementing it!

Keep in mind that these notes are far from finished! Please send suggestions and errors to
oneil@cims.nyu.edu.

1.1 Motivation: electrostatics

As motivation for the use of integral equations and fast algorithms over the usual PDE formulations
(and solvers) of many physical systems, we first examine a special case of Maxwell’s equations:
electrostatics. In an isotropic medium with constant magnetic permeability µ and electric
permittivity ε , the fully time-dependent Maxwell equations governing the propagation of electric
and magnetic fields, E and H, are given by:

∇ × E = −µ
∂H
∂t

, ∇ ×H = ε ∂E
∂t
+J,

∇ · E = ρ

ε
, ∇ ·H = 0,

(1.1)

where J and ρ are the electric current and charge, respectively. For various important physical
devices, it suffices to study the above equations in the time harmonic case. Assuming an implicit
time dependence of e−iωt on E, H, J, and ρ, we have what are known as the time-harmonic
Maxwell’s equations:

∇ × E = iωµH, ∇ × H = −iωεE + J,

∇ · E =
ρ

ε
, ∇ · H = 0,

(1.2)

where script quantities have been replaced by bold quantities to show only spatial dependence.
Furthermore, letting ω → 0 we arrive at the equations of electro- and magnetostatics:

∇ × E = 0, ∇ × H = J,

∇ · E =
ρ

ε
, ∇ · H = 0.

(1.3)
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In this regime, we see that the electric and magnetic fields have completely decoupled. Examining
the equations for E for a moment, the first implies that the electric field must be a gradient. We
then write:

E = −∇ϕ, (1.4)

where ϕ will be referred to as the electric potential. Inserting this representation into the
divergence equation, we have a Poisson problem for the potential function:

− ∆ϕ =
ρ

ε
. (1.5)

That is to say, for a known charge distribution ρ, the calculation of the electric field requires the
solution to the above Poisson problem.

Standard PDE discretizations of the Poisson problem (finite difference, finite element, etc.)
result in sparse linear systems which can be solved relatively efficiently using sparse linear
algebra methods (nested dissection, etc.) or iterative methods (e.g. conjugate gradients). Often
solvers which scale near linearly in the number of unknowns can be derived. However, if the
domain of interest is unbounded (i.e. all of R3) then a prohibitive amount of discretization is
required, or such methods as Perfectly Matched Layers (PMLs) must be used. Lastly, derivatives
of the solution ϕ must be calculated numerically, which can lead to severe loss of precision if a
very fine discretization mesh was used.

On the other hand, using a little bit of physics and mathematics, we can directly write down
the solution to equation (1.5) using Coulomb’s Law:

ϕ(x) =

∫
ρ(x ′)

4πε |x − x ′ |
dV(x ′). (1.6)

Mathematically, this corresponds to the use of the Green’s function for the Laplace operator:

∆g = δ, (1.7)

with g(x, x ′) = −1/4π |x − x ′ |. Note that by writing down the solution ϕ in integral form, we
have eliminated the solve step! Only an evaluation of the integral in (1.6) is required. In avoiding
having to actually solve a linear system, however, we have introduced various numerical analysis
and algorithmic issued that need to be overcome. First, the singular kernel in this expression
needs to be integrated accurately. This requires the development of specialized quadrature rules
for singular integrals. And second, if support of ρ is discretized at N points x j , and the potential
ϕ is required at each of these points, denoting our quadrature weights by wj , we are left with the
dense sum:

ϕ(xi) ≈
1
ε

∑
j,i

wj ρ(x j)

4π |xi − x j |
. (1.8)

It is the rapid evaluation of sums such as these that precipitated the development, originally,
of what are known as tree codes. These algorithms are almost always low-order accurate,
and scale as O(N log N). Later on, in the late 80s, more efficient algorithms known as fast
multipole methods (FMMs) which scale linearly in N were developed to optimally accelerate the
computation of N-body sums such as (1.8).

Despite these numerical and algorithmic requirements in order to efficiently use integral
methods, the benefits far outweigh work required to implement them. For example, derivatives
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of ϕ can be computed analytically, and the potential can be computed at locations y outside
the support of ρ straightforwardly – that is to say, merely the sum above is evaluated with bxi
replaced by y. Lastly, any numerical conditioning issues in the evaluation of the solution are
usually tied to underlying physical considerations, and not artifacts of numerical differentiation
or other various instabilities.

It is with examples such as these that the following lecture notes were developed. While
fast multipole methods are most commonly associated with the evaluation of N-body sums,
their true power lies in their ability to accelerated integral equation methods. This feature has
revolutionized the field of computational electromagnetics, in particular. Analogous methods
are used every day in large-scale calculations in fluid flow, acoustic wave propagation, and
elastodynamics simulations. We will address many of these applications in the following
chapters, with a focus on modern developments and thorough treatment of both the integral
equation theory and the implementation of the related algorithms.

1.2 The state of computing

For the past several decades, Moore’s Law regarding the growth of computational power has
approximately held true: the number of transistors in integrated circuits has roughly doubled
every two years. This behavior has resulted in unprecedented growth in computational power,
allowing for computations that previously required entire buildings of computers to now be
performed on laptops. While Moore’s Law cannot continue to hold true indefinitely, it will most
likely persist for some time.

This being said, it is more common today for computing environments to obtain more flops
per second by adding parallelism in the form of networked machines or dedicated compute
cards such as Graphics Processing Units (GPUs) or specialized co-processors, instead of relying
on an increase in clock speed or density of transistors. Many of the following fast algorithms,
since they are often built on hierarchical data structures, are compatible with such compute
architecture.

The question that remains is: what happens to computational science when the exponential
growth in compute power dies off? Or rather, what types of algorithms will be compatible with
limited computing resources?

While not complete by any means, there are several characteristics that all the fast analysis-
based algorithms shared that will be covered in these notes. These algorithms differ from many
of the classical algorithms rooted in theoretical computer science (sorting, etc.).

Asymptotic scaling: In part because Moore’s Law has held true, asymptotic scaling of
fast computational algorithms is perhaps their most important characteristic. For example,
a standard matrix-vector multiplication requires O(n2) operations. If for twice the money,
a computer can be purchased which is twice as fast and has twice as much memory (this
is not exactly true), then only a matrix of dimension

√
2 ≈ 1.4 times larger can be applied

to vectors of length N in the amount of time. This is not a sustainable scaling of cost vs.
computational ability in the long-term. Going forward, by fast algorithm we mean one
whose computational complexity scales as O(N logp N), for some reasonably small p, as
the size N of the inputs grows.
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Controlled precision: Analysis-based algorithms strongly take advantage of the fact that
modern day computers operate natively as finite precision machines. For example, the
Fast Fourier Transform relies on particular algebraic observations concerning complex
exponentials, as well as relying on the data to be sampled at equispaced intervals. No
numerical approximation is made in the design of the algorithm; it is exact in infinite
precision. This being said, often times that degree of precision is not needed. The
algorithms detailed in this course often scale as O(N logp N logq 1/ε), where ε is the
precision to which the output of the algorithm is desired. Obtaining more correct digits
in the output only affects the constant implicit in the O(·) notation, not the asymptotic
scaling with N . Because of only the need for finite precision solutions, many ideas in
approximation theory can be used to accelerate and control intermediate calculations.

Technical implementations: Most, if not all of the algorithms described in these notes
rely on hierarchical data structures, efficient linear algebra routines, and/or efficient and
accurate evaluation of many of the special functions of classical mathematical physics
(Bessel functions, orthogonal polynomials, etc.). Each of these tasks can be an entire
project in and of themselves, but once implemented, become black box subroutines that
can be relied on. In fact, the efficient and accurate evaluation of certain classes of special
functions is an ongoing research topic in several groups.

The above characteristics of many fast analysis-based algorithms have some interesting
consequences. For example, as in the FFT, evaluating N-body interactions (for very large N)
using the fast multipole method is often more accurate that doing the direct calculation via
matrix-vector multiplication. The reason for this is the inherent round-off error from computing
the dot-product of two vectors of length N . In fact, the round-off error in computing x · y can be
shown to be:

ε ≤ N εmach

∑
j

|xj | |yj |. (1.9)

Since fast multipole methods never add up N numbers for each data point, the round-off error is
often much smaller.

1.3 Notes on the notes

In the following manuscript, we have explicitly avoided any such discuss of function spaces.
When necessary, and of interest, references are provided to direct the reader to sources that
may clarify the requirements on functions, kernels, operators, etc. For the most part, unless
otherwise noted, boundaries are assumed to be smooth and kernels and functions are assumed to
be square integrable. This assumption naturally corresponds to the classic L2 theory of integral
operators, as is commonly seen in works by Fredholm, Hilbert, and Riesz.
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2 The Laplace equation

In the introduction, we saw that Poisson’s equation arises naturally from physical considerations
in electrostatics merely by using Coulomb’s law for the force exerted on charged particles.
Similarly, Laplace’s equation with boundary conditions (and Poisson’s equation) also arise
naturally in fluid flow and elasticity. These problems will be treated in later chapters. We first
discuss the simplest case, that of Laplace’s equation in two dimensions.

2.1 Two dimensions

In two dimensions, the Green’s function g for Laplace’s equation satisfies

∆g(x, x ′) = δ(x − x ′). (2.1)

Since the right hand side is only a function of r, we can assume that so is the Green’s
function g = g(r). With this in mind, and switching to polar coordinates, we see that the Green’s
function, away from r = 0 must satisfy:(

∂2

∂r2 +
1
r
∂

∂r

)
g(r) = 0. (2.2)

The solution to this ODE is g(r) = c1 log r+c2. Taking c2 = 0, the constant c1 can be determined
by integrating both sides of (2.1) over some ball of radius R and applying the Divergence
Theorem. We have that∬

B(0,R)
∆g(r) dV(r) =

∬
B(0,R)

∇ · ∇g(r) dV(r)

=

∫
∂B(0,R)

n · ∇g(r) dA(r)

=

∫ 2π

0

(
∂

∂r
log r

)
|r=R R dφ

= 2π.

