MATH/BIOL 255: Mathematics in Medicine and Biology Homework 8 Due: Tuesday 11/08 3:30 PM

1) Consider a membrane immersed in a calcium solution with external concentration $[Ca^{2+}]_o$. In this homework, the only ions inside and outside the membrane are Ca^{2+} .

- (a) Write an expression for the equilibrium potential E_{Ca} of Ca^{2+} . [1 pt]
- (b) Letting C be the membrane capacitance, write the ODE describing the evolution of the cell potential v as a function of E_{Ca} and g_{Ca} . [1 pt]

We will now take a closer look at the behavior of the calcium channels. Suppose that each channel contains two gates, and that the channel is open if both gates are open. Let a be the probability the first gate is open and b be the probability the second gate is open. Unlike in class, however, the second gate is open only when the first gate is open (it is not independent of the first).

- (c) Let \bar{g}_{Ca} be the membrane conductance when all channels are open. Write the algebraic equation for the conductance g_{Ca} as a function of $a, b, and \bar{g}_{Ca}$. [2 pts]
- (d) Write an ODE for da/dt, introducing functions $\alpha_a(v)$ and $\beta_a(v)$ that describe the rate of gate opening and closing (respectively) as a function of the voltage v. [1 pt]
- (e) When the voltage increases, the rate at which an open gate closes increases, and the rate at which a closed gate opens also increases. What does this mean about the sign of $\alpha'_a(v)$ and $\beta'_a(v)$? [2 pts]