MATH/BIOL 255: Mathematics in Medicine and Biology Homework 6
 Due: Tuesday 10/25 3:30 PM

1) In class, we assumed that all cross bridges attach at $x=A$, where $A>0$, and detach at a constant rate independent of x. Let's consider a different model in this homework. In particular, we will assume that attachment occurs at an arbitrary value of x, and detachment occurs at a rate that increases with strain. As in class, you will use n_{0} as the number of CBs per half sarcomere and

$$
U=\int_{-\infty}^{\infty} u(x) d x
$$

as the total fraction of attached bridges.
(a) In particular, suppose that attachment of the CBs occurs at an arbitrary x in $[-A, A]$ with constant rate (per unit length) α_{0}. Write an integral expression that gives the total rate (number/time) of attachment pet unit time on an interval $\left[x_{0}, A\right]$ with $-A<x_{0}<A$. [1 pt]
(b) Now assume that the rate of detachment for an individual bridge is $\beta e^{x / A}$. Write an integral expression that gives the total rate (number/time) of detachment per unit time on an interval $\left[x_{0}, A\right]$ with $-A<x_{0}<A$. [1 pt]
(c) Assuming that v is the sliding speed, give the rate (number/time) at which bridges slide past $x=x_{0} .[1 \mathrm{pt}]$
(d) Use your answers for (a)-(c) to write an ODE (differentiate the integral equations) governing $u(x)$. Do not solve the ODE. [2 pt]

For the rest of this homework, set $v=0$. This means that cross bridges attach and detach only in the interval $-A<x<A$, and therefore that

$$
U=\int_{-A}^{A} u(x) d x
$$

(e) Now solve the equation in (d) to obtain an expression for $u(x)$ when $v=0$. Note that you will need to solve for U to get full credit. [3 pts]
(f) Assume that each CB has the force-extension relationship $p(x)=p_{0}\left(e^{k x / A}-1\right)$. Determine the total force P when $v=0$. [2 pts]
(g) What is the minimum positive integer k that gives a positive force P ? [1 pt]