(2.3)

This result is independent of R, and since
∬
δ = 1, by definition the definition of the δ function,

we have that
g(x, x ′) = g(x − x ′) =

1
2π

log |x − x ′ |. (2.4)

Using this Green’s function the solution to the Poisson problem in all of R,

∆u = f , (2.5)
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can explicitly be written as:

u(x) =
1

2π

∬
R2

log |x − x ′ | f (x ′) dV(x ′). (2.6)

The log kernel is absolutely integrable, and therefore u is well-defined everywhere.
For functions σ and µ supported on the boundary Γ of some open region Ω ⊂ R2, we define

the single and double layer potential operator:

Sσ(x) =

∫
Γ

g(x, x ′)σ(x ′) ds(x ′)

Dµ(x) =

∫
Γ

(
∂

∂n′
g(x, x ′)

)
µ(x ′) ds(x ′),

(2.7)

where ∂/∂n = n · ∇ and it is assumed that x < Γ. It is worth noting that no matter what σ and µ
are, the functions Sσ and Dµ are harmonic everywhere by construction.

In the limit as x approaches the boundary Γ, special case must be made to in order to obtain
the correct limit in these integrals. Since the Green’s function g exhibits only a logarithmic
singularity, it is absolutely integrable and we have that

lim
h→0±

Sσ(x + hn) = Sσ(x). (2.8)

That is to say, the function Sσ is continuous across the boundary Γ. On the other hand, it can
be shown that the double layer potential Dµ exhibits a jump of size µ across Γ:

lim
h→0±

Dµ(x + hn) = ±
1
2
µ(x) +Dµ(x), (2.9)

where for x ∈ Γ, in somewhat of an abuse of notation, Dµ(x) is interpreted in its principal
value sense:

Dµ(x) = lim
ε→0

∫
Γ\B(x,ε )

−n′ · (x − x ′)

2π |x − x ′ |2
µ(x ′)ds(x ′), (2.10)

where B(x, ε) is the ball of radius ε centered at x. A careful calculation along the smooth curve
Γ can show that the integral over Γ ∩ B(x, ε) is merely ±µ/2:

lim
ε→0

lim
h→0±

∫
Γ∩B(x,ε )

−n′ · (x + hn − x ′)

2π |x + hn − x ′ |2
µ(x ′)ds(x ′) = ±

1
2
µ(x). (2.11)

Furthermore, the double layer kernel is actually continuous at x = x ′, with

lim
x→x′

−n′ · (x − x ′)

2π |x − x ′ |2
= κ(x), (2.12)

where κ denotes the signed curvature of Γ. See [?] for a full derivation. Related formulas in the
complex analytic case, known as Sokhotski-Plemelj formulae, can easily be derived using the
residue theorem.
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Lemma 1 (Plemelji formula). Let f be a complex analytic function in a neighborhood of the
curve Γ which bounds a simply connected region Ω ⊂ C. Then for w ∈ Γ,

lim
ξ→w±

1
2πi

∫
Γ

f (z)
ξ − z

dz = ±
1
2

f (w) + PV
∫
Γ

f (z)
ξ − z

dz, (2.13)

where + denotes the limit from the exterior (C \ Ω), − the limit from the interior, and PV the
principal value.

Proof. We prove the case for the interior limit only, as the exterior limit is virtually identical. To
this end, let w ∈ Γ, and let Γε = Γ ∩ B(w, ε). Denote by ∂B+(w, ε) the part of the boundary of
this ball that lies exterior to Ω. The interior limit corresponds to the limit as ε → 0 in Figure 2.1.
The direction (counter-clockwise) of integration is also shown in the figure. The integral can
therefore be split as follows:∫

Γ

f (z)
w − z

dz = lim
ε→0

∫
∂B+(w,ε )

f (z)
w − z

dz + PV
∫
Γ

f (z)
w − z

dz. (2.14)

Under the assumption that f is analytic in a neighborhood of Γ, ε can be chosen small enough
so that f can be written in B(w, ε) as

f (z) = f (w) + f ′(w)(z − w) +
f ′′(w)

2
(z − w) + . . . . (2.15)

Inserting this expansion into the first integral on the right of (2.14), we have (as in a residue
calculation):∫

∂B+(w,ε )

f (z)
w − z

dz =
∫
∂B+(w,ε )

f (w)
w − z

dz +
∫
∂B+(w,ε )

f ′(w) (z − w)

w − z
dz + . . .

= f (w)
∫ θ2

θ1

−iεeiθ

εeiθ
dθ + f ′(w)

∫
∂B+(w,ε )

iε2ei2θ

εeiθ
dθ + . . .

= −i f (w)
∫ θ2

θ1

dθ + iε f ′(w)
∫
∂B+(w,ε )

eiθdθ + . . .

(2.16)

where the curve has been parameterized according to w − z = εeiθ . Taking the limit as ε → 0,
we see that θ2 − θ1 → π, and we have that

lim
ε→0

∫
∂B+(w,ε )

f (z)
w − z

dz = −iπ f (w). (2.17)

�

A similar calculation can be done for the real-valued double layer kernel, as it can be shown
that

<

(
1

2πi
dz′

z − z′

)
=

−n′ · (x − x ′)

|x − x ′ |2
ds(x ′), (2.18)

where we have associated the complex values z, z′ with the real vectors x and x ′, respectively.
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Figure 2.1: Splitting of the boundary curve in order to calculate the jump conditions layer potential
operators and the Cauchy integral for values on the curve.

To summarize, we have the following limited behaviors for the single and double layer
potentials:

lim
h→0±

Sσ(x + hn) = Sσ(x),

lim
h→0±

Dµ(x + hn) = ±
1
2
µ(x) +Dµ(x).

(2.19)

The kernel of S is singular, but integrable, and the kernel of D is continuous (and therefore
integrable). Analogous results can be shown for their normal derivatives along Γ, denoted by S′

and D ′:
lim
h→0±

S′σ(x + hn) = ∓
1
2
σ(x) + S′σ(x),

lim
h→0±

D ′µ(x + hn) = D ′µ(x).
(2.20)

The operator D ′ is known as a hypersingular operator, and has to be interpreted as a finite part
integral. That is to say, for x ∈ Γ,

FPD ′µ(x) = lim
ε→0

(∫
Γ\B(x,ε )

∂2g(x, x ′)

∂n ∂n′
µ(x ′) ds(x ′) −

2µ(x)
ε

)
. (2.21)

As before, principal value and finite part integrals are implied when the argument is located on
the boundary of integration.

2.1.1 The Interior Dirichlet Problem

The canonical boundary value problem for the Laplace equation is that of the Interior Dirichlet
problem. In this section we derive a corresponding integral equation for this boundary value
problem, prove that it has a unique solution, and then discuss discretization and quadrature
techniques in the next section. Other boundary value problems are treated in subsequent sections,
but the techniques are very similar.

For some connected bounded region Ω with smooth boundary Γ, and f defined on Γ, the
interior Dirichlet boundary value problem is given as:

∆u = 0, in Ω,
u = f , on Γ.

(2.22)
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This boundary value problem arises naturally in electrostatic scattering problems from perfect
electric conductors. The uniqueness of u is established by Green’s First Identity (see Appendix).
If u1 and u2 were two different solutions to (2.22), then the difference u = u1 − u2 would satisfy
the interior Dirichlet problem with f = 0. Setting v = u in Green’s First Identity (A.2), we have
that ∫

Ω

|∇u|2dV = 0. (2.23)

Therefore, u must be a constant. But since u = 0 on Γ, u = 0 everywhere.
Instead of numerically solving (2.22) in differential form, we now change variables and

represent the solution u in Ω in terms of a double layer potential due to an unknown distribution
σ (motivation to be discussed later on). For x in the interior of Ω, we write:

u(x) = Dσ(x)

=

∫
Γ

(
∂

∂n′

1
2π

log |x − x ′ |

)
σ(x ′) ds(x ′).

(2.24)

Note that since the Green’s function was used in the representation of u, we automatically have
that ∆u = 0 in Ω. It merely remains to satisfy the boundary condition on Γ that u = f . Using
the limiting values of the layer potential operators discussed in the previous section, enforcing
the boundary condition u = f on Γ yields the following integral equation for σ:

−
1
2
σ +Dσ = f , (2.25)

where the limit to the boundary has been taken from the domain of interest (i.e., the interior,
inside Ω). Since Dσ defines a harmonic function everywhere inside Ω, any such solution to
the above integral equation will yield a solution u to the interior Dirichlet problem by setting
u = Dσ. It remains to be shown that there is a unique solution to this integral equation.

Theorem 1. The integral equation (−I/2 + D)σ = f on Γ has a unique solution σ for any
right-hand side f . The function u = Dσ then uniquely solves the interior Dirichlet problem in
Ω with boundary data f .

Proof. By the Fredholm Alternative (see Appendix B), since the operator D is compact, to
show the uniqueness of σ it suffices to show that the homogeneous integral equation(

−
1
2
I +D

)
σ = 0 (2.26)

only has the solution σ = 0. To this end, define the function uin(x) = Dσ(x) for x ∈ Ω. By the
jump properties of the double layer, we have that for x ∈ Γ:

lim
h→0−

uin(x + hn) = −
σ(x)

2
+Dσ(x)

= 0.
(2.27)

This means that uin satisfies the interior Dirichlet problem with zero boundary data. This implies
that uin = 0 in Ω, and therefore, also that for x ∈ Γ:

lim
h→0−

∂uin

∂n
(x + hn) = 0. (2.28)
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Next, for x ∈ R2 \ Ω̄, set uout (x) = Dσ(x). Since D ′σ is continuous across the boundary Γ,
we have that for x ∈ Γ,

∂uout

∂n
=
∂uin

∂n
= 0. (2.29)

That is to say, uout satisfies that boundary value problem:

∆u = 0, R2 \ Ω̄,

∂uout

∂n
= 0, on Γ.

(2.30)

We will now show that this implies that uout = 0 in R2 \ Ω̄. We begin by applying Green’s First
Identity in the region contained between Γ and a very large circle of radius R centered at the
origin. We will denote this region by D = B(0, R) \Ω:∫

D

(
uout
∆uout + |∇uout |2

)
dv =

∫
∂D

uout ∂uout

∂n
da. (2.31)

Since uout is harmonic, and ∂uout/∂n = 0 on Γ, we have that:∫
D

|∇uout |2 dv =
∫
∂B(0,R)

uout ∂uout

∂n
da. (2.32)

But for sufficiently large R, uout ∼ O(1/R) on ∂B(0, R) since:

uout (x) = Dσ(x)

=

∫
Γ

1
2π

(
∂

∂n′
log |x − x ′ |

)
σ(x ′) da

= −

∫
Γ

1
2π

n′ · (x − x ′)

|x − x ′ |
σ(x ′) da

∼ O

(
1
|x |

)
as x → ∞.

(2.33)

Taking the normal derivative, ∂/∂r , of this asymptotic behavior in uout we have that as |x | → ∞:

∂uout

∂n
(x) ∼

1
|x |2

. (2.34)

Using this behavior in (2.32), we have that

lim
R→∞

∫
D

|∇uout |2 dv = lim
R→∞

∫
∂B(0,R)

uout ∂uout

∂n
da

∼ lim
R→∞

∫
∂B(0,R)

O

(
1
r3

)
r dr

∼ lim
R→∞

O

(
1
R2

)
= 0.

(2.35)
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This implies that uout is a constant, but since uout → 0 as |x | → ∞ it must be that uout = 0.
We now have both that uin = 0 and that uout = 0. By the jump conditions of Dσ, we have that

0 = lim
h→0+

(
uout (x + hn) − uin(x − hn)

)
= σ(x). (2.36)

This proves that if (−I/2 +D)σ = 0 then σ = 0.
�

2.2 Three dimensions

14



DRAFT

3 Discretization and quadrature

This chapter will describe modern techniques for discretizing continuous boundary integral
equations into finite dimension linear systems that can be solved using linear algebra techniques.
Technically, discretization and quadrature can be viewed as two separate topics, but it is often
convenient to treat them together as the easiest to use quadrature rule often depends on the
method by which functions are discretized. We treat both the discretization of integrals and
functions along curves in two dimensions and surfaces in three dimensions. The analogous
volume discretizations are not discussed, but similar methods immediately extend to those cases.

In keeping with the theme of these lecture notes, we will assume that the operators to be
discretized are viewed as maps from L2 → L2, and that functions (unknowns and right-hand
sides) to be discretized are elements of L2. With this in mind, there are basically two options for
both discretizing functions and enforcing the discrete approximation of the continuout integral
equation: point values and moments (function expansions). That is to say, a function f (or class
of functions) can be discretized using N point values f (x j) at nodes x j with weights wj such
that ∫

Γ

| f (x)|2 da(x) =
N∑
j=1

wj | f (x j)|
2. (3.1)

If the above formula merely holds to accuracy ε , then we say that the nodes and weights x j ,
wj provide an ε-discretization of f in L2. (This formula may hold to a particular order of
approximation as well, but we choose to use ε-discretizations instead because of the forthcoming
relationship with matrix decompositions and approximations.) Values of f at locations other
than the nodes x j can be obtained via interpolation, which may or may not yield accurate results
based on the choice of node locations. We will discuss this matter later on.

On the other hand, instead of using point values of f , one may wish to instead express f in
terms of its coefficients with respect to some set of N basis functions ϕj :

f (x) =
N∑
j=1

αj ϕj(x). (3.2)

Once again, if the above approximation is valid to accuracy ε , we say that ϕj provides an
ε-discretization of f .

With these two methods of discretization in mind, we can discuss the three major methods
for discretizing integral equations: the Nyström method, collocation, and Galerkin discretization.
In short, the discretized linear systems of the continous integral equation (I +K)σ = f for each
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of these methods is given by:

Nyström: σi +
∑
j

wj k(xi, x j)σj = f (xi)

Collocation:
∑
j

αj

(
ϕj(xi) +Kϕj(xi)

)
= f (xi)

Galerkin:
∑
j

αj

(
(ψi, ϕj) + (ψi,Kϕj)

)
= (ψi, f ),

(3.3)

where ( f , g) denotes the usual L2 inner product on Γ and ψi , ϕj are some set of suitable testing
and expansion functions. The solution to the Nyström discretization is an approximation to
actual functions values of σ, σi ≈ σ(xi), whereas the unknowns in both the collocation and
Galerkin methods are the expansion coefficients of σ, given by αi . While the linear systems due
to collocation and Galerkin methods tend to be slightly better conditioned (heuristically) due
to the extra integration, the Nyström method has several algorithmic advantages, namely that
each matrix element Ki j in the discretized system (I + K)σ = f is merely a kernel evaluation
times a weight function. This is in contrast to, for example, the Galerkin discretization wherein
each matrix entry is an inner product: (ψi,Kϕj). As a result, matrix assembly for the Nyström
method is often much faster than for the Galerkin method, and is directly compatible with the
standard form of fast multipole methods for computing N-body simulations. It is for this reason
that we mainly focus on Nyström-type discretizations going forward.

Within the technique of Nyström discretization, there is a subtle, but very practical scaling
of the discretized system which ensures that (on the order of the underlying quadrature) that the
finite dimensional operator on `2 captures the behavior of the infinite-dimensional operator on
L2. That is to say, with the proper scaling of unknowns, the eigenvalues of I + K converge to the
eigenvalues of the continuous operator I +K as the number of discretization points tends to
infinity. A thorough treatment of this can be found in [1, 2], but we outline the scaling here.

First, we note that given a nyström discretization of a function σ defined along a curve (or
surface) Γ (i.e. values and weights), its L2 norm can be approximated as:

| |σ | |22 =

∫
Γ

|σ(x)|2 da(x)

≈
∑
j

wj |σ(x j)|
2

=
∑
j

|
√
wjσ(x j)|

2.

(3.4)

Declaring the vector σ = (σ1 · · ·σn) to be discretized version of σ means that the usual `2 norm
of σ does not converge to the L2 norm of σ, since

| |σ | |22 =
∑
j

|σj |
2

,
∑
j

∑
j

wj |σj |
2

≈

∫
Γ

|σ |2 da.

(3.5)
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We denote the discretization of σ →
√
wjσ(x j) as an L2 embedding of σ, also known as an

inner-product preserving discretization as the norm in `2 converges to the norm in L2.
Likewise, the usual Nyström discretization of K with matrix entries Ki j = wj k(xi, x j)

results in a matrix with eigenvalues which, in general, have nothing to do with the eigenvalues
of the continuous operator K. The proper scaling can be derived by noting the effect of using
the inner product preserving discretization of σ in the discretized integral equation instead of
the usual one. The ith equation becomes:

σi +
∑
j

wj k(xi, x j)σj = fi

σi +
∑
j

k(xi, x j)
√
wj

√
wjσj = fi

√
wiσi +

∑
j

√
wik(xi, x j)

√
wj

√
wjσj =

√
wi fi

(3.6)

Therefore, the discretization √
wiwj k(xi, x j) is the corresponding inner product preserving

discretization of K. These scalings are particularly important for adaptive discretizations,
especially those along geometries with corners and edges as the integral operators are not
compact on L2 anymore but merely bounded. In particular, these weightings can have a large
effect on the resulting condition number of the discretized system.

3.1 Curves in two dimensions

3.1.1 Discretization

While Nyström method truists may claim that discretizing a function at point values is just that
– samples of a function at particular locations, and nothing more – the fact is that each such
discretization implies an underlying representation of the function (as opposed to the explicit
representation of the function in Galerkin methods).

Global periodic discretizations

Locally adaptive discretizations

3.1.2 Quadrature

Generally, in two dimensions, the integrals of interest have kernels with logarithmic singularities
(absolutely integrable) or normal derivatives thereof (weakly-singular, defined in the principal
value sense). The singularity of these kernels along a curve is generic in the sense that it can be
shown to only depend on the distance of the source and target in parameter-space, not in R2.
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For example,

Sσ(x) =

∫
Γ

log |x − x ′ | σ(x ′) ds(x ′)

=

∫ 1

0
log |x(τ) − x ′(t)| σ(x ′(t)) ds(x ′(t))

=

∫ 1

0
log |x(τ) − x ′(t)| σ(t)

ds
dt

(t) dt

=

∫ 1

0

(
log

���� x(τ) − x ′(t)
τ − t

���� − log |τ − t |
)
σ(t)

ds
dt

(t) dt.

(3.7)

The above expression contains no geometry information in the singular part, only the parameter-
ization variables. Therefore, it suffices to design quadratures for polynomials times log on the
line.

Adaptive quadrature

For example, if σ (the unknown solution to an integral equation) is discretized on a panel at
k Legendre nodes in the parameterization domain of the panel, then the diagonal block in the
resulting discretized linear system can be constructed as follows. Sampling σ at k Legendre
points implies that there exists a degree k − 1 interpolant on the same panel, given as:

σ(t) =
k−1∑̀
=0

c` P`(t). (3.8)

Inserting this interpolant into integral (3.7), for example, we have

φi =

∫
Γ

log |xi − x ′ | σ(x ′) ds(x ′)

=

∫ 1

−1
log |xi − x(t)|

(
k−1∑̀
=0

c` P`(t)

)
ds
dt

(t) dt.
(3.9)

Product quadratures

Corrected-trapezoidal rules

Generalized Gaussian rules

3.2 Surfaces in three dimensions
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4 The 3D Laplace Fast Multipole Method

4.1 Tree-codes

Early algorithms of the 1980’s based on various oct-tree or kd-tree divisions of space, and used
mainly for molecular dynamics or cosmological (galaxy formation) simulations, were known
as tree-codes. These algorithms [?, ?, ?] were low-order (usually only using approximations
equivalent to zeroth-order multipole expansions) and did not make use of systematic error
analysis to guarantee precision upon completion.

In the work of Appel [?], a kd-tree was used to hierarchically compute the gravitational
n-body problem for galaxy formation. The drawbacks of using a kd-tree, as opposed to the
oct-tree that was later introduced by Barnes and Hut [?], is that it makes no assumption on
the physical distribution of points. For uniformly distribution points, the two trees are almost
equivalent in practice. Keeping track of the physical separation and structure points in an n-body
calculation turns out to be necessary if one is to maintain control over the accuracy of the
computation.

We now introduce the basic Barnes-Hut algorithm here (in terms of the potential function
formulation), and discuss the error and higher-order extensions.

4.1.1 Barnes-Hut

The goal of many galaxy formation calculations is to simulation, in time, the movement and
coagulation (or dispersion) of point-masses in the universe. Basic time integrators for this
system require that, on every step, the following n-body calculation be done for all point-masses
x j in the system, with masses denoted by mj :

Fi =
∑
j,i

Gmimj(xi − x j)

‖xi − x j ‖
3

= −Gmi∇i

∑
j,i

mj

‖xi − x j ‖

= −Gmi∇iφi

(4.1)

where ∇i is the gradient on the target, xi. For simplicity, we will now address the problem of
computing the sum of the potential point interactions, φi, and not the field F. The field can be
obtained by differentiation of the proceeding formulas.

The driving motivation for the following algorithm is that from far away, the gravitational
field due to a collection of point masses located at x j is very close to that due to a single point
mass, located at the center of mass xc of the x j’s. Using this idea hierarchically (i.e. replacing
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Figure 4.1: An oct-tree with one particle per box. The green dots can denote either original particles, or
centers of mass for boxes on finer levels.

centers of mass with other centers of mass on larger scales), we have the following algorithm,
known as Barnes-Hut.

The original Barnes-Hut algorithm

Step 0 Divide the computational box, containing all point masses, using an oct-tree
such that at most one point is contained in each leaf node. Set all the φi’s to
zero, initialize threshold parameter θ < 1.

Step 1 Starting at the leaf nodes, recursively compute the center of mass and total
mass for all particles contained in each box, all the way to the root.

Step 2 Now, for each target particle xi, starting at the root, traverse the tree toward
the leafs, processing one box B (that is not marked done) at a time. Let:

rB = the radius of box B

xB,c = the center of mass for all particles contained in B

mB = the total mass of all particles in box B

rB,i = the distance from xB,c to xi

If rB/rB,i < θ, mark this box as done and increment φi:

φi = φi +
mB

‖xi − xB,c ‖
.
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If rB/rB,i ≥ θ, then skip this box and process its children. Repeat for all
boxes.

Step 3 For all boxes Bj on the leaf level that were not marked done, add their
contribution directly:

φi = φi +
mB j

‖xi − xB j ‖
.

The potential φi has now been computed.

Let us now discuss these steps one-by-one in more detail.

Complexity analysis

Step 0: This step can be considered pre-computation, as it merely constructs the data structure
which keeps track of centers of mass and total mass for each box. The oct-tree data structure is
hierarchical data structure that evenly divides space on each level into eight equal cubes (the
two-dimensional version is a quad-tree, and the one-dimensional version is a binary tree) [?].
Its construction requires O(n log n) operations, where n is the total number of particles being
sorted. The parameter θ that is set will be proportional to the global accuracy of the proceeding
algorithm.

Step 1: The center of mass and total mass for each box is computed. For a box B with
masses mj > 0 located at x j , the center of mass is calculated as:

xB,c =

∑
j mj x j∑
j mj

. (4.2)

We will discuss the matter of non-positive masses later on when detailing multipole methods
for electrostatics (in that case, electric charge takes the place of mass). The center of mass for
parent boxes can be computed directly from the centers of mass of their children. Since on each
level of the oct-tree, each box performs an O(1) calculation to compute its center of mass and
total mass (from its children), the complexity of this step is proportional to the total number of
boxes, which is O(n) in an oct-tree. See Figure 4.1 for a depiction of a two-dimensional oct-tree
(quad-tree).

Step 2: This step is the important part of the Barnes-Hut algorithm. If the center of mass
xB,c of a particular box B is far away enough from the target particle xi (relative to the size of
the box containing the center of mass), then add this contribution to the potential for target i. In
particular, if rB/rB,i < θ then this means that rB,i > rB/θ, i.e. that particle i located at xi is 1/θ
box-lengths away from the center of mass for box B (where one unit of box length is the box
radius rB). See Figure 4.2 for a graphical depiction of dimensions discussed.

As the tree is traversed, starting at the root, the values of rB and maxB rB,i decrease by the
same constant factor (since each box is always divided evenly into eight children). Because of
this fact, there are at most O(1) boxes that will contribute to the potential φi on every one of
O(log n) levels. Therefore, the computational cost for this step for one particle is O(log n), and
for all particles is O(n log n).
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,i

Figure 4.2: The region of interaction for a target particle xi in the Barnes-Hut style tree-code algorithm.
The red dot is the target, the yellow dots do not contribute, only the blue dot does. The grey dots are on
levels have have not been processed, and the black dots have already been processed.

Step 3: Unless θ is very large, for a given particle xi there will be a finite number of nearby
leaf boxes whose center of mass (i.e. the location of the actual particle) will not satisfy the
criterion rB/rB,i ≥ θ. The contribution to φi from these boxes is now added directly. For each
particle, this occurs for O(1) boxes, depending on the value of θ. The total cost for this step (for
all particles xi) is O(n).

Error analysis

In the center-of-mass Barnes-Hut algorithm, the only parameter that can be changed to increase
the accuracy of the computation is θ. We will now derive an expression in θ based on multipole
expansions for an estimate of the error for Barnes-Hut [?].

The main approximation made in the original Barnes-Hut algorithm was the center of mass
approximation. In its simplest form, we are interested in the error in the following approximation:

φ(xi) =
ma

‖xi − xa‖
+

ma

‖xi − xa‖

=
ma + mbxi − maxa+mbxb

ma+mb

 + ε (4.3)
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Figure 4.3: Source and target particles for a multipole expansion.

as a function of the distance from xi to the center of mass of xa and xb. In order to estimate this
error, we need an expression for 1/‖x − x ′‖ in terms of multipoles. As detailed in Appendix ??,
if ‖x ′‖ < ‖x‖, then this fundamental solution can be expanded as:

1
‖x − x ′‖

=

∞∑̀
=0

∑̀
m=−`

r ′`

r`+1 Y−m
` (θ ′, ϕ′)Ym

` (θ, ϕ) (4.4)

where the spherical coordinates of x are r, θ, ϕ and similarly for x ′. Truncating this expansion
at ` = p yields the following error estimate:����� 1

‖x − x ′‖
−

p∑̀
=0

∑̀
m=−`

r ′`

r`+1 Y−m
` (θ ′, ϕ′)Ym

` (θ, ϕ)

����� ≤ 1
r − r ′

(
r ′

r

) p+1
, (4.5)

which is straightforward to derive using the fact that when properly normalized, |Pm
`
| ≤ 1. A

sufficient normalization is given in the appendix. By the principle of superposition, the multipole
expansion for a collection of point sources with masses mj and locations rj, θ j, ϕj with rj < r is

φ(x) =
∑
j

mj

‖x − x j ‖

=

∞∑̀
=0

∑̀
m=−`

M`m

r`+1 Ym
` (θ, ϕ),

(4.6)

with
M`m =

∑
j

mj r`j Y−m
` (θ j, ϕj). (4.7)

Likewise, by interchanging the order of summation, the error in truncating this expansion at
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` = p is given by �����φ(x) − p∑̀
=0

∑̀
m=−`

M`m

r`+1 Ym
` (θ, ϕ)

����� ≤ ∑
j mj

r − rB

( rB
r

) p+1
, (4.8)

where rB = maxj rj , see Figure 4.3.
We now apply this error estimate to the geometry governing particle interactions in the

Barnes-Hut algorithm. Examining Figure 4.2, we see that when processing a box B, the center of
mass xB,c can be located anywhere inside B. Therefore, the radius of the smallest ball, centered
at xB,c that encloses all sources contained in box B is bounded by 2rB, where rB is the diagonal
radius of the box. Using this observation, we see that the Barnes-Hut potential at location xi due
to all sources in box B is given by equation (4.3) is nothing more than a zeroth-order multipole
expansion, centered at xB,c:

φ(xi) ≈
mB

rB,i

=

∑
j mj

‖xi − xBc ‖

(4.9)

where the sum is over all masses mj contained in box B. For the Barnes-Hut parameter θ ≤ 1/2,
the error in the zeroth-order multipole expansion is then given by:����φ(xi) − mB

rB,i

���� ≤ mB

rB,i − 2rB

(
2rB
rB,i

)
≤

2mB

rB,i − 2rB
θ

≤
mB

rB

2θ2

1 − 2θ
.

(4.10)

At first glance, this error estimate (which is an absolute accuracy statement) grows linearly with
the size of the mass contained in each box. However, multipole estimates are inherently a relative
precision statement with respect to the scale of the potential,

∑
j mj . Similar observations hold

when applying multipole estimates not to point masses, but rather to mass densities (e.g. in the
case of solving a Poisson problem, where multipole methods are used to evaluate integrals).

In order to improve the accuracy of the Barnes-Hut algorithm, we must use higher order
multipole expansions for evaluate the potential due to a collection of sources in a particular box.
In the next section, we will describe the calculations for these high-order tree-codes.

4.1.2 High-order tree-codes

In the first upward-pass through the oct-tree in the original Barnes-Hut algorithm, the total mass
and center of mass for each box was calculated. These quantities are then used to approximate
the potential due to all the sources in a particular box, regardless of its depth in the oct-tree. This
center of mass approximation is nothing more than a zeroth-order multipole expansion, centered
at the center of mass, with a multipole coefficient equal to the total mass contained in the box (as
was shown in the previous section). In order to improve the accuracy of this O(n log n) scheme,
the zeroth-order multipole approximation can be replaced with one of higher order. In doing so,
we now require one additional piece of mathematics: a procedure for translating and merging the
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multipole expansions of child boxes into one for their parent. In particular, we can now describe
a higher-order version of the previous Barnes-Hut scheme, with some additional modifications
that will enable better error approximation.

As before, we first informally describe the algorithm and then examine details of the
complexity and accuracy.

A pth order tree-code

Step 0 Divide the computational box, containing all points, using an oct-tree such
that there is at most one point contained in each leaf node. Set all the φi’s to
zero, initialize the order of the multipole expansion to p > 0.

Step 1 Process all the leaf nodes. For each box B on the leaf level, L, form the order
p multipole expansion due to the source contained in B, centered about the
center of box B.

Step 2 For levels L − 1 to 0, recursively compute the order p multipole expansion
centered about the center of a box B by translating and merging the multipole
expansions for the children of box B.

Step 3 For each target particle xi = (ri, θi, φi), starting at the root, traverse the tree
toward the leafs, processing one box B (that is not marked done) at a time.
Let:

rB = the radius of box B

xB = the center of box B

MB
`m = the multipole coefficients for box B

rB,i = ‖xb − xi ‖, the distance from xB to xi

(ρ, α, β) = xi − xB, the coordinates of xi relative to xB

If box B is well-separated from the target xi, mark this box as done and
increment φi:

φi = φi +

p∑̀
=0

∑̀
m=−`

MB
`m

ρ`+1 Ym
` (α, β)

By well-separated, we mean that the target xi is separated from box B by at
least one box of the same size as B. See Figure ??. If xi is not well-separated,
then skip box B and process its children using the same procedure. Repeat for
targets xi.

Step 4 For any boxes B on the leaf level that were not marked done, add the
contributions from the sources x j located in them directly:

φi = φi +
mj

‖xi − x j ‖
.

The potential φi, due to all sources other than xi, has now been computed.
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Note: Unlike the previous tree-code, where the inclusion of a potential contribution was
determined by a separation parameter θ, which in turn determined the accuracy of the calculation,
this scheme does not contain an analogous parameter. All multipole-target interactions are
determined by the oct-tree structure. This allows for more efficient computation and data
structure development. We shall see that it is the multipole order p which directly determines
the accuracy of the calculation.

It remains to be discussed how to translate a multipole expansion, as in Step 2 of the pth

order tree-code described above. We can formulate this computational task as follows: let M ′
`m

be the multipole coefficients for an expansion centered at x ′ = (r ′, θ ′, ϕ′), valid at any point
x = (r, θ, ϕ) such that ‖x − x ′‖ > a. Let the coordinates of x − x ′ by given as (ρ, α, β), i.e.
these are the coordinates of x relative to x ′. See Figure 4.4. Also assume that r > r ′ + a. The
potential at x is then given by:

φ(x) =
∞∑̀
=0

∑̀
m=−`

M ′
`m

ρ`+1 Ym
` (α, β), for ‖x − x ′‖ > a. (4.11)

The computational task in translating a multipole expansion to the origin 0 is to construct a new
expansion for the potential at x, valid outside of a ball of radius r ′ + a, centered at the origin, in
terms of the absolute coordinates of x:

φ(x) =
∞∑̀
=0

∑̀
m=−`

M`m

r`+1 Ym
` (θ, ϕ), for ‖x‖ > r ′ + a, (4.12)

and where the new multipole coefficients M`m depend only on x ′ and the M ′
`m’s. We will

now derive a formula for the coefficients M`m, i.e. the translation to the origin operator. This
operator is often referred to as an M2M or multipole_to_multipole operator, when thought
of as a subroutine.

Equivalently, we wish to derive an expression for Ym
`
(α, β)/ρ`+1 in terms of the functions

Ym
`
(θ, ϕ)/r`+1. The coefficients in such an expression will yield the translation operator. In

one dimension, these so-called addition formulas are best illustrated in terms of complex
exponentials:

ei(α+β) = eiαeiβ

= (cosα + i sinα)(cos β + i sin β)
= (cosα cos β − sinα sin β) + i (cosα sin β − sinα cos β)

(4.13)

which yield the sum-of-angles and difference-of-angles formulas for sin and cos. The angle
θ = α + β can also be given in terms of an angle relative to α, which is β. We merely seek
analogous formulas for the functions Ym

`
(α, β)/ρ`+1, also known as outgoing solid harmonics.

We begin with a lemma which gives each of the solid harmonics, defined in spherical
coordinates, in terms of cartesian derivatives of the function 1/‖x‖. A derivation of the
following formulas can be found in [].

26



DRAFT

4.1. TREE-CODES M. O’Neil

a

0

Figure 4.4: The geometry used in constructing the addition formula for Ym
`

.

Lemma 2. Let the spherical coordinates of the point x be given by (r, θ, ϕ), with r2 = x2 + y2 + z2,
θ the angle from the z-axis, and ϕ the azimuthal angle. Then for all ` ≥ m ≥ 0,

Y±m
`

(θ, ϕ)

r`+1 = A`m

(
∂

∂x
± i

∂

∂y

)m (
∂

∂z

) `−m (
1
r

)
, (4.14)

with
A`m =

(−1)`√
(` − m)! (` + m)!

. (4.15)

Keep in mind that the above definition of A`m depends directly on the normalization used
in defining the associated Legendre functions Pm

`
. The above definition is consistent with

the normalization for Pm
`

and Ym
`

in Appendix ??. Often, the differential operators given in
Lemma 2 will be abbreviated as:

∂+ =
∂

∂x
+ i

∂

∂y
, ∂− =

∂

∂x
− i

∂

∂y
, ∂z =

∂

∂z
. (4.16)

These operators, ∂±, ∂z are related to the raising and lowering operators (ladder operators) in
quantum mechanics, see [?] for a nice discussion. Furthermore, if a function u is harmonic, then
we will use the fact that

∂+∂−u = −∂2
z u. (4.17)

To derive the multipole-to-multipole addition formula, we begin by recalling the multipole
expansion of a point source at x ′:

1
‖x − x ′‖

=
1
ρ

=

∞∑̀
=0

∑̀
m=−`

r ′`

r`+1 Y−m
` (θ ′, ϕ′)Ym

` (θ, ϕ),

(4.18)
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and inserting the representation in (4.14), we have that

1
ρ
=

∞∑̀
=0

∑̀
m=−`

r ′` Y−m
` (θ ′, ϕ′) A`m ∂

|m |

sgn(m)
∂
`−|m |
z

(
1
r

)
, (4.19)

where sgn(m) = 1 if m ≥ 0, and −1 otherwise. We handle the cases for m′ ≥ 0 and m′ < 0
separately for the sake of clarity. For `′ ≥ m′ ≥ 0, if we apply the operator ∂m′

+ ∂`
′−m′

z to both
sides of this expression, and use (4.14), we have that

1
A`′m′

Ym′

`′
(α, β)

ρ`
′+1 =

∞∑̀
=0

∑̀
m=−`

r ′` Y−m
` (θ ′, ϕ′) A`m ∂

m′

+ ∂
|m |

sgn(m)
∂
`+`′−|m |−m′

z

(
1
r

)
. (4.20)

Now, note that for the terms in the previous sum corresponding to those with m ≥ 0, we have that

∂m
′

+ ∂
|m |

sgn(m)
∂
`+`′−|m |−m′

z

(
1
r

)
= ∂m

′+m
+ ∂

`+`′−(m+m′)
z

(
1
r

)
= A(`+`′)(m+m′)

Ym+m′

`+`′
(θ, ϕ)

r`+`′+1 .

(4.21)

For those terms in (4.20) with m < 0, i.e. sgn(m) = −1,

∂m
′

+ ∂
|m |

sgn(m)
∂
`+`′−|m |−m′

z

(
1
r

)
= ∂m

′

+ ∂ |m |
− ∂

`+`′−|m |−m′

z

(
1
r

)
. (4.22)

Now, since 1/r is a harmonic function, and if m′ ≥ |m|, then we can eliminate the ∂ |m |
− term by

using (4.17):

∂m
′

+ ∂ |m |
− ∂

`+`′−|m |−m′

z

(
1
r

)
= ∂

m′−|m |
+ ∂

|m |
+ ∂ |m |

− ∂
`+`′−|m |−m′

z

(
1
r

)
= ∂

m′−|m |
+ (−1) |m | ∂

2 |m |
z ∂

`+`′−|m |−m′

z

(
1
r

)
= (−1) |m | ∂

m′−|m |
+ ∂

`+`′+ |m |−m′

z

(
1
r

)
= (−1) |m | ∂m

′+m
+ ∂

`+`′−(m′+m)
z

(
1
r

)
= (−1) |m | A(`+`′)(m+m′)

Ym+m′

`+`′
(θ, ϕ)

r`+`′+1 .

(4.23)

Likewise, if m′ < |m|, then similarly the term ∂m
′

+ can be eliminated, giving:

∂m
′

+ ∂ |m |
− ∂

`+`′−|m |−m′

z

(
1
r

)
= (−1)m

′

A(`+`′)(m+m′)

Ym+m′

`+`′
(θ, ϕ)

r`+`′+1 . (4.24)

Defining the functions

JM2M
+ (m′,m) =

{
1, if m ≥ 0,
(−1)min(m′, |m |), if m < 0, (4.25)

28



DRAFT

4.1. TREE-CODES M. O’Neil

and
JM2M
− (m′,m) =

{
1, if m ≤ 0,
(−1)min( |m′ |,m), if m > 0, (4.26)

we have that for m′ ≥ 0,

Ym′

`′
(α, β)

ρ`
′+1 =

∞∑̀
=0

∑̀
m=−`

JM2M
+ (m′,m) A`′m′ A`m r ′` Y−m

`
(θ ′, ϕ′)

A(`+`′)(m+m′)

Ym+m′

`+`′
(θ, ϕ)

r`+`′+1 . (4.27)

A virtually identical calculation shows that for any m′ < 0,

Ym′

`′
(α, β)

ρ`
′+1 =

∞∑̀
=0

∑̀
m=−`

JM2M
− (m′,m) A`′m′ A`m r ′` Y−m

`
(θ ′, ϕ′)

A(`+`′)(m+m′)

Ym+m′

`+`′
(θ, ϕ)

r`+`′+1 . (4.28)

The only difference between these addition formulas is the sign function JM2M
± , which depends

on the sign of m′. We will refer to formulas (4.27) and (4.28) as the first addition formula for
solid harmonics, i.e. that which operates on the outgoing (or multipole) functions. Having
derived the multipole-to-multipole translation operator directly, we can simplify the remaining
discussion by defining scaled versions of the solid harmonics, which we will refer to as the inner
and outer functions:

Im` (r, θ, ϕ) = i−|m | A`m r` Ym
` (θ, ϕ),

Om
` (r, θ, ϕ) =

(−1)` i |m |

A`m

Ym
`
(θ, ϕ)

r`+1 .
(4.29)

In this basis, multipole expansion for 1/‖x − x ′‖ becomes

1
‖x − x ′‖

=

∞∑̀
=0

∑̀
m=−`

(−1)` I−m` (x ′)Om
` (x), (4.30)

where, of course we assume that ‖x‖ > ‖x ′‖. Likewise, the first addition formula for the
outgoing solid harmonics is given by:

Om
` (x − x ′) =

∞∑̀
′=0

`′∑
m′=−`′

(−1)`
′

I−m
′

`′ (x ′)Om+m′

`+`′ (x), (4.31)

Remark 1. It is worth pointing out that using the inner and outer functions Im
`

and Om
`

simplifies
the resulting formulas considerably, however, they are not well-scaled functions. Each includes
the A`m coefficients, which contain factorial terms. For this reason, it is often numerically more
stable to deal with the standard solid harmonics functions when implementing any translation
algorithm. The inner and outer functions are certainly preferable for formula derivation.

We can now state the multipole translation theorem precisely.

Theorem 2 (Multipole-to-multipole translation). Suppose that some collection of sources x ′j
with strengths qj are located inside the sphere of radius a centered at x ′. For targets x outside
this sphere, the potential is given by the multipole expansion

φ(x) =
∞∑̀
=0

∑̀
m=−`

M ′
`m

ρ`+1 Ym
` (α, β), (4.32)
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where the multipole coefficients M ′
`m are given as in (4.7), and (ρ, α, β) = x − x ′. Then, outside

of the sphere centered at the origin with radius r ′ + a, the potential is given as

φ(x) =
∞∑̀
=0

∑̀
m=−`

M`m

r`+1 Ym
` (θ, ϕ) (4.33)

with multipole coefficients given as:

M`m =

∞∑̀
′=0

`′∑
m=−`′

M ′
`−`′,m−m′ JM2M (m′,m − m′) A`′m′ A`−`′,m−m′ r ′`

′

Y−m′

`′
(θ ′, ϕ′)

A`m)

(4.34)

and
JM2M ( j, k) =

{
(−1)min( | j |, |k |), if j · k < 0,
1, otherwise. (4.35)

Furthermore, if the multipole expansion centered at x ′ satisfied the bound�����φ(x) − p∑̀
=0

∑̀
m=−`

M ′
`m

ρ`+1 Ym
` (α, β)

����� ≤ ∑
j |qj |

ρ − a

(
a
ρ

) p+1
(4.36)

then the translated multipole expansion, when evaluated outside the disk of radius r ′+a, satisfies
the error estimate�����φ(x) − p∑̀

=0

∑̀
m=−`

M`m

r`+1 Ym
` (θ, ϕ)

����� ≤ ∑
j |qj |

r − (r ′ + a)

(
r ′ + a

r

) p+1
. (4.37)

Proof. The proof of this is straightforward from the first addition theorem for multipole
expansions. The bound is obtained directly from the fact that multipole expansions are unique,
and therefore the translated expansion must be the unique expansion about 0. �

We will refer to the linear operator which maps the multipole coefficients M ′
`m to the

multipole coefficients M`m as TM2M , which when viewed as a second-order tensor (properly
ordered matrix) has elements equal to

TM2M
`m,`′m′ = (4.38)

Computational cost

The computational cost of the high-order tree-code described in the previous section, based
on direct multipole-to-multipole translation operators is straightforward to derive. While the
asymptotic cost of the upward-pass and evaluation stay the same as for the original Barnes-Hut
algorithm, O(n) and O(n log n), respectively, we can also include an explicit dependence on p,
the order of the multipole expansion used.

During the upward-pass stage of the high-order tree-code, the additional work that each
box must perform (except for the leaf level) is translating and combining each of the pth-order
multipole expansions from each of its children into a single pth-order expansion about its center.
As we saw in the previous section, the direct multipole-to-multipole translation operator is
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a dense, linear, convolution-type operator and therefore costs O(p4) operations to translate a
single p-term expansion. This is akin to multiplication by a dense p2 × p2 matrix. Since each
box has eight children, this brings the cost of the upward pass up to O(8p4n). We shall see in
later sections that bringing the cost of these translations down from O(p4) is one of the main
accelerations that can be made.

An order p multipole expansion includes (p + 1)2 = O(p2) terms, and assuming that each
term can be numerically calculated using a fixed number of floating point operations, the cost
of evaluating a pth order expansion is O(p2). Therefore, the cost of the evaluation stage of a
high-order tree-code is O(p2 n log n).

Error analysis

As mentioned before, the high-order tree-code described earlier does not depend on a parameter
like θ in the original Barnes-Hut algorithm that determined when a box contributes to the
potential at a target on a given level. Instead, all interactions are determined via the oct-tree
structure (Figure ??). The accuracy of the resulting algorithm is determined by the order of the
expansion p. Using the fact that boxes only interact if they are well-separated, and the error
bound on multipole expansions, we see that p ∼ O(log√3 1/ε). This number of terms can be
derived based on the separation distance between a sphere enclosing a box, and the nearest box
that is well-separated.

Implementation details

Despite the simplicity of the previous multipole and translation formulas, constructing an
accurate and efficient numerical implementation can seem daunting. Here we discuss a couple
aspects of the implementation of tree-codes.

Building the oct-tree:
Numerical computation of Legendre functions: The Legendre polynomials satisfy the

three-term recurrence relation:

P`+1(x) =
2` + 1
` + 1

x P`(x) −
`

` + 1
P`−1(x), (4.39)

with
P0(x) = 1, and P1(x) = x. (4.40)

For x ∈ (−1, 1), this recurrence is upward-stable [?]. Furthermore the associate Legendre
functions satisfy:

P0
0 (x) = 1, P0

1 (x) = x, and P1
1 (x) = −

√
1 − x2, (4.41)

and
P−m
` (x) = (−1)m. (4.42)

These function obey the following (relatively) stable three-term recurrence in the order m:

Pm+1
` = (4.43)
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4.2 The 3D Laplace fast multipole method

At this point in the development of fast n-body codes, there are two routes to take: the reduction
of the O(p4) cost for multipole translation, and the reduction of the overall complexity from
O(n log n) to O(n). We will first discuss the reduction in the overall scaling with n, and then
address the scaling with the expansion order p (since it is a dominant cost, independent of
the scaling with n). As before, we first give an informal description of the algorithm known
as the Fast Multipole Method (FMM) for the 3D Laplace kernel, and then work through the
necessary pieces of machinery needed to implement the algorithm. The main additional piece
of technology that allows for a reduction in the asymptotic complexity are what are known as
local expansions. Local expansions allow for information contained in multipole expansions to
be shipped more efficiently to boxes on finer levels in the tree hierarchy.

The Fast Multipole Method

Step 0 Divide the computational box, containing all points, using an oct-tree such
that there are at most n f ine points contained in each leaf node. Set all the φi’s
to zero, initialize the order of the multipole expansion to p > 0.

Step 1 Process all the leaf nodes. For each box B on the leaf level, L, form the order
p multipole expansion due to the sources contained in B, centered about the
center of box B.

Step 2 For levels L − 1 to 0, recursively compute the order p multipole expansion
centered about the center of a box B by translating and merging the multipole
expansions for the children of box B.

Step 3 For levels 2 through L, for each box B on each level, translate its multipole
expansion to boxes in List 2 (also known as box B’s interaction list).

Step 4 For each target particle xi = (ri, θi, φi), starting at the root, traverse the tree
toward the leafs, processing one box B (that is not marked done) at a time.
Let:

rB = the radius of box B

xB = the center of box B

MB
`m = the multipole coefficients for box B

rB,i = ‖xb − xi ‖, the distance from xB to xi

(ρ, α, β) = xi − xB, the coordinates of xi relative to xB

If box B is well-separated from the target xi, mark this box as done and
increment φi:

φi = φi +

p∑̀
=0

∑̀
m=−`

MB
`m

ρ`+1 Ym
` (α, β)
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By well-separated, we mean that the target xi is separated from box B by at
least one box of the same size as B. See Figure ??. If xi is not well-separated,
then skip box B and process its children using the same procedure. Repeat for
targets xi.

Step 4 For any boxes B on the leaf level that were not marked done, add the
contributions from the sources x j located in them directly:

φi = φi +
mj

‖xi − x j ‖
.

The potential φi, due to all sources other than xi, has now been computed.

Computational cost

Error analysis

4.2.1 Point and shoot translation

As we have seen several times before, the main computational cost in the FMM (as it is formulated
here) is the multipole-to-local translations. Done directly, this

4.2.2 Diagonal plane-wave translation operators

Using the point-and-shoot method of the previous section, it is possible to reduce the cost of
the multipole and local translations from O(p4) to O(p3) by first rotating the coordinate system,
translating along the z-axis, and the rotating back. However, due to the anisotropy of spherical
coordinate systems, there is still coupling between the θ and ϕ components in the rotation. In the
case of multipole-to-local translations, it is possible to reduce this cost further, down to O(p2),
by switching to a different representation of the potential in Cartesian coordinates: plane-wave
representations.

By Fourier transforming Laplace’s equation for the Green’s function

4G(x) = δ(x), (4.44)

we see that
Ĝ(ξ) = (4.45)

and then performing contour integration in the ξ3 variable, it is possible to write:

1
‖x − x ′‖

= (4.46)

4.2.3 Accelerations
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5 The Helmholtz equation
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6 Electromagnetics
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7 Elasticity
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8 Fluids
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9 Parabolic theory
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10 Fast multipole methods

10.1 The 3D fast multipole method for Helmholtz potentials

10.1.1 Addition formulas

10.1.2 Exponential translations

10.1.3 Implementation caveats

10.2 3D Stokesian potentials
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11 Discrete Fourier Transforms

Entire courses could be taught only covering Discrete Fourier Analysis and its applications in
methods for differential equations, signal processing, etc. It is merely our goal to cover some
basic, very useful properties of the Discrete Fourier Tranform (denote by DFT from here on
out), and then to discuss algorithms for applying the operator rapidly – both in the standard case
of the widely know Fast Fourier Transform (FFT), and in the case where the sample in time and
modes in frequency are not equispaced or integers, respectively.

In these notes, we define the n-point forward DFT to be the finite-dimensional linear operator
Fn : Cn → Cn defined by:

û = Fnu

ûk =
n∑
j=1

u j e−2πi(j−1)(k−1)/n (11.1)

Likewise, it is easy to show that the inverse of Fn is given by F−1
n =

1
nF∗

n, where F∗
n is the adjoint

matrix to Fn, also referred to as the backward DFT. Therefore, in infinite precision arithmetic

u =
1
n

F∗
nFnu. (11.2)

Keep in mind that there are many other definitions of the DFT, including almost all
permutations of ±2πi in the exponent, scaling by 1/n or 1/

√
n, summing over −n/2 + 1 to n/2,

etc. We stick with the above definition of Fn as it is consistent with almost all FFT software
packages.

Quadrature and aliasing

The DFT can also be though of as a discretization of a series of Fourier integrals using the
trapezoidal rule:

f̂ (k) =
1

2π

∫ 2π

0
f (x) e−ixk dx

=

∫ 1

0
f (2πx) e−2πixk dx

≈
1
n

n∑
j=1

f
(
2π( j − 1)

n

)
e−2πi(j−1)k/n,

(11.3)
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where we assume that k is an integer. The approximation of the previous integral is in fact exact
for functions of the form

f (x) =
m∑

k=−m

αk eixk, (11.4)

with n > 2m. The integer m (or 2πm in some references) is known as the bandwidth of the
function f .

If the size of the quadrature rule n (or, it will turn out, the size of the FFT that we compute) is
not sufficiently larger, then we will observe what is known as aliasing. When sampled discretely
on an equispaced grid in x, exponentials e2πikx will alias to exponentials with a smaller integer
frequency k ∈ (−n/2, n/2). This is because these functions have exactly the same values on
under-resolved grids. This is the whole intuition behind the Nyquist sampling rate. Two sample
points per wavelength are able to uniquely resolve the function.

11.1 The Fast Fourier Transform

It is useful to define the factor
ωn = e2πi/n. (11.5)

This factor, as well as ωn/2, etc., will be the basic building block for what is known as the radix-2
split FFT. Assuming that the n = 2d, for some positive integer d, we describe one level of the
FFT and leave the rest as a straightforward exercise in induction.

Written out as in equation (11.1), the DFT is given, for k = 0, . . . , n − 1 by:

ûk =
n−1∑
j=0

u j e−2πi jk/n

=

n−1∑
j=0

u j ω
−jk
n .

(11.6)

This sum can then be split into two pieces – those corresponding to even indices j and those
corresponding to odd indices j – and properly re-ordered into two DFTs of size n/2:

ûk =
n/2−1∑
j=0

u2j e−2πi(2j)k/n +

n/2−1∑
j=0

u2j+1 e−2πi(2j+1)k/n

=

n/2−1∑
j=0

u2j e−2πi jk/(n/2) + e−2πik/n
n/2−1∑
j=0

u2j+1 e−2πi jk/(n/2)

=

n/2−1∑
j=0

u2j ω
−jk

n/2 + ω−k
n

n/2−1∑
j=0

u2j+1 ω
−jk

n/2

(11.7)
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Introducing a new frequency variable, k̃ = 0, . . . , n/2 − 1, we have that:

ûk̃ =
n/2−1∑
j=0

u2j ω
−jk̃

n/2 + ω−k̃
n

n/2−1∑
j=0

u2j+1 ω
−jk̃

n/2

ûn/2+k̃ =
n/2−1∑
j=0

u2j ω
−jk̃

n/2 + ω
−n/2−k̃
n

n/2−1∑
j=0

u2j+1 ω
−jk̃

n/2 .

(11.8)

There is one final step in simplifying these relationships, which hinges on the identity that
ω
n/2
n = eπi = −1. We now have:

ûk̃ =
n/2−1∑
j=0

u2j ω
−jk̃

n/2 + ω−k̃
n

n/2−1∑
j=0

u2j+1 ω
−jk̃

n/2

ûn/2+k̃ =
n/2−1∑
j=0

u2j ω
−jk̃

n/2 − ω−k̃
n

n/2−1∑
j=0

u2j+1 ω
−jk̃

n/2 .

(11.9)

Each of these four sums can then be split again, into their relatively odd and even parts. The
resulting scheme is the FFT. Efficiently implementing the FFT involves an a priori reordering of
the coefficients u j so that neighboring coefficients in memory contribute to the same sums. The
particular re-ordering required is a bit-reversal re-ordering, as u j will be permuted to location j̄,
where j̄ is the integer obtained by reversing the binary representation of the integer j.

Computational cost

It is easy to show that when n = 2d, the DFT sum can be split d = log2 n times. The resulting
coefficients ûk are then each the sum of d terms. This gives an overall running time of O(n log2 n),
and the intricate details are omitted [?].

Accuracy

Unlike virtually every other algorithm that is discussed in these lecture notes, the FFT is an
exact algorithm when performed in infinite precision. There are no approximations made in the
algorithm, and the only source of error in the scheme arises from floating point arithmetic (and
is virtually non-existent for all practical purposes because the number of operations done per
output is log2 n). A precise discussion of this error is beyond the scope of these notes [?].

General radix schemes

The FFT is generally fastest when applied to vectors whose length is the product of many small
primes because of the fine-scale splitting that can be accomplished. We previously described
the most common case, when n = 2d for some positive integer d. If, for example, n is divisible
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by 3, then one step of the FFT will contain a radix-3 split:

n−1∑
j=0

u j e−2πi jk/n =

n/3−1∑
j=0

u3j e−2πi jk/(n/3) + e−2πik/(n/3)
n/3−1∑
j=0

u3j+1 e−2πi jk/(n/3)

+ e−2πik/(2n/3)
n/3−1∑
j=0

u3j+2 e−2πi jk/(n/3), (11.10)

or using the previous notation,

n−1∑
j=0

u j ω
−jk
n =

n/3−1∑
j=0

u3j ω
−jk

n/3 + ω−1
n/3

n/3−1∑
j=0

u3j+1 ω
−jk

n/3 + ω−2
n/3

n/3−1∑
j=0

u3j+2 ω
−jk

n/3 . (11.11)

There are several methods for FFTs on vectors whose length is a large prime number,
including incremental and absolute zero-padding, etc. These are beyond the scope of this
discussion, as well as efficient methods for implementing FFTs. See resources related to the
software package fftw.

11.1.1 As a matrix factorization

An extremely powerful interpretation of the FFT is that presented by Van Loan in [?] as a
recursive matrix factorization. We briefly discuss this interpretation here, as it is often overlooked
and very insightful. To simplify the following discussion of the length-n FFT in factorized
matrix form, let us first define the number

ωn = e2πi/n. (11.12)

Then the DFT can be written as

û j =

n−1∑
j=0

u j ω
−jk, (11.13)

for k = 0, . . . , n − 1. Note here that for the case of simplicity, we have defined the DFT using
slightly different indicies than in (11.1). Under this notation, the length-4 DFT matrix F4 can be
written as:

F4 =


1 1 1 1
1 ω−1 ω−2 ω−3

1 ω−2 ω−4 ω−6

1 ω−3 ω−6 ω−9

 . (11.14)

Our goal will be to write this matrix as the product of log2 n sparse matrices, each of size n × n.
First, we examine this factorization in detail in the case of the length-4 transform.

As described earlier, we can use the radix-2 splitting algorithm to write the length-4 FFT as
the sum of two length-2 FFTs:

F4u =
[
F2ue + ˙2F2uo

F2ue − ˙2F2uo

]
, (11.15)
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where the matrix ˙m is the diagonal matrix:

˙m =


1

ω−1
2m

. . .

ω
−(m−1)
2m


. (11.16)

The relation inside the matrix in (11.15) is known as a butterfly relation. Explicitly expand-
ing (11.15) we have:

F4u =
[
F2 ˙2F2
F2 −˙2F2

] [
ue

uo

]
. (11.17)

We can play the same trick again with the matrices F2:

F2v =
[
F1 ˙1F1
F1 −˙1F1

] [
v0
v1

]
. (11.18)

Since F1 = 1 and Ω1 =, we are done. Combing these two previous formulas, we have that:

F4u =
[
I2 ˙2
I2 −˙2

] 
I1 ˙1
I1 −˙1

I1 ˙1
I1 −˙1



1

1
1

1

 u, (11.19)

where, as is standard, the matrix mtxIm is the m × m identity matrix. Performing a similar
factorization for larger size FFTs quickly becomes unmanageable, and therefore it becomes very
useful to denote by the size-m butterfly matrix Bm:

Bm =

[
Im/2 ˙m/2
Im/2 −˙m/2

]
. (11.20)

Furthermore, the Kronecker product of two matrices A and B will be given as:

A ⊗ B =


a11B · · · a1nB
...

. . .
...

an1B · · · annB

 (11.21)

Obviously, if A ∈ Cn×n and B ∈ Cm×m, then A ⊗ B ∈ C(n+m)×(n+m). See [?] for a thorough
discussion of this operation, its properties, and its usefulness. Lastly, the bit-reversal matrix Wn

is given as ...
Combining all these notations together, we have

F4 = (I1 ⊗ B4) (I2 ⊗ B2)Wn. (11.22)

Based on the sparsity pattern of the above factorization, it is obvious that F4 can be applied in
O(n log2 n) operations (assuming, of course, that sparse matrix-vector products are performed).
In general, for a DFT of size n = 2d we have:

Fn = (I1 ⊗ Bn)
(
I2 ⊗ Bn/2

) (
I4 ⊗ Bn/4

)
· · ·

(
In/2 ⊗ B2

)
Wn. (11.23)

This is a very powerful framework in which to view the FFT. Similar factorizations for other
radix FFTs exist, but the notation becomes slightly more complicated.
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11.2 The non-uniform FFT

The entire previous discussion of the FFT was predicated on the fact that we are computing
inner products of the vector u with equi-spaced samples in x ∈ [0, 2π] of the basis functions
e2πixk , with k an integer. We now address the problem of computing similar sums when the
samples in space and/or frequency are not equispaced (or integers). To this end, let’s begin by
stating the precise problem, which can be split into three distinct cases. In what follows, let
x1, . . . , xn ∈ [0, 2π] be arbitrary points.

The Type I DFT is given by:

F(k) =
n∑
j=1

fj e−ikx j , for k = −
m
2
, . . . ,

m
2
. (11.24)

The Type II DFT is given by:

f (xj) =
m/2∑

k=−m/2

Fk eikx j , for j = 1, . . . , n. (11.25)

The Type III DFT is given by:

ϕk =

n∑
j=1

u j e±isk x j , for k = 1, . . . ,m, (11.26)

with sk ∈ R arbitrary. In some cases, these sums correspond to the evaluation of an expansion
in complex exponentials (Type II), or discretization of an integral (Type I). The problems of
efficiently discretizing Fourier integrals and evaluating the above discrete sums should not be
conflated – the sums above do not hold any physical meaning unless attached to an outer problem
(as in the case of FMMs, etc.). We merely address the task of efficiently computing these sums
in near linear time.

We have listed the one-dimensional versions of each of these schemes, but they are readily
extended to sums based on higher dimensional frequency vectors k and spatial locations x j . For
example, in two dimensions, the Type I DFT is defined as:

F(k) =
n∑
j=1

fj e−ik ·x j , for k = (−m/2,−m/2), . . . , (m/2,m/2). (11.27)

The algorithms which allow for the rapid computation of these sums are of a different nature
than those upon which FMMs are designed. FMMs exist because after separating near-field
from far-field calculations, it can be shown that the far-field part is a low-rank operation. Using
this idea hierarchically, one can build a fast algorithm.

Similar addition formulas for complex exponentials exist, for example:

eiρt = J0(ρ) +

∞∑
n=1

2in Jn(ρ)Tn(t), (11.28)

where Jn is the Bessel function of order n, Tn is the degree n Chebyshev polynomial and
t ∈ [−1, 1]. However, this addition formula does not directly yield a fast algorithm because there
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is no obvious low-rank observation. We will discuss other FFT-like fast algorithms in the next
chapter, where we develop what are known as butterfly algorithms.

The schemes described below are a combination of interpolation, application of standard
FFT methods, and rigorous error analysis. We will now discuss an algorithm for the Type I
NUFFT.

11.2.1 The Type I NUFFT

The Type I NUFFT corresponds to evaluating the sums:

F(k) =
n∑
j=1

fj e−ikx j , for k = −
m
2
, . . . ,

m
2
. (11.29)

We first describe an algorithm, and then analyze its accuracy and efficiency.

The Type I NUFFT

Step 0 Choose absolute error tolerance ε , set width of convolution kernel to be
τ = τ(ε) (see accuracy discussion below).

Step 1 Compute the Fourier coefficients

f̂τ(k) =
1

2π

∫ 2π

0
fτ(x) e−ikx dx (11.30)

of the function

fτ(x) =
n∑
j=1

fj
∞∑

`=−∞

e−(x−x j−2`π)2/4τ . (11.31)

This can be done using a sufficiently large FFT.
Step 2 Evaluate F as

F(k) =
√
π

τ
ek

2τ f̂τ(k). (11.32)

The previous algorithm is very straightforward, all that remains is to prove some identities, error
bounds, and choices for the parameters τ and the size of the FFT to take of fτ . First, we explain
the algorithm in some more detail.

First, we note that F(k) in (11.29) is the exact Fourier coefficient of the 2π-periodic function:

f (x) = 2π
∞∑

`=−∞

n∑
j=1

fj δ(x − xj − 2π`) (11.33)
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That is, we have that

F(k) =
1

2π

∫ 2π

0
f (x) e−ikx dx

=

n∑
j=1

∫ 2π

0
fj δ(x − xj) dx

=

n∑
j=1

fj e−ikx j

(11.34)

If the function f was well-resolved by equispaced sampling on [0, 2π], then these coefficients
could be directly computed (as in the case of smooth periodic functions on this interval).
Unfortunately, no number of equispaced points would resolve the δ-functions. In order to take
advantage of this fact, we first convolve f with a smooth kernel function (the Gaussian), and
then scale the resulting Fourier coefficients (deconvolve).

Define the kernel function gτ by:

gτ(x) = e−x
2/4τ, (11.35)

and the convolution over the entire real line fτ as:

fτ(x) = ( f ∗ gt )(x)

=

∫ ∞

−∞

f (y) gτ(x − y) dy.
(11.36)

It is easy to confirm that fτ is a smooth, C∞ function with period 2π (due to the smoothness of
gτ and the periodicity of the function f ). The exact Fourier coefficients of fτ are then given by
f̂τ :

f̂τ(k) =
1

2π

∫ 2π

0
fτ(x) e−ikx dx. (11.37)

It is obvious that if the coefficients f̂τ were known exactly, the using then properties of the
Fourier transform,

f̂τ(k) = F(k) · ĝτ(k) ⇐⇒ F(k) =
f̂τ(k)
ĝτ(k)

, (11.38)

where, as before, F is the exact Fourier transform of f in (11.33). The computational task, then,
is to efficiently evaluate the terms f̂τ(k), since the Fourier transform of gτ is known analytically:

ĝτ(k) =
√
τ

π
e−k

2τ . (11.39)

These integrals defining f̂τ can be evaluated with spectral accuracy using an N-point trapezoidal
rule, where N is chosen in order to sufficiently resolve Gaussians placed at each of the locations
xj . That is to say, N ∼ O(1/

√
τ). Details of this analysis follow.
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Accuracy

The formula for computing F(k) is given in equation (11.38), and the accuracy is completely
controlled by the evaluation of f̂τ(k) since ĝτ(k) is known analytically. If a maximum k = m/2
is needed in equation (11.37), then at least N = 2m points are needed in its discretization (to
resolve the m/2 mode in fτ and in the exponential). Note that the formula in (11.38) is exact
– that is, it is true for any value of τ. It is merely a point of computational complexity and
accuracy to choose τ.

Computational cost

Here we briefly detail the computational cost, which if we assume m ∼ n, is O(m log m + n).
Step 1: This step consists of Gaussian gridding, followed by an FFT of length O(m).
Step 2: Evaluating F(k) is merely a diagonal scaling of f̂τ , and costs O(m) operations.

Caveats

Here we briefly discuss regimes in which the previous scheme does not yield a sufficiently fast
or efficient algorithm.

11.2.2 The Type II NUFFT

Accuracy

11.2.3 The Type III NUFFT

Accuracy
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12.2 Applications

12.3 An algorithm

12.4 Applications
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14.1 Nested dissection
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A Green’s Identities

All three Green’s identities are a direct consequence of the Divergence Theorem (valid in any
dimension): ∫

Ω

∇ · F dV =
∫
Γ

n · F dA, (A.1)

where Ω is a bounded (assumed to be open) region with boundary Γ, and F is a smooth
vectorfield. Green’s First Identity can be derived by setting F = u∇v, where u and v are smooth
functions defined on the closure of Ω:∫

Ω

(∇u · ∇v + u∆v) dV =
∫
Γ

u
∂v

∂n
dA, (A.2)

where as always, ∂/∂n denoted differentiation in the direction outward from Ω.
Green’s Second Identity is derived by setting F = v∇u, and subtracting the resulting equation

from that in (A.2): ∫
Ω

(u∆v − v∆u) dV =
∫
Γ

(
u
∂v

∂n
− v

∂u
∂n

)
dA. (A.3)

Finally, Green’s Third Identity is obtained by setting v(x ′) = g(x, x ′), where g is the Green’s
function for the Laplace operator, and integrating in the x ′ variable:

u =
∫
Ω

g(·, x ′)∆u(x ′) dV(x ′) +

∫
Γ

(
u(x ′)

∂g(·, x ′)

∂n′
− g(·, x ′)

∂u(x ′)
∂n′

)
dA(x ′)

= V∆u +Du − S
∂u
∂n
.

(A.4)

If u happens to be a harmonic function, this identity reduces to what is known as Green’s
Reproducing Identity:

u = Du − S
∂u
∂n
. (A.5)

For values of x on the boundary of Ω, the limiting form of the above reproducing formula is:

u = ±
1
2

u +Du − S
∂u
∂n
, (A.6)

where the sign depends on which side the limit is taken from, and the integral operator D is
implicitly interpreted in its principal value sense (even though it has a continuous kernel).
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B Fredholm Theory

The standard treatments often paid to integral equation theory and Fredholm theory in most
texts are needlessly complicated for most applications. In particular, most of the time for most
applications (at least in mathematical physics), boundary integral equations of concern are being
solving on curves in 2D or surfaces in 3D (usually smooth curves and surfaces, maybe with a
few corners) and contain as kernels the standard single- and double-layer kernels corresponding
to the appropriate Green’s function. What this means, mathematically, is that almost all of
the standard integral operators can be treated as operators acting from L2 to L2. This greatly
simplifies much of the analysis, and has a direct correspondence to the numerical methods often
used to solve them: iterative linear algebraic solvers, generalized Fourier series, etc. It is with
this in mind that we provide the overview of what we will call Fredholm theory.

We first classify integral equations into one of two kinds. In the simplest case, let K be a
compact integral operator acting on some curve in 2D or surface in 3D, denoted by Γ, with
kernel k, integral equations of the first and second kind are then:

First-kind:
∫
Γ

k(x, x ′) ϕ(x ′) da(x ′) = f (x)

Second-kind: ϕ(x) +

∫
Γ

k(x, x ′) ϕ(x ′) da(x ′) = g(x)

(B.1)

A third class of integral equation exists, known as Volterra equations, and arise naturally in the
theory of parabolic PDEs and the associated integral equations. We omit a discussion of these
types for now.

Definition 1 (Weakly-singular integral operators). The integral operator K with kernel k(x, y)
is a weakly-singular integral operator on a curve in 2D if:

k(x, y) ≤ C
1

|x − y |α
, (B.2)

where α ∈ [0, 1). Along surfaces in 3D, the condition can be relaxed to α ∈ [0, 2) due to the
change in metric (and therefore conditions on integrability).

It can be shown that weakly singular integral operators along smooth boundaries are compact
operators acting from L2 → L2. If K is a compact operator, then it can be approximated to any
precision ε by a finite rank operator, Kn:

| |K − Kn | |2 ≤ ε (B.3)

where n denotes the rank and depends on ε . The smallest n such that the above equation holds
will be referred to as the ε-rank of the operator K.
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Theorem 3 (The Fredholm Alternative). For a compact integral operator K : L2 → L2,

1. the equation (I +K)σ = f has a solution for any f if and only if (I +K)σ = 0 has only
σ = 0 as a solution. If so, the operator (I +K)−1 is in fact bounded. Otherwise,

2. if (I +K)σ = 0 has non-zero solutions, then dim Null(I +K) = dim Null(I +K∗), and
(I +K)σ = f is solvable if and only if f is orthogonal to Null(I +K∗).

Proof. We omit a proof, as various proofs can be found an any integral equations textbook or
functional analysis textbook. �
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C Iterative Solvers
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